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Abstract—Network monitoring is an essential component of
network operation and, as the network size increases, it usually
generates a significant overhead in large scale networks such
as sensor and data center networks. In this paper, we show
that measurement correlation often exhibited in real networks
can be successfully exploited to reduce the network monitoring
overhead. In particular, we propose an online adaptive measure-
ment technique with which a subset of nodes are dynamically
chosen as monitors while the measurements of the remaining
nodes are estimated using the computed correlations. We propose
an estimation framework based on jointly Gaussian distributed
random variables, and formulate an optimization problem to
select the monitors which minimize the estimation error under
a total cost constraint. We show that the problem is NP-Hard
and propose three efficient heuristics. In order to apply our
framework to real-world networks, in which measurement distri-
bution and correlation may significantly change over time, we also
develop a learning based approach that automatically switches
between learning and estimation phases using a change detection
algorithm. Simulations carried out on two real traces from sensor
networks and data centers show that our algorithms outperforms
previous solutions based on compressed sensing and it is able to
reduce the monitoring overhead by 50% while incurring a low
estimation error. The results further demonstrate that applying
the change detection algorithm reduces the estimation error up
to two orders of magnitude.

I. INTRODUCTION

Network monitoring is a key operation at the basis of
several network management tasks such as performance diag-
nosis [1], overlay network design [2], scheduling [3], resource
allocation and selective activation [4]. Acquiring accurate
knowledge on the current network state requires nodes to
collect local measurements and periodically forward these
measurements to a central network management entity for
further analysis and appropriate actions.

The monitoring activity inevitably incurs an overhead
which may significantly affect the performance of large scale
networks such as sensor networks and data centers. As an
example, sensing environmental data with all nodes in a sensor
network and sending this data to a sink may easily create
network congestion and also drain sensor batteries. Similarly,
monitoring the resource utilization of all nodes in a data
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Fig. 1. Measurement correlation: (a) sensor network, and (b) and data center.
center may cause performance degradation and waste system
resources.

Network measurements, such as the ones mentioned above,
are often correlated. To support this claim, we consider mea-
surement data from real networks and show in Figure 1 (a-b)
the correlations that exist between nodes. More specifically,
we consider two data-sets, one collected from an outdoor
sensor network measuring the sunlight intensity over time
and the second collected from a real world data center in
which servers periodically measure their CPU utilization!. We
represent sensors and servers as nodes in a graph and we
add an edge between a pair of nodes if measurements have
a correlation coefficient higher than a threshold”>. We set the
threshold to 0.75 for the sensor network data set and to 0.65
for the data center case. Figures 1 (a) and (b) show the results
for the respective data-sets. As the figures point out, in both
cases the measurements show a high degree of correlation.

The above insight can be used to reduce the monitoring
overhead of the network. In particular, only a subset of nodes
can be selected to act as monitors and collect measurements,
which are used to estimate the measurements of the other nodes
in the network using correlation. Intuitively, some nodes can
provide better estimation than others, and a larger number of
monitors would reduce the estimation error but would also
increase the monitoring overhead. As a result, the design of
a framework to minimize the monitoring overhead and accu-
rately estimate unobserved measurements requires to address
the following main problems: i) the selection of the best set
of monitors given a budget on the monitoring overhead, ii) the
estimation of unobserved measurements given those collected
by the selected monitors. In addition, the framework should be
able to handle dynamics that may occur and result in a change

!Further details on these networks are provided in Section VIL

2The correlation coefficient of two populations of samples is defined as the
covariance between the populations divided by the product of their standard
deviations. A correlation coefficient equal to 1 represents perfect correlation.
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of the measurement correlation over time.

Most previous works in this area are either based on
geometric models or compressed sensing. Geometric models
[4], [5] are generally considered in geographically deployed
networks, such as wireless sensor networks, and exploit the
spacial correlation of measurements. However, in practice lo-
cation information may not be available or accurate, and, more
importantly, these techniques cannot be applied to virtualized
environments such as data centers, where there is no notion
of distance. Compressed sensing based approaches [6]-[12]
reconstruct the signal, i.e. the full set of measures, from a
reduced representation in a vectorial space with less dimen-
sions. These approaches mainly focus on the reconstruction of
the original signal, and only marginally address the monitor
selection problem.

In this paper, we propose an online adaptive measurement
framework to jointly address the problems mentioned above.
Our framework can be applied to virtual environments such as
data centers and to geographically deployed networks with no
location information. In addition, it adapts to dynamic changes
in the measurement correlation thanks to a change detection
mechanism. According to our method, time is divided in
training intervals and operation intervals. During a training
interval all nodes in the network collect measurements. On
the basis of this information the measurement correlation is
calculated and a subset of nodes is selected as monitors. During
operational intervals, measurements of the other nodes are
estimated using those collected by monitors.

We address the problem of estimating unobserved measure-
ments by modeling nodes in the network as jointly Gaussian
distributed random variables, whose realizations represent the
collected measurements. We formulate an optimization prob-
lem to select monitors under a budget constraint, where the
budget represents the overhead generated by the monitoring
activity. We show that the problem is NP-Hard and solve it
optimally for the special cases of single and pair monitor se-
lection. We use this analysis for the design of three heuristics,
with different computational complexity, to solve the general
hard case. The three heuristics provide a tradeoff between
computation complexity and estimation performance.

We propose an online change detection mechanism based
on Welch’s t-test in order to enable our framework to dynam-
ically adapt to changes in the measurement correlation. The
test allows to timely detect when the information gathered in
the previous training interval does not represent the current
variable distribution and correlation, and hence a new training
interval needs to be performed.

We evaluate the performance of the three heuristics on
synthetic and real traces against a recently proposed com-
pressed sensing approach. Results show that our heuristics
outperform the previous approach and in real networks are
able to reduce the monitoring overhead by up to 50% while
incurring a low estimation error. In addition, the incurred error
is close to an optimal monitor selection strategy obtained
through brute force computation. We also show that our change
detection mechanism is able to quickly detect changes in the
measurements and maintain the estimation error two orders of
magnitude lower than the error that would have been incurred
without detecting changes.
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In summary, the main contributions of this paper are:

We show that measurement correlation can be effec-
tively used in real networks to reduce the monitoring
overhead, and propose an online adaptive measure-
ment framework.

We formalize an optimization problem to select moni-
tors in the network and show that this problem is NP-
Hard. We optimally solve the problem for two special
cases and use these to design three efficient heuristics.

We address dynamic changes in real-world networks
that would affect network measurement by designing
an online change detection mechanism.

We perform experiments on synthetic and real traces.
Results show that our approach outperforms a pre-
vious approach based on compressed sensing, and
can reduce the monitoring overhead up to 50% while
incurring a low estimation error. Additionally, we
show that the change detection mechanism enables a
reduction of the estimation error up to two orders of
magnitude in real networks.

II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a general network composed by /N elements.
As an example, these elements may correspond to sensor
devices or servers in a data center. We assume that elements
are loosely synchronized and that in each time slot an element
produces a reading. Readings may represent the data sensed
by a sensor or the resource utilization (CPU, memory, etc.) of
a server. We introduce a random variable x; for each element
in the network, with ¢ = 1,..., N and we model readings as
realizations of these variables. We denote by X = [z7 ... zy]T
the N dimensional random column vector of the random
variables. Let ¥y = {oy;},i=1,...,N,j=1,..., N be the
covariance matrix. i.e., X x = E[(X—X)(X—X)T]. Similarly,
let ux = [p1,- .., 1] denote the vector of expected values of
the variables in X. Note that, the true values of X x and px
are unknown and may change over time.

We divide time in epochs, each of which is in turn divided
into a training interval followed by an operational interval.
During training intervals, the realization of all variables are
observed over T3, time slots. On the basis of the gathered
samples, ¥ x and px are estimated. At the end of a training
interval, we select a subset S of variables in X. We call
these variables observed or selected while we refer to the
remaining variables as unobserved or unselected. We assume
that observing a variable x; incurs a cost ¢; > 0. This cost may
represent the consumed energy of a sensor or the overhead
incurred in gathering the data from a server.

During operational intervals, observed variables act as
monitors and their realizations are collected. Differently, the
realizations of the unobserved variables in Y = X \ S are
estimated by using the realizations of the observed variables
and the information given by X x and px calculated in the
training interval. Operational intervals last T, time slots. At
each slot ¢, a realization vector s; of the variables in S is
observed. On the basis of this vector, for each variable y € Y,
we estimate its realization ;. We denote by y(s¢) the vector
of estimate realizations at time slot ¢.



The choice of the set of observed variables .S influences
the error incurred in the estimation process. We use the Mean
Square Error (MSE) as a measure of the incurred error. In
particular, given the estimation y(st) and the true realizations
yt, the MSE is calculated as:

MSE(yi(se).ye) = Y (ye — 4r)°
yey

(M

Where y; is the true realization of the unobserved variable y
at time t.

Given ¥ x and px, we are concerned with optimally
selecting the set of variables S* C X that minimize the overall
MSE in the operational interval and incur a cost less than the
budget. Formally,

Top
T > MSE(y(s). v1) )

P t=1

s.t. Z ¢ < B

z; €S

S* = arg min (
sCX

Depending on the network specifically considered, B may
represent a budget for monitor placement, the number of
sensors to be kept active or a measure of the allowed overhead
for measurement collection.

I1I.

In this section we describe the framework we adopt to
estimate the unobserved variables given the realization of the
selected variables. In addition, we show that our optimization
problem is NP-Hard.

ESTIMATION FRAMEWORK AND NP-HARDNESS

A. Estimation framework

In our approach we assume that the variables in X can be
approximated by Jointly Gaussian Distributed (JGD) random
variables [13]. The probability density function of X can be
then approximated as:

1
F(x ~3a-TE e 0))

1
V5 o deitsn) P (
2

As our results show, the above assumption holds in real
scenarios and enables us to derive an efficient monitor selection
and estimation framework. We address changes that may occur
over time in the distribution of X through the change detection
framework described in Section V.

Given a set S of selected variables, we can estimate the
remaining variables on the basis of the observed realization of
the variables in S as follows. For a JGD random vector, the
minimum mean square error estimate is the conditional mean
[13]. Given a realization vector s, the conditional mean py g
of the variables in Y can be calculated as follows:

ty|s = py + SysSga(s — ps) (3)

where Yy g is the submatrix of the covariance matrix X x that
express the correlation of the variables in Y and S, Ygg is
the variance matrix of the variables in S, and py and pg are
the average vectors of the variables in Y and S, respectively.
Under the assumption of JGD random variables, given the
variables in S, the estimation py g minimizes the MSE.
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We show in Section VII that in real network scenarios
this estimation framework, coupled with our change detection
method described in Section V, enables an accurate estimation
of the unobserved variables.

B. NP-Hardness

Although assuming JGD variables enables an efficient
estimation, our optimization problem of selecting the best set
of variables S* to minimize the MSE in an operational interval
remains hard, as shown in the following Theorem.

Theorem 1. The optimization problem is NP-Hard.

Proof: We provide a reduction from knapsack. Let us
consider a general instance of knapsack: a set of elements X,
each element z € X has a value v, a cost ¢,, and a budget
B. The goal is to find a set of elements S* C X such that
the elements in S* provide maximum value and incur a cost
within the budget B. We prove that the general instance of
knapsack can be translated to an instance of our problem.

Given the general knapsack instance, we create an instance
of our problem as follows. We create a random variable x for
each element in X . We set the average as 1, = v,, the variance
to 04, = v, and the cost equal to c,,. We make these variables
independent on each other, i.e. 0, = 0 if  # y.

Since variables are independent, given any set of selected
variables S and unobserved variables Y, Equation 3 shows that
the estimation of the variables in Y that minimizes the error is
the mean py . The overall MSE incurred by this estimation is
given by the trace of the conditional covariance matrix ¥y |g.
Considering that variables are independent we obtain:

tT‘(EYlS) = tT‘(Eyy — EysZgéESy) = tr(ZYY) = Z Tyy
yey

As a result, in this setting the objective function of our problem
becomes linear:

Top Top
1 s 1
T E MSE(ye(st), yt) = T § § Oyy = § Tyy
oD =1 P =1 yeYy yey

Our optimization problem selects the set S* such that,
under the given budget B, the MSE incurred in estimating the
variables in Y = X \ S* is minimized. Since in this setting
our optimization function is linear, S* is the set that minimizes
the sum of the elements in Y. Therefore, S* is necessarily the
subset of X that also maximizes the sum of its elements under
the budget constraint, because the sum across all elements in
X is fixed and Y = X \ S*.

Since we set the variance of our variables equal to the
values of the corresponding element in the knapsack problem,
S* is the set that maximizes the values within the budget B,
i.e. it is the optimal solution of the knapsack problem.

The above reasoning shows that any instance of knapsack
can be translated into an instance of our problem. As a
consequence, our problem is at least as difficult as knapsack
and thus it is NP-Hard. ]

It is worth noting that, although we assumed JGD variables,
the MSE, objective function of the optimization problem, is not



submodular. As an example, let us consider the set of variables
X = {1, x9, 23,24} with the following covariance matrix:

T T2 z3 Ty
x1 [ 1.8485 0.8515 0.7463 1.1311
n, - 22 0.8515 0.6408 0.3679 0.9206
X7 23| 0.7463 0.3679 0.5307 0.4066
x4 \ 1.1311 0.9206 0.4066 1.3816

It can be shown that MSE;;; — MSE(; 3y < MSE(; 5y —
MSEy; 2,3}, hence MSE is not submodular. As a consequence,
the standard optimization theory of submodular functions [14]—
[16] cannot be applied to our case.

IV. EFFICIENT SELECTION OF MONITORS

In this section we introduce three heuristic solutions to our
optimization problem. We first optimally solve the problem for
two special cases, then we use this analysis as a building block
to develop the heuristics for the general case.

A. Optimal solution of special cases

In the following, we consider the case in which, for
each pair of variables x;,z; € X, the costs are such that
¢; + ¢j > B, hence a single variable can be selected. The
following theorem provides an efficient way to select the best
single variable that minimizes the MSE. For ease of exposition,
we implicitly do not consider variables whose individual cost
exceeds the budget in the proof.

Theorem 2. Let X be a set of JGD random variables, with
average px and correlation matrix Xx, the optimal single
variable x; that minimizes the MSE is given by:

(va_1 U?l)

ol
Proof: Let us consider a generic variable x; and let Y =
X \ {z;}. Given z;, the conditional distribution of Y is also
JGD [13]. Following the estimation framework described in
Section III-A, the estimation g; of the variable y; is:

i = arg max

J T eX

A 0ij . .
yi=ﬂi+ﬁ($j—ﬂj)’ L7 “)

3i
where x; is the observed realization of the selected variable.

The mean square estimation error E[||Y —Y'||2] (where we
represent Y as a vector and Y is the vector of values g;) is
given as the trace of the conditional covariance matrix:

N 2

EN: Z =19
i=1%14j

(Uii ) = Tii ~

i—1 FF

In order to optimize the single measurement selection, we
must choose the variable z; such that the second term above
is maximized (this will minimize the error). As a result, the
best variable z that minimizes the error is:

(Zf\il Ui2l>

ol

E[lY - Y|P=Y il

i

®)

Tjj

X = arg max

J T e€X

(6)
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We further extend this analysis considering the case in
which the budget allows to select two variables. The follow-
ing theorem shows how to optimally solve the optimization
problem in this case.

Theorem 3. Let X be a set of JGD random variables, with
average |x and correlation matrix Xx, the optimal pair of
variables {7 ,x7,} that minimizes the MSE is given by:

J1’

Proof: The proof is provided in the Appendix.

N [ 2 2
Yoicq(oikon + 050Kk — 200000k1)

2
OkkOll — Oy

{z},,x},} = arg max

xp,r€X

According to Theorem 2, the problem of selecting the
optimal single variable can be solved in O(N?). Similarly,
Theorem 3 shows that the optimal pair selection can be solved
in O(N?). In order to reduce the complexity of our solutions,
we designed our heuristics using the optimal single variable
selection as a building block. However, these heuristics can be
casily extended to adopt the optimal pair selection.

B. Heuristics

In this section we describe three heuristics, named Top-
W, Top-W-Update and Batch Selection, to select the observed
variables. These heuristics have different computational com-
plexity. As we show in Section VII, there is a tradeoff between
computation complexity and estimation performance.

1) Top-W: In this heuristic we use the optimal single
variable selection analysis provided in Theorem 2 to rank the
N variables. In particular, we assign to each variable z; a

weight w; defined as:
N
Zi:l 012]
934

Intuitively, the weight represents the gain provided by a
variable when it is individually selected, normalized by its cost.
We rank variables according to their weights in a decreasing
order. The heuristic selects variables following the order until
the budget allows.

(7

G

Top-W is optimal for the case of homogeneous costs and
a budget that enables to select at most a single variable.
However, as our experiments in Section VII confirm, it may
perform poorly in some scenarios because it does not take into
account the contribution to the estimation error of the already
selected variables. As a result, it may select variables which
have individually a high weight, but are not the best selection
when considered together.

Top-W requires O(N?) to calculate the weights,
O(Nlog N) to sort them and O(N) to select the variables.
Hence, the overall complexity is O(N?).

2) Top-W-Update: Top-W-Update works in iterations. At
every iteration, it uses the weights similar to Top-W, but it
updates such weights every time a variable is selected. At the
first iteration, the weights are calculated according to Eq. 7.
The variable z7 with the highest weight among those whose
costs do not exceed the budget is selected, and the conditional
covariance matrix of the remaining N — 1 variables given



Algorithm: Top-W-Update

Input: Set of variables X, covariance matrix ¥ x, budget B.
Output: Set S of selected variables.

15=0;

2 Y =X;

3 Yy =3x;
4 1=1;

5 while Y # ) do
// Weight update
6 for x; € Y do

7 L wy = Lil (2%111%21)
// Select variable with max weight
8 T = arg maxe,cy Wy
9 if Cpr < B then
10 S=8SuU{zi};
1 Y =Y \{zi};
12 B=B-— Cats

// Covariance matrix update

13 Sy =Yyy — By E;;lz; Yorys
14 else

15 | Y=Y \{zi}

16 | i+

17 return S

7 is calculated. At the next iteration, the weights of the
unselected variables are recalculated by using the conditional
covariance matrix. We then select the variable x3 with the
highest weight if the budget allows, as in the previous iteration.
If 23 is selected, the new conditional distribution of the
remaining variables is calculated. Iterations continue until no
more variables can be selected.

The pseudo-code of Top-W-Update is shown in Algorithm
Top-W-Update. The algorithm takes as input the set of vari-
ables X, the covariance matrix X x and the budget B. The set
S contains the variables selected up to the current iteration,
while the set Y contains the variables not already selected. The
matrix >y represents the conditional covariance matrix of the
unselected variables in Y given the variables in .S. Initially, it
is equal to the matrix X x (line 3).

At the ¢-th iteration, we calculate the weight considering
the current covariance matrix (lines 6-7) and select the variable
x; with the maximum weight (line 8). If the cost of =] is within
the available budget (line 9), =} is selected (line 10-11) and the
available budget is updated (line 12). Next, we calculate the
distribution of the remaining variables in Y, given the selected
variable ] (line 13). The conditional covariance matrix Xy
is updated given the new selected variable x as follows:

—1

Yy = Xyy = Nyer X Yary (®)
where Yyy is the covariance matrix of the variables in Y,
Ygrgr is the variance of z}, Yy,: = ¥T., is the vector

of the covariance between the variables in' Y and xz}. The
updated matrix Xy is used at the next iteration to select the
next variable.

The selection process continues until no more variable
can be selected. Top-W-Update performs N iterations, at
each iteration it recalculates the weights (O(N?)), selects
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the variable with the highest weight (O(V)) and updates the
covariance matrix (O(IN?)). As a result, the overall complexity
is O(N?).

Algorithm: Batch Selection

Input: Set of variables X, covariance matrix X x, budget B.
Output: Set S of selected variables.

1 S=0;

2 Y =X,

3i=1;

4 while Y # () do

s | @i =argming ey tr(Sy\ (o} 1s0fx,)) X €
6 if Cpr < B then

7 S=Su{z};
8 Y =Y \{zi}
9 B=B-— Cats
10 else

1 | Y=Y \{zi}:
12 return S

3) Batch Selection: The Batch Selection heuristic is also
based on iterations and makes use of weights. Differently from
Top-W-Update, in Batch Selection the weight of a variable
x; represents the error incurred in estimating the unobserved
variables by including z; in the set of observed variables,
multiplied by its cost ¢;. At the i-th iteration, the variable x
with minimum cost is selected. Note that this approach differs
from Top-W-Update as the variables in S and the current new
variable are considered as a whole.

The pseudo-code of the algorithm is shown in Algorithm
Batch Selection. The algorithm takes similar input than Top-
W-Update and returns the set of selected variables. At each
iteration, the algorithm determines the variable that minimizes
the weight (line 4). In order to do so, it calculates, for each
unselected variable x;, the trace of the conditional covariance
matrix Xy {g,}|su{z,} as follows:

)

where V; = Y \ {a;} and S; = S U {z;}. At the i-th iteration,
Batch Selection considers the variable x; that minimizes the
trace of the corresponding conditional matrix, multiplied by
the cost of selecting that variable. The variable is selected if
its cost is within the available budget (line 6).

Sy\fedsufe) = Svivi — s Ogs, Sy,

This heuristic performs at most N iterations. At each
iteration it calculates the conditional covariance matrix for each
variable x;, which requires to invert the matrix X g, g, and has a
complexity O(N3) for each inversion. The overall complexity
is then O(N®).

V. CHANGE DETECTION MECHANISM

In real scenarios the statistical distributions of the random
variables may change over time. As an example, in an outdoor
deployed sensor network measuring the light intensity, the
position of the sun and the clouds may substantially change
the distribution of the collected measurements. In addition, the
approximation of these variables as JGD, with the statistics
measured in the training interval, may not hold for long time
windows. If such changes are not detected, and proper actions
are not taken, the performance of the estimation framework



may significantly worsen over time, as we show with real
datasets in Section VII.

In this Section we introduce an online change detection
mechanism based on the Welch’s ¢-test [17]. The test is
performed on the variables selected by our heuristics. The goal
is to verify if the distribution of these variables changes during
the operational interval. If a change is detected, a new training
interval is started after which new variables are selected?.

During a training interval of size T}, we calculate the
training distributions of the variables in X. In particular, for
each z; € X, we calculate the average p7° and the variance
of® over T, samples. On the basis of this information, we
select the variables using one of the heuristics described in
Section IV-B. As soon as the training interval ends, we keep
track of the observed distribution of each of the selected vari-
ables. In particular, we calculate the observed mean p° and
the observed variance o¢°. We refer to n°? as the number of
time slots during which the observed distribution is measured.
udP, o and n°° are updated at each time slot on the basis

of the observed realization of the selected variables.

The idea of the test is to verify, for each selected variable
x;, weather the distribution < p7°, 07 > and < pf®, o >
belong to the same population (null hypothesis) or not (alter-
native hypothesis).

The Welch’s t-test defines a parameter ¢, which depends on
the two distributions. We perform the test for each observed
variable x; and calculate the value of t; as follows:

TD oD
P =
b = ; D 5 oD (10)
o, o}
Tyr nop

According to the Welch’s test, for each ¢; we can estimate the
degree of freedom v; as follows:

oD
g; \2
+ 745%)

OD)2

(%
Tyr
()2
T7 (Ter—1)

~

Vv, =

(I

(Ji
+ (nOD)Z(nOD_:l)
We want to determine if the alternative hypothesis is verified
with a given probability «. For each ¢; and v; we can
determine, by using Student’s ¢ distribution tables, the value
Bi such that if t; > ; then the alternative hypothesis is true
with probability a.

The above described test is used to detect changes in
operational intervals as explained in the following. At each
time slot, we observe the realization of the selected variables
and we estimate the values of the remaining variables. For
each selected variable, we update its observed distribution
< pP, 09 > and perform the test. If the test verifies the
alternative hypothesis for at least one selected variable, i.e.
the distribution calculated in the training interval is different
than the observed distribution, we consider that a change has
occurred. Hence the current information is stale and needs to
be recalculated by means of a new training interval.

The tests assumes that variables are normally distributed.
In Section VII we show using real datasets how this test is
robust even when this assumption is not perfectly met.

3We selected the Welch’s t-test since it performs well in the considered
scenarios. Similar tests, such as the Chi-square and the Student’s t-test, could
also be used. Our approach can be easily extended to other tests as well.
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VI. A RECENT COMPRESSED SENSING APPROACH

In this section we describe the approach proposed in [6]
which we use for performance comparison to our heuristics.
We select this approach since it is closely related to our work
and it shows particularly good performance. The approach
is based on a combination of principal component analysis
and compressed sensing. Similar to our work, time is divided
into training intervals and operational intervals, and nodes are
represented in a set X.

During a training interval, the covariance matrix Xy and
the average vector px are calculated. ¥ x is used to calcu-
late the matrix U, defined as the orthonormal matrix whose
columns are the unitary eigenvectors of > x placed according
to the decreasing order of the corresponding eigenvalues. Let
us denote by x the vector of variable realizations, we can define
q = UT(x — px). Based on compressed sensing theory, if
measurements are correlated then the vector q is sparse, i.e.
has few non-zero coefficients.

During operational intervals, at each time slot a random
set of nodes is selected as monitors. Let s be the vector of
readings provided by such monitors. The approach calculates
an estimation q of q given s. This is used to calculate an
estimation x of the original signal x as follows:

x=pux +Uq
We refer the reader to [6] for further details.

VII. EVALUATIONS

In this section we evaluate the performance of our frame-
work. To this purpose we consider two synthetic datasets
and two real datasets. We generate the first synthetic dataset
by using 18 JGD random variables. For each variable, we
randomly select the mean in the interval [600,1000], while
the elements of the covariance matrix are randomly chosen
in the interval [3000,15000]. The second synthetic dataset
is generated using 18 multivariate exponentially distributed
random variables. We we use a parameter A = 5 and scale the
values by a factor 200 to get a similar range than the previous
dataset. We generated correlated exponential variables with the
same correlation matrix of the first dataset using the technique
described in [18].

The first real dataset is obtained from the sensor network
testbed developed in [19]. The authors deployed 18 solar
sensors on five buildings in the University of California Merced
Campus. Sensors recorded the light intensity every 5 seconds
for several days. We hereafter refer to this dataset as the sensor
dataset. The second dataset is collected from a real world
data center in a production environment that hosts business
analytics applications. The trace records the CPU utilization
of 74 servers where measurements were taken once every 15
minutes over a period of 83 days*. In the following, we refer
to this dataset as the data center dataset.

In the experiments, we assume a homogeneous unitary cost
model, i.e. each variable has cost 1. In this setting, the budget
is expressed as the maximum number B of variables that can
be selected.

4We cannot provide additional information on this dataset for privacy
reasons.
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center dataset (d).

A. Evaluation of variable selection heuristics

In this section we compare the performance of Top-W, Top-
W-Update and Batch selection against the compressed sensing
approach described in Section VI (referred to as CS). For all
datasets we use a training interval of length 73, = 500 time
slots®. During the training interval, we calculate the average
vector px and the covariance matrix Y x.

In order to better focus on the performance of the variable
selection methods, in these experiments we fix the length
of the operation interval to T, = 500 and we disable
the change detection mechanism. We use the heuristics to
select B variables on the basis of the information gathered
in the training interval. We use these variables to estimate the
unobserved variables for the entire length of the operational
interval, using the framework explained in Section III-A.

The methods are compared in terms of the MSE incurred
in estimating the unobserved variables. We also consider the
optimal strategy (OPT in the figures) which selects the set of B
variables that minimize the MSE. The optimal set is obtained
through a brute force computation.

Figure 2 (a) shows the results obtained from the first
synthetic dataset with JGD random variables, where MSE’s
are shown on the y-axix as we increase the available budget in
the z-axis. CS has the worst performance. Since this approach
randomly selects monitors at each round, it may often select
nodes which do not allow to calculate a good estimation of the
vector  and consequently a good estimation of the unobserved
measures. As expected, all our heuristics are optimal for
B = 1, since costs are homogeneous and they make use of
the single optimal measurement analysis provided in Section
IV-A. Top-W performs worse than the other heuristics since at
each iteration it selects the new variable without considering
the impact of the variables already selected. As a result, the
selected variable may not provide significant improvement.
On the contrary, Top-W-Update and Batch Selection show
performance close to the optimum since at each iteration they
both take into account the effects of the previously selected
variables to select the next one.

Figure 2 (b) shows the results for the second synthetic
dataset with exponentially distributed random variables. The
purpose of these experiments is to test our framework in a
scenario where variables explicitly violate the jointly Gaussian

5The setting 7%, = 500 is suitable for all scenarios and datasets considered
in this paper. In practice, the length of the training interval may be application
dependent and may require tuning. The development of a self-tuning strategy
will be addressed in our future work.
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distribution assumption. Also in this case, our heuristics sig-
nificantly outperform CS. Additionally, the results show that,
even with exponentially distributed traces, our approach incurs
a low MSE when the budget allows to select at least one third
of the variables.

Figure 2 (c) shows the results for the sensor dataset.
Differently from the synthetic traces, in which the variable
correlation is relatively uniformly distributed, in this dataset
variables have skewed correlation as a consequence of the
sensors’ geographical distribution. As a result, more sensors
are required by all approaches to achieve a low MSE. CS
is strongly penalized by the skewed correlation distribution
(note the log-scale on the y-axis), since poor monitor selections
result in an even higher estimation error than in the synthetic
case. Top-W shows a step wise behavior. This is due to
cluster of sensors located on close buildings which are highly
correlated and provide similar performance in estimating
other variables. Since this heuristic does not update variables
weights, it selects most of the sensors in a cluster before
moving to other sensors on different buildings. As a result,
until B is not sufficiently large to force the algorithm to select
sensors on other buildings, it keeps selecting sensors on the
same cluster, not improving the overall MSE. On the contrary,
Top-W-Update and Batch Selection select a proper set of
variables and achieve performance close to the optimal policy.
Batch Selection has slightly better performance than Top-W-
Update in this scenario. Since Batch Selection considers the
overall decrease in the estimation error for each variable, it is
more effective when measurement correlation are particularly
skewed, although it incurs a higher computational complexity.

Let us now focus on the particular case B = 4 for the
sensor dataset. As Figure 1 (a) suggests, this datasets has
4 main clusters composed by the following sensors IDs:
{7},{4,5},{14},{0,1,2,3,6,8,9,10,11,12,13, 15,16, 17}.
This structure reflects the sensor geographical distribution
[19]. When B = 4 it would be desirable to select a sensor in
each cluster. The random selection of CS is likely to select
most sensors from the largest cluster, thus resulting in a high
estimation error, as show in Figure 2 (c). Top-W selects the
sensors 10, 11, 8 and 9. These are all located in the largest
cluster, hence they provide a poor estimation of the other
sensors readings. Nevertheless, Top-W still outperforms CS,
highlighting the superiority of our estimation framework.
Top-W-Update, instead, selects 10, 4, 7 and 0. It spreads
the selected sensors on 3 different clusters, achieving a
significantly lower MSE than Top-W and CS. Finally, Batch
Selection selects 0, 4, 7 and 14. It successfully selects one



sensor per cluster, resulting in an MSE close to the optimum
at the expense of an increased computational complexity.
Note that, Top-W-Update successfully covers all clusters for
the case B = 5.

Figure 2 (d) shows the results for the data center dataset.
In this dataset, measurement correlations are more uniformly
spread than in the sensor case. As a result CS and Top-W
achieve better performance than with the sensor dataset. Top-
W-Update and Batch selection achieves similar performance
and incur in a low error as the budget increases. We do not
show the optimal policy for this dataset due to the excessive
running time required by the brute force computation.

Overall, Figures 2 (c) and (d) show that in real networks
our approach can reduce the network monitoring overhead by
more than 50% during operational intervals. In fact, for the
sensor dataset, 9 out of 18 sensors are sufficient to incur in a
MSE of few units. Similarly, for the datacenter dataset, only
30 out of 74 servers are needed for a good estimation of the
remaining resources.

B. Evaluation of the change detection mechanism

In this section we evaluate our change detection mecha-
nism. We fist consider synthetic traces, for which changes can
be artificially controlled. Then, we show that our method is
effective also with real measurement data.

We use a training interval of length T}, = 200 time slots,
while the length of the operational interval is determined by
our change detection mechanism. In particular, an operative
interval is terminated, and another training interval of length
T, is started, as soon as a change is detected. We set v = 0.95,
hence we detect a change when the training distribution of at
least one observed variable does not match with the observed
distribution with 0.95 probability.

In the experiments we set B = 8 for the synthetic and
sensor dataset, and B = 30 for the data center dataset. We use
the Top-W-Update heuristic to select variables. We observed
similar results with Batch Selection and with the optimal
selection. In order to highlight the time variation of the error
due to occurring changes, in the results we calculate the MSE
over a time window of 20 time slots.

We first study the stability of our online change detection
mechanism on synthetic traces with JGD random variables in
a steady state, i.e. when no change occurs. The results are
shown in Figure 3 (a). The mechanism successfully detects no
change: after the initial training interval no other training is
required and the same set of variables is used to estimate the
remaining variables. It is worth noting that, since the variables
are actually JGD, the actual MSE is close to the expected
MSE which is given by the trace of the correlation matrix
Y x, calculated during the training interval.

Next, we investigate the time needed to detect a change.
To this aim, we use synthetic traces where we generate a new
distribution for each variable and a new covariance matrix
every 500 time slots. Results are shown in Figure 3 (b). As
the figure shows, the MSE suddenly increases as a change
occurs, due to the stale information used for the estimation.
However, our mechanism successfully detects the change in
few time slots and initiates another training interval. At the
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end of the training interval, a new set of variables is selected
by our heuristics for the next operational interval.

We performed similar experiments for synthetic traces
with exponentially distributed random variables. Figure 3 (c)
shows the steady state when no change occurs in the variable
distributions. Although the incurred MSE is higher than with
JGD variables, the change detection mechanism is robust and
correctly identifies no changes. Figure 3 (d) shows the case of
periodic changes every 500 time slots. Also in this case the
mechanism rapidly detects a change as it occurs, and triggers
the start a new training interval.

In order to highlight the benefit of our change detection
mechanism in real scenarios, we first show the MSE over time
that would be incurred by not updating the information with
the two real datasets. Figure 4 (a) and (b) shows the results.
In both cases, the MSE is initially close to the expected value,
as the variable distributions can be successfully approximated
as JGD and their distribution remains stable for a period of
time. However, several factors may change these conditions.
As an example, for the sensor dataset these factors include
the position of the sun and the movements of the clouds,
while for the datacenter dataset the workload distribution and
the job allocation. As a result, in both cases the estimation
performance of the prediction mechanism significantly worsen
over time (note the logarithmic scale on the y-axis).

We now consider the performance of our approach by
enabling the change detection mechanisms in the same sce-
narios. Figures 5 (a) and (b) show the MSE over time for the
sensor dataset and the datacenter dataset, respectively. In both
cases, changes are successfully detected and the incurred error
remains relatively stable until a new training interval is started.
It is noteworthy that the MSE is up to two orders of magnitude
lower than the error incurred when no update is performed.

VIII. RELATED WORK

The development of a framework for the reduction of the
monitoring overhead through the estimation of unobserved
measurements has been mainly investigated using geometric
models or compressed sensing. Geometric models [4], [5] are
usually considered in the context of wireless sensor networks
and exploit the spacial correlation of measurements in the
estimation process. In practice location network information
may not be available or accurate, and more importantly these
techniques cannot be applied to virtual environments such as
data centers where there is no notion of distance.
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Compressed sensing based approaches [6]-[12] reconstruct
the signal, i.e. the full set of measures, from a reduced
representation in a vectorial space with less dimensions. Re-
cent advances of this technique focus on the estimation of
multi-dimensional signals [9]-[11]. These approaches mainly
focus on the reconstruction of the original signal, and only
marginally address the monitor selection problem. We use the
approach proposed in [6] for comparisons with our solutions
in this work.

Other works related to ours consider the problem of se-
lecting the optimal subset of monitors from a given set in
order to minimize an error metric. Amongst these, the closest
to our work are ones that consider the multivariate jointly
Gaussian framework [15], [16], [20]-[23]. The work in [15],
[16] studies the problem of optimizing sensor placements to
monitor Gaussian Processes, where the objective is to maxi-
mize the mutual information between the chosen locations and
the locations which are not selected. This problem is shown
to be NP-Hard and a greedy selection algorithm is shown as
(1—1/e)-approximate. Similar (1—1/e) approximation results
are obtained for alternate objectives of minimizing the log
volume of confidence ellipsoid for a sensor selection problem
in [20] and for the V-optimality criterion in the context of
batch active learning in [21]. All of these results are obtained
by showing the submodularity of these objective functions and
then leveraging the celebrated result by Nemhauser et al. [14]
that shows the universal (1 — 1/e) approximation bound for
a greedy selection algorithm on any monotone submodular
set function. As we show in Section III-B, the MSE function
considered in this work is not submodular, hence the above
cited results cannot be applied to our problem.

The problem of selecting a set of monitors has been con-
sidered also in the context of network tomography [24], [25].
These approaches aim at estimating the performance of the
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internal part of the network given the end-to-end measurements
provided by monitors. Our approach is complementary to
theirs, and could be used to further reduce the overhead of
network tomography.

The work in [22], [23] considers the MSE metric for
the subset selection problem and shows that under certain
structural properties of the covariance matrix, the performance
of a greedy selection algorithm can be characterized in terms of
an approximate notion of submodularity called submodularity
ratio. These works focus on scenarios where the correlation
matrix is assumed to be stationary. However, as shown by our
experiments, this is far from true in real-world datasets. In
this work, we design an online learning based approach that
automatically switches between learning and estimation phases
using a change detection algorithm.

Other works in the context of sensor networks make use of
measurement correlation [26], [27]. Differently from our work,
these approaches focus on minimizing the network energy
consumption of the network and do not specifically target the
estimation error.

IX. CONCLUSIONS

In this paper we propose an online method to reduce
the network monitoring overhead by exploiting measurement
correlation. We model measurements as realizations of JGD
random variables and propose an estimation framework to esti-
mate the unobserved variables given the correlation and the re-
alization of the observed variables. We show that selecting the
best set of variables is NP-Hard and propose three heuristics
based on a special case for which the problem can be solved
efficiently. We also propose an online change detection method
in order to deal with time-varying measurement distributions
and correlation. We validate our approach on synthetic and
real traces against a previous solution based on compressed
sensing. Results show that our method outperforms the previ-
ous solution and it reduces the monitoring overhead up to 50%
while incurring in a low estimation error. In addition, we show
that the change detection algorithm reduces the estimation
error up to two orders of magnitude compared to the case
in which changes are not detected.

APPENDIX

Theorem 3. Let X be a set of JGD random variables, with
average |1x and correlation matrix X x, the optimal pair of

variables {7 , a7 } that minimizes the MSE is given by:
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Proof: Let us consider two selected variables xj and
x, let S = {xp,z;} and YV X \ S. Using the JGD
estimation framework the conditional covariance matrix Yy | x
of the remaining (N — 2) variables is given by Yy g =
Yyy — ZysEgsSsy, where Syy is the (N —2) x (N —2)
covariance matrix between the unobserved (N — 2) variables,
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Let MSEg represent the estimation error incurred using the
variables in S, x;, and z;. Since the MSE can be expressed as
the trace of the matrix Yyy — Eyszgézsy, we have
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