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Abstract—In this paper, we study the problem of selecting
paths to improve the performance of network tomography ap-
plications in the presence of network element failures. We model
the robustness of paths in network tomography by a metric
called expected rank. We formulate an optimization problem to
cover two complementary performance metrics: robustness and
probing cost. The problem aims at maximizing the expected rank
under a budget constraint on the probing cost. We prove that
the problem is NP-Hard. Under the assumption that the failure
distribution is known, we propose an algorithm called RoMe with
guaranteed approximation ratio. Moreover, since evaluating the
expected rank is generally hard, we provide a bound which can be
evaluated efficiently. We also consider the case in which the failure
distribution is not known, and propose a reinforcement learning
algorithm to solve our optimization problem, using RoMe as a
subroutine. We run a wide range of simulations under realistic
network topologies and link failure models to evaluate our
solution against a state-of-art path selection algorithm. Results
show that our approaches provide significant improvements in the
performance of network tomography applications under failures.

I. INTRODUCTION

In the Internet and complex wide-area networks, network
management involves a wide range of tasks such as fault
detection, performance diagnosis, resource allocation, route
selection and congestion control. Most of these tasks require
a complete knowledge of internal network state and network
topology. Network tomography techniques [1], [2], [3] are
proposed to acquire this information efficiently probing only
end-to-end (e2e) paths from monitors located at the network
edges, instead of directly monitoring every network element.
Applications of network tomography include, but are not lim-
ited to, inference of individual link performance metrics from
given e2e path measurements [1], network topology inference
[2], and estimation of the complete set of e2e measurements
from an incomplete set [3].

A commonly adopted approach in network tomography
is to formulate a linear system that models the relationship
between path measurements and individual link metrics. Given
the candidate paths between monitors, state-of-art solutions in
network tomography select a subset of these paths, determined
by finding an arbitrary basis of the linear system. By probing
the paths in a basis, previous approaches [1], [4], [3] reduce the
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overhead of collecting e2e measurements while maximizing
the performance.

Existing work assumes a simple network model, where all
network elements are reliable. However, failure of network
elements are common events in modern networks due to main-
tenance procedures, hardware malfunctions, energy outages,
or disasters [5]. The typical duration of link failures in IP
networks [5] are longer than the lengths of time windows for
measurement collection [6] in network tomography. Hence, the
link failures may prevent the collection of some measurements,
and this degrades the performance of network tomography
applications. As a result, previous approaches may perform
poorly in the presence of failures.

Furthermore, in practice, probing a path and centrally col-
lecting measurements at a Network Operating Center (NOC)
where network tomography applications are executed, both
incur costs. These costs vary across different paths. As a result,
the set of paths to probe has to be carefully selected in order
to maximize the performance of network tomography within
a budget constraint.

In this paper, for the first time, we consider the optimization
of path selection in network tomography in the presence of
network element failures and heterogeneous probing costs.
We consider two different scenarios. In the first scenario, we
assume that the distribution of network elements failures is
known. We model the robustness of a set of paths by means
of a metric called Expected Rank (ER), defined as the expected
rank of the linear system corresponding to the remaining paths
after the failures occur.

We formulate the measurement selection problem as an
optimization problem which maximizes ER under a given
budget constraint on the probing cost. We show that the prob-
lem is NP-Hard, but recognize a special property of ER that
allows the development of an approximate algorithm called
Robust Measurements (RoMe), which has an approximation
factor of 1 − 1√

e
. We note that an exact implementation of

RoMe would be hindered by the high complexity in evaluating
ER. To address this issue, we derive an analytical bound on
ER that can be evaluated efficiently. Moreover, we show that
our solution becomes optimal in the more constrained case of
selecting only linearly independent paths.

In the second scenario, we assume no prior knowledge on
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the failure distribution. We propose a reinforcement learning
algorithm, called Learning with Submodular Rewards (LSR),
in order to learn the failure distribution through the observa-
tions of e2e measurements. LSR makes use of RoMe during
the learning process. We prove that under certain conditions
LSR has bounded performance with respect to the optimal
strategy that would be performed by knowing the failure
distribution.

The main contributions of this paper are the following:

• We show, for the first time, that a proper selection
of paths can significantly improve the performance of
network tomography applications in the presence of
failures.

• We define an optimization problem for path selection
which maximizes the robustness against failures under
a budget constraint on probing cost, assuming a known
failure distribution. We show that the problem is NP-
Hard in general and provide an efficient solution.
Moreover, we show that our solution becomes optimal
in the more constrained case when selected paths must
be linearly independent.

• We propose a reinforcement learning algorithm to pick
a set of robust paths while learning path robustness,
when no prior knowledge about failure distribution is
available.

• We confirm through simulations the benefit of our
approach in comparison with previous solutions in
realistic network scenarios. The results show that
our proposed solution significantly improves the per-
formance of network tomography applications under
failures.

The rest of the paper is organized as follows. Section
II motivates the need of robust measurement design amidst
failures. Section III formulates the problem. Sections IV and
V present our solutions under known and unknown failure
distributions, respectively. Section VI evaluates our solutions
against benchmarks. Section VII reviews related work. Finally,
Section VIII concludes the paper.

II. NETWORK TOMOGRAPHY AMIDST FAILURES

In this section, we briefly provide the background of
network tomography techniques, and show how failures of
network elements can significantly affect their performance.

A. Background on network tomography

Network tomography techniques [1], [2], [3] model the
network as an undirected graph G = (V,E), where V is
the set of nodes and E is the set of edges. A subset of the
nodes M ⊆ V , usually nodes at the edge of the network,
may act as monitors. A single path is assumed between each
pair of monitors, as usually provided by routing algorithms in
the Internet [7]. We denote by RM the set of candidate paths
between monitors that can be selected for probing. Monitors
probe each other to collect e2e measurements over the selected
paths. In this work, we consider typical applications of network
tomography including inferring the individual link metrics
from e2e measurements and inferring the complete set of e2e

measurements from a subset. A typical assumption in these
applications is that the metric of interest is additive across
links, which holds for delay and logarithm of packed delivery
rate.

Given the set of candidate probing paths RM , we define
a path matrix A of size |RM | × |E|. If a path qi ∈ RM

contains link j then A[i, j] = 1; otherwise A[i, j] = 0. Let
yRM

∈ R
|RM | be a column vector, where yi represents an e2e

measurement of path qi. Also, let x ∈ R
|E| be a column vector

where xj is the unknown metric of link lj . Since additive link
metrics are considered, we can write a linear system for all
the e2e measurements of paths in RM as,

Ax = yRM
(1)

The rank of matrix A, hereafter denoted by r(A), is equal
to the number of linearly independent rows in A (row rank)
and also to the number of linearly independent columns of A
(column rank).

In real large-scale networks, the linear system is usually
underdetermined, since the rank is smaller than the number of
links [3], i.e., r(A) < |E|. A basis of paths Rb ⊆ RM is a
maximal set of linearly independent paths, where we say that
paths are independent if all corresponding rows in the matrix
A are linearly independent.

Previous approaches in network tomography [1], [4], [3],
probe an arbitrary basis of paths determined by rank de-
composition techniques. A basis can be used to determine
the unique solution for a maximal set of links [1], called
identifiable links, from the linear system in Eq. 1. Moreover, it
allows to reconstruct the set of all e2e measurements in RM ,
resulting in a scalable monitoring system in large networks
[3]. These approaches, assume that all network elements are
reliable and that paths have homogeneous probing costs. As a
result the may perform poorly in the presence of failures and
heterogeneous costs.

B. Impact of link failures

Fig. 1: An example

In this section, we motivate our problem by showing how a
careful selection of candidate paths improves the performance
of network tomography applications in the presence of failures.
We first provide an illustrative example, and then give some
motivating results for realistic networks.

We consider a topology with 8 nodes and 8 links as shown
in Figure 1. In this example, we assume that monitors are
placed on nodes that are labeled m1, . . . ,m6. The candidate
paths are given in Figure 2 (a). The path matrix A is shown
in Figure 2 (b). In the example, we focus on the application in
which we are interested in identifying the metrics of the links
from e2e measurements.
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Monitors Path
(m1, m3) q1 = (l1, l6, l7, l4)

(m2, m4) q2 = (l5, l6, l7, l8)

(m2, m3) q3 = (l5, l6, l7, l4)

(m1, m4) q4 = (l1, l6, l7, l8)

(m1, m2) q5 = (l1, l5)

(m3, m4) q6 = (l4, l8)

(m1, m5) q7 = (l1, l2)

(m2, m5) q8 = (l5, l2)

(m5, m3) q9 = (l3, l4)

(m5, m4) q10 = (l3, l8)

(m2, m6) q11 = (l3, l7)

(m1, m6) q12 = (l1, l6)

(m2, m6) q13 = (l5, l6)

(m6, m3) q14 = (l7, l4)

(m5, m6) q15 = (l7, l8)

(a)

A =

0
BBBBBBBBBBBBBBBBBBBBBBB@

l1 l2 l3 l4 l5 l6 l7 l8

q1 1 0 0 1 0 1 1 0
q2 0 0 0 0 1 1 1 1
q3 0 0 0 1 1 1 1 0
q4 1 0 0 0 0 1 1 1
q5 1 0 0 0 1 0 0 0
q6 0 0 0 1 0 0 0 1
q7 1 1 0 0 0 0 0 0
q8 0 1 0 0 1 0 0 0
q9 0 0 1 1 0 0 0 0
q10 0 0 1 0 0 0 0 1
q11 0 0 1 0 0 0 1 0
q12 1 0 0 0 0 1 0 0
q13 0 0 0 0 1 1 0 0
q14 0 0 0 1 0 0 1 0
q15 0 0 0 0 0 0 1 1

1
CCCCCCCCCCCCCCCCCCCCCCCA

(b)

Fig. 2: (a) Candidate paths, (b) path matrix.

In the linear system corresponding to the path matrix A,
any basis enables the unique identification of all links, since
A has rank 8 and there are 8 unknown link metrics. However,
this is not the case when failures occur. In this example, we
consider the failure of link l7, due to which the paths that
contain this link are not available to provide e2e measurements.

Previous path selection approaches [1], [4], [3], select an
arbitrary basis such as R1 = (q1, q2, q4, q11, q15, q5, q6, q7).
When l7 fails, only paths q5, q6 and q7 can be successfully
probed in R1, hence the provided rank is 3. The surviving
paths do not cover the links l3 and l6 at all, moreover the
corresponding linear system has infinite solutions for each link.

Given the possible failure of link l7, we can select a more
robust basis such as R2 = (q5, q6, q7, q8, q9, q10, q11, q12).
The only path affected by the failure in R2 is q11. The
corresponding linear system uniquely identifies the metrics of
all links except l7. In addition, we can also conclude, from the
failures of path q11, that the failed link is l7.

To further motivate our problem, we present some simu-
lation results, in Figure 3, where we plot the average ranks
provided by two arbitrary bases and by all paths in RM , as
we increase the number of concurrent link failures. In these
simulations, we use the realistic topology AS1239 from the
Rocketfuel Project [8] and we consider 1600 candidate paths
in RM (detailed simulation settings are provided in Section
VI-A). The bases provide different ranks under failures, and
as expected the complete set of paths provides a higher rank
than both.

These results highlight the need of choosing a robust basis
and also show the benefits of probing redundant paths in
addition to a basis. Since probing a path incurs a cost and
generates overhead, it is often undesirable to probe all paths
in RM . In this paper, we address both robustness and cost
by formulating an optimization problem for path selection
which aims at maximizing the expected rank under failures
subject to a budget constraint. We initially consider a scenario
where the failure distribution is known, and then we propose a
reinforcement learning approach to learn this distribution from
measurements.

Note that some papers on network tomography [9] focus
solely on localizing network failures. Our objective is orthog-
onal to theirs, as we focus on inferring performance metrics of
non-failed links through robust path selection. As mentioned in
Section I, this is a significant problem due to the fact that the
time of measurement collection [6] is typically much smaller
than length of link failures [5].
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Fig. 3: Rank of a basis under failures

III. PROBLEM FORMULATION

In this section we introduce our optimization problem,
after defining the expected rank function and the probing cost
model.

A. Robusteness of Measurements

We first formalize the concept of robustness for a single
path under link failures by defining its expected availability,
and then we define the robustness for a set of multiple paths
by introducing the expected rank. We introduce these concepts
assuming that a statistical knowledge of the failure distribution
over the links in the network is available. However, in Section
V we relax this assumption and propose a reinforcement learn-
ing approach to learn the failure distribution while probing.

We divide time into epochs and assume that the availability
state (available/failed) of a link is persistent within an epoch,
but varies i.i.d. across epochs. We also assume that availability
states of different links are independent. We define a failure
vector, v ∈ {0, 1}|E|, such that v[i] = 1 if link li has failed
in the current epoch and v[i] = 0 otherwise. We define a
probability distribution P : {0, 1}|E| → [0, 1] over the set of
all possible failure vectors, which is determined by the link
failure probabilities as:

P(v) =

|E|Y
i=1

“
(piv[i]) + (1 − v[i])(1 − pi)

”
(2)

where pi is the failure probability of link li. We model the
robustness of a path q ∈ RM under link failures by the
expected availability, EA, calculated over all possible failure
vectors.

EA(q) =
X

v∈{0,1}|E|

�q(v)�(v), (3)

where v is a given failure vector and �q(v) is an indicator
function (it is equal to 1 if q is available, or 0 otherwise).
Using the Total Probability Theorem, EA(q) can be efficiently
calculated by observing that q is available only if none its links
have failed, and hence EA(q) =

∏
li∈q(1 − pi).

Similarly, we define the expected rank for a set of paths
over all possible failure vectors. It evaluates the rank provided
by the subset of paths that remain available after link failures,
averaged over all link failure scenarios.

Definition 1 (Expected Rank). Given a network G =
(V,E) and a probability distribution over failure vectors
P : {0, 1}|E| → [0, 1], the expected rank for a set of paths
R is defined as,
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ER(R) =
X

v∈{0,1}|E|

r(Rv)P(v) (4)

where Rv ⊆ R is the subset of paths that do not fail in the
failure scenario v and the function r is the rank function
defined on a set of paths1.

Unlike EA, ER cannot be efficiently calculated due to pos-
sible linear dependence of paths. Generally, computing ER(R)
requires the enumeration of all possible failure vectors in
{0, 1}|E|, resulting in an exponential complexity. We propose
a low complexity bound to approximate ER in Section IV-C.

B. Probing Cost

Collecting an e2e measurement on a path q incurs a probing
cost that is denoted by PC(q). The probing cost of different
paths are independent. We consider three main components
in PC(q): the run-time cost incurred when sending probes
on the path, the run-time costs incurred when the NOC
collects the measurements from monitors at the endpoints of
q, and the access cost incurred by the NOC in accessing
the monitor nodes belonging to other network administration
domains, which can be in the case of multi-ownership wide-
area networks.

Since the probing cost of paths are independent of each
other, the probing cost function for a set of paths R ⊆ RM ,
denoted by PC(R), is the sum of the probing costs of the paths
in R. We assume that the network manager has a maximum
budget B and can probe any set of paths R ⊆ RM such that
the incurred probing cost PC(R) is no more than B.

C. Problem Statement

Our problem maximizes the expected rank under a budget
constraint on probing cost. It is defined as follows:

Definition 2 (Budget-constraint optimization problem). Given
a set of paths RM , the expected rank function ER : 2RM →
R

+, the probing cost function PC and a budget B, find the
set R

∗ ⊆ RM such that:

R
∗ = arg max

R⊆RM

ER(R),

s.t. PC(R) ≤ B

where 2RM is the power set of RM .

IV. OPTIMIZATION WITH STATISTICAL KNOWLEDGE OF
FAILURES

In this section we consider the case in which the link failure
distribution is known. Even in this case, the optimization
problem defined in Section III-C is NP-Hard, as proved by
the following theorem. The complete proof is provided in the
appendix.

Theorem 3. The budget-constraint optimization problem is
NP-Hard.
1Given a set of paths R, r(R) is the rank of the submatrix of A consisting

of rows corresponding to the paths in R.

In the following, we propose the RoMe algorithm to solve
the problem with a provable approximation bound. In addition,
we show that, by considering the more constrained setting
where selected paths are linearly independent and paths have
unitary probing cost, RoMe provides an optimal solution.

A. RoMe: An Approximate Solution
Although proved to be NP-Hard, our problem has a special

property that allows an approximate solution. Specifically, our
objective function ER belongs to the family of submodular
functions. A function is submodular according to the following
definition.

Definition 4 (Submodular function). Given a finite ground set
E and a function f : 2E → R+, then ∀A ⊆ B ⊆ E , e ∈ E
f is submodular iff f(A ∪ e) − f(A) ≥ f(B ∪ e) − f(B).

We prove that ER is submodular in the following theorem;
the proof is given in the appendix.

Theorem 5. Given a set of paths RM , the function ER :
2RM → R

+ is submodular.

Submodular function optimization theory provides solu-
tions, with provable approximation bounds, to many NP-Hard
problems [10]. In this paper, we propose an algorithm called
Robust Measurements (RoMe) that adopts recent advances in
this field [11] to provide a solution with proven approximation
bounds through a greedy strategy.

Algorithm 1: the RoMe algorithm
Input: Set RM , budget B, cost function PC : 2RM → R

+,
objective function ER : 2RM → R

+

Output: A subset of RM

1 R = arg maxq∈RM
{ER({q}) : PC({q}) ≤ B};

2 Rout = ∅;
3 R = RM ;
4 while R �= ∅ do

// Weight computation
5 forall the q ∈ R do
6 wq = ER(Rout∪{q})−ER(Rout)

PC({q})
;

7 qmax = arg maxq∈R
wq;

8 if PC(Rout) + PC({qmax}) ≤ B then
9 Rout ← Rout ∪ {qmax};
10 R = R \ {qmax};

11 if ER(Rout) > ER(R) then
12 return Rout

13 else
14 return R

The pseudo-code of RoMe is shown in Algorithm 1. It
incrementally constructs a set of paths Rout, which is initially
empty (line 2). At each iteration, the algorithm picks an
unconsidered path q, which has maximum weight wq. The
weight is defined as the increase in the function ER that q
provides, divided by its cost (line 6). The path q is included in
Rout only if the budget is not exceeded (line 8). The algorithm
returns the best solution between the set Rout, and the best
single path solution R, which is the path that maximizes the
expected rank function and has a cost within the budget (lines
1, 11-14).
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As indicated before, RoMe provides a solution which
is within a provable approximation bound as stated by the
following theorem. In the appendix we prove that ER satisfies
the conditions of the theorem.

Theorem 6 ([11]). Given a ground set E, a submodular
function f : 2E → R+ and an budgetB. If f is non-decreasing
and f(∅) = 0 then the greedy algorithm produces a solution
which is at least 1 − 1√

e
times the optimal value.

We point out that an exact implementation of RoMe would
have a very high computational complexity due to the inherent
exponential complexity in computing ER. This makes the
straightforward implementation highly unfeasible. In Section
IV-C, we propose an efficient method to reduce the complexity.
In the next section we show that in the common setting adopted
by previous works, our algorithm provides an optimal solution.

B. Optimization Under Linear Independence Constraint

Previous works on network tomography consider paths
with unit probing costs and only select a set of linearly
independent paths for probing [1], [2], [3]. In this more
constrained setting, RoMe solves the optimization problem
optimally. This is proven by using the theory of matroids. A
matroid is defined as follows:

Definition 7 (Matroid [12]). A matroid M is a pair (E, I),
where E is a finite ground set and I is a non-empty collection
such that I ⊆ 2E, with the following properties:
• ∀A ⊂ B ⊆ E, if B ∈ I, then A ∈ I.
• ∀A, B ∈ I with |B| > |A|, ∃x ∈ B \ A s.t. A ∪ {x} ∈ I

We define ML = (RM , IL), where RM is the set of all
paths and IL contains the sets R ⊆ RM such that paths in
R are linearly independent. Under unitary cost, the budget is
equal to the maximum number of paths that can be probed,
i.e. we require for each path set R ∈ IL that |R| ≤ B. For any
value of B, it can be shown that ML is a matroid [12].

The following lemma shows that in the setting of matroid
constraint, where selected paths are independent, the function
ER is modular, i.e. ER(R) =

∑
q∈R

ER({q}). The complete
proof is given in the appendix.

Lemma 8. Given a set of candidate paths RM and the
corresponding matroid ML = (RM , IL), the function ER :
IL → R

+ is modular.

We slightly modify RoMe, to solve the problem under the
linear independence constraint. At each iteration, the path q
with maximum weight is added to the Rout only if it is linearly
independent from the already selected paths (line 7). Since
paths have unit cost, the while loop terminates if adding an
additional path would violate the budget constraint.

Since the ER function is modular when paths are inde-
pendent, the greedy approach achieves an optimal solution, as
stated by the following theorem:

Theorem 9 ([12]). Given a matroid M = (E, I) and a
monotone modular function f : 2RM → R+, the greedy
algorithm finds an optimal solution R∗ = maxR∈I f(R).

C. Efficient Computation of ER

To analyze the complexity of RoMe it is important to
analyze the complexity of evaluating the function ER, since
the algorithm calls ER O(|RM |2) times. This is required to
determine the maximum increment in ER, i.e., the weight wq

for selecting a path q ∈ R at each iteration. The worst-case
complexity of the function ER for any arbitrary set R ⊆ RM

is:
O(ER(R)) = 2|E|O(|E| × |R|2),

where |E| is the number of links and 2|E| is the total number
of failure scenarios. Hence, the complexity of a straightforward
implementation of RoMe is O(2|E|×|E|×|RM |4). In this sec-
tion, we reduce the complexity of the algorithm by proposing
an approach that efficiently computes an approximated value
of ER.

There are several ways to reduce the complexity of com-
binatorial functions such as ER by approximating the value
of the function using only a subset of combinations. One of
the popular approaches is the Monte Carlo method, in which
several random failure scenarios are generated and the achieved
rank is averaged to compute the approximated value. However,
due to the large number of possible failure scenarios, a large
number of Monte Carlo runs should be generated to achieve
a reliable approximation for ER. Clearly, this approach is
not scalable, because the required runs increase very quickly
as the number of links increases. Therefore, we introduce a
more efficient and scalable analytical approach to compute an
approximation of ER.

Let us consider a set of paths R ⊆ RM , which contains both
linearly independent and dependent paths. We denote the rank
of R under failures by ZR; note that ZR is a random variable
and ER(R) is the expected value �(ZR). To analyze �(ZR),
we partition R into Rind and Rdep, where Rind is a maximal
set of linearly independent paths in R and Rdep = R \ Rind.
Note that there are multiple partitions possible and we pick an
arbitrary one.

Let Xq be a random variable which is equal to 1 if q is
available, or 0 otherwise. The expected value �(Xq) equals
the expected availability EA(q) given in Eq. 3. Each path
q ∈ Rdep can be expressed as a linear combination of some
paths in Rind. Let Rq ⊆ Rind be the set of paths in which q
is linearly dependent on, i.e., the paths which have non-zero
coefficients in the linear combination. Let us consider the set
R̂q = Rind ∪ {q} and the corresponding rank random variable
ZbRq

. We can express �(ZbRq
) as:

�(ZbRq
) =

∑
q∈Rind

�(Xq) +�(Dq), (5)

where Dq is a random variable that takes value 1 if q is
available and at least one path in Rq has failed, or 0 otherwise.
In other words, q contributes to the rank only when all its links
are available and at least one path on which it depends is not
available. Let LRq

be the set of links in the paths of Rq but
not in q, the expected value of Dq can be calculated as:

�(Dq) =
∏
li∈q

(1 − pi)
(
1 −

∏
li∈LRq

(1 − pi)
)
, (6)

where we recall that pi is the failure probability of link
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li. The formula in Eq. 6 cannot be easily generalized by
considering more redundant paths, because of the complex
interdependencies in the paths. However, we can use it to upper
bound the value of �(ZR) as:

�(ZR) ≤
∑

q∈Rind

�(Xq) +
∑

q∈Rdep

�(Dq), (7)

where �(Dq) is calculated according to Eq. 6. The righthand
side of Eq. 7 is an upper bound on �(ZR) because it assumes
that each available path q ∈ Rdep contributes to the rank as
long as it cannot be represented as a linear combination of
available paths in Rind, ignoring the possibility that q could
be represented by the available paths in Rind ∪ (Rdep \ {q}).

We evaluate the proposed bound in Eq. 7 against the
true value of ER through a numerical example. We use the
realistic topology AS1239 from the Rocketfuel Project [8]
and 1600 candidate paths in RM (detailed simulation settings
are provided in Section VI-A). We pick an arbitrary basis
from RM , and then add additional paths (that are linearly
dependent on the basis) as needed to evaluate the impact
of the number of linearly dependent paths on the ER and
its approximations. Since enumerating all the 2|E| failure
scenarios is computationally infeasible, in this example we
approximate it by the Monte Carlo method using a large
number (105) of Monte Carlo runs.

Figure 4 shows the values of the “true” ER (MC-100000)
and our bound (ProbBound) as we vary the number of linearly
dependent paths. Besides validating that Eq. 7 is indeed an
upper bound, the plot also shows that it provides a close
approximation to the true ER when the number of linearly
dependent paths is small. In addition, we approximate ER
using the Monte Carlo method with a small number (50) of
runs (MC-50). We see that with fewer runs, the Monte Carlo
method incurs a larger approximation error at a small number
of linearly dependent paths.

We note that the proposed bound particularly suits the
need of RoMe, because a mistake in selecting paths in initial
iterations (when there are few linearly dependent paths in
Rout) affects all subsequent iterations, and therefore it is more
important to approximate ER closely for those cases. Indeed,
our evaluations confirm the advantage of using the bound
instead of the Monte Carlo method to approximate ER in
RoMe (see Section VI-B).

V. OPTIMIZATION WITHOUT STATISTICAL KNOWLEDGE
OF FAILURES

In this section, we consider the problem of maximizing the
expected rank under a budget constraint when the failure distri-

bution is not known. Through probing we can only observe the
availability of paths and not of the individual links. In general,
we cannot determine the link failure vector from the observed
path availabilities as the solution may not be unique, which
makes it difficult to learn the original (link) failure distribution.
Meanwhile, our observations readily allow the learning of path
failure distributions. In previous sections, we have seen the
significance of expected path availabilities in the computation
of ER. This motivates us to learn expected path availabilities
while trying to maximize ER using a reinforcement learning
approach. We now explain in detail how to cast our problem
into the framework of reinforcement learning.

We denote the random variable representing the availability
of path qi ∈ RM during the n-th epoch by Xi(n) ∈ {0, 1},
where Xi(n) = 1 if all links of path qi are available during
the epoch, or 0 otherwise. We refer to θi as the unknown mean
of Xi(n), which equals to the expected availability of path qi

as defined in Eq. 3. We denote the total number of candidate
paths in RM by N .

At each epoch n, we perform an action R(n), selected in
an action space A, which represents the set of paths that are
probed at this epoch. We assume that A only contains maximal
path sets under the given budget constraint B, without loss
of generality. We define L as the maximum number of paths
probed in an epoch, i.e., L = maxR∈A |R|.

Our goal is to maximize the expected rank by learning
expected path availabilities. Strictly speaking, expected path
availabilities do not give sufficient information to calculate the
value of ER, as path availabilities can be correlated due to
shared links. To address this issue, we modify our objective
function to an approximated ER, denoted by ER(R; θ),
which is the expected rank of available paths in R under the
assumption that path availabilities are independent. In contrast,
we refer to EA(R; θ) =

∑
qi∈R

θi as the expected availability
of path set R.

When an action R(n) is performed, the realization of
the random variables corresponding to the paths in R(n) are
observed. We define the reward of an action R(n) as the rank
of paths in R(n) that are available in this epoch:

RR(n)(n) = r({qi ∈ R(n) : Xi(n) = 1}). (8)

By definition, �(RR(n)) = ER(R(n); θ). Following the con-
vention in reinforced learning, we evaluate the performance of
our solution by regret, which is defined as the expected dif-
ference between the cumulative reward that could be obtained
by selecting the optimal action at each time and the reward
actually achieved. At a given epoch n, the regret is defined as:

R(n) = nER(R∗; θ) −
n∑

i=1

ER(R(i); θ), (9)

where R
∗ denotes the optimal set of probing paths that

maximizes ER(R; θ), if θ is known. Our goal is to determine
a strategy of taking actions such that the regret is minimized
over time.

The above reinforcement learning problem has been studied
for the special case of linear (i.e. modular) reward functions in
[13], where an algorithm called Learning with Linear Reward
(LLR) is proposed with a regret bounded by O(L3N log n).
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However, the submodularity of the ER function for a general
set of paths violates the linear reward assumption of LLR.
In this paper we extend the results in [13] and propose an
algorithm, called Learning with Submodular Rewards (LSR),
which provides formal bounds on the achieved regret for
submodular reward functions under certain conditions.

A. Learning with Submodular Rewards (LSR)

The algorithm LSR keeps track of the empirical expected
availability θ̂i for each path qi, and a counter μi representing
the number of times that qi has been probed. We denote by θ̂ =
(θ̂i)

N
i=1 and μ = (μi)

N
i=1 the vectors of empirical availabilities

and counters for all paths, respectively.

The algorithm has two phases: initialization and learning.
During the initialization phase, N actions are played such that
each random variable is observed at least once. During the
optimization phase of epoch n, the action R(n) is picked such
that:

R(n) = arg max
R∈A

ER(R; θ̂ + C) (10)

where C = (
√

(L + 1) log n/μi)
N
i=1 is the vector of confi-

dence intervals of empirical path availabilities, as a function
of time and number of observations. After probing paths in
R(n), we update (θ̂i, μi)

N
i=1. The pseudo-code of the LSR

algorithm is shown in Algorithm 2.

Algorithm 2: LSR algorithm
// INITIALIZATION PHASE

1 n = 0;
2 for i = 1 to N do
3 Play an action R such that qi ∈ R;
4 Update θ̂ and μ;
5 n++;
// OPTIMIZATION PHASE

6 while True do
7 R(n) = arg max

R∈A ER(R; θ̂ + C);
8 Play R(n);
9 Update θ̂ and μ;
10 n++;

Note that, the optimization problem in Eq. 10 is equivalent
to the problem that we discussed in Section IV, and hence it
is NP-Hard. We apply the greedy algorithm RoMe proposed
in Section IV-A together with the bound of ER proposed
in Section IV-C to solve the problem efficiently. Under the
assumption of independent path availabilities, the bound in
Eq. 7 for a set R ⊆ RM is reduced to:

ER(R; θ) ≤
∑

qi∈Rind

θi +
∑

qi∈Rdep

θi

(
1 −

∏
qj∈Rqi

θj

)
(11)

B. Performance Analysis

If A only contains sets of linearly independent paths, as
discussed in the problem under matroid constraint in Section
IV-B, LSR reduces to LLR proposed in [13], in which case
ER(R; θ̂ + C) = EA(R; θ̂ + C) becomes a linear reward
function (for any R ∈ A). Consequently, the performance

analysis of LLR applies, yielding a regret upper bound of
O(L3N log n).

In the general case of budget constraint A contains sets
of linearly dependent paths, which makes ER(R; θ̂ + C)
a strictly submodular function. It is difficult to analyze the
accuracy in approximating ER(R; θ), as the relationship
between the expected rank and individual path availabilities
is highly combinatorial. However, when the solution to the
problem of maximizing ER(R; θ) is unique, assuming known
θ, and it is a set of linearly independent paths, the problem
becomes tractable as discussed in the following.

Let S be the set of all suboptimal path sets, i.e., S =
{R ∈ A : ER(R; θ) < ER(R∗; θ)}. We denote by Δ :=

maxR∈A
(
ER(R∗; θ)−ER(R; θ)

)
the maximum gap between

candidate path sets in terms of expected rank, and by δ :=
EA(R∗; θ) − maxR∈S EA(R; θ) the minimum gap between
R
∗ and suboptimal path sets in terms of expected availability
(note that δ can be negative). We have the following bound
on the regret of LSR2, a sketch proof of which is given in the
appendix and the full proof is provided in [14].

Theorem 10. If R
∗ is a linearly independent set, and δ > 0,

then the regret of LSR at epoch n is bounded by

R(n) ≤ ΔN

[(
2L

δ

)2

(L + 1) log n + 1 +
π4

45
L

]
(12)

= O(
Δ

δ2
NL3 log n). (13)

Clearly the bound in Theorem 10 only applies to a subset of
cases. The following lemma gives a more explicit description
of these cases in terms of the Knapsack solution, the proof is
provided in the appendix.

Lemma 11. A sufficient condition of the conditions in Theo-
rem 10 is that the solution to the Knapsack Problem of maxi-
mizing EA(R; θ) under the same budget constraint (assuming
known θ) is unique, and is a linearly independent set.

C. Discussions

Any online algorithm, including LSR, that tries to maxi-
mize the expected rank with no prior knowledge of path avail-
ability distributions encounters three sources of suboptimality:
(i) suboptimality due to unknown path availability distribu-
tions, (ii) suboptimality in the definition of the reward function,
and (iii) suboptimality in selecting paths given estimated path
availability distributions. Our regret analysis focuses on (i),
but (ii) and (iii) also contribute to the overall gap between the
learning algorithm and the optimal solution. We will evaluate
the aggregate impact of (i-iii) via simulations in Section VI-B.

VI. EVALUATION

In our evaluation setup, we take the following inputs: a
network topology, a routing protocol, a set of nodes which
2Although the proof assumes an exact solution to the optimization on line

7, analogous proof can show the same bound for a modified regret when line
7 can only be solved approximately as in our case, where the modified regret
compares the actual reward to the reward of the approximate solution based
on true θ (given by RoMe). Note that the use of the approximated ER in Eq.
11 does not affect the regret bound as pointed out in the proof.
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Fig. 5: Performance with varying budget

act as sources and destinations of the e2e paths, and models
of probing cost and link failures. We separately evaluate
our solutions against benchmarks for cases when the failure
distribution is known and unknown. We first describe our
evaluation setup in Section VI-A and then in Section VI-B
we provide results that show the benefits of our proposed
algorithms when compared to state-of-art approaches.

A. Evaluation Setup

We consider realistic ISP topologies from the Rocketfuel
Project [8]. We select the topologies of three autonomous sys-
tems with labels AS1755, AS3257 and AS1239. The numbers
of nodes and edges of each AS are presented in Table I;
AS1755, AS3257 and AS1239 are representatives for small,
medium, and large topologies, respectively. The nodes in the
considered autonomous systems are backbone routers.

AS no. (type) No. of Nodes No. of Links
AS1755 (Small) 87 161

AS3257 (Medium) 161 328
AS1239 (Large) 315 972

TABLE I: Details of topologies

In our simulations, we randomly select a subset of nodes
that can function as monitors which are defined in Section
II-A. Each monitor acts as either a source or a destination of
paths. We also perform simulations for the case in which a
monitor can act as both a source and a destination. We do not
show the results for this case due to space limitation, as we
observe trends similar to the presented results.

As discussed in Section II-A, we assume a single path
between each monitor pair. We use Dijkstra’s weighted shortest
path algorithm as the routing algorithm to determine these
paths using inferred weights of Rocketfuel topologies [8]. To
determine the probing cost of paths, we use the cost model
that is explained in Section III-B. The access cost (AC) for
candidate monitors is picked randomly from two different
classes: 0 and 300 with equal probability, which represent self-
owned and peer-owned monitors, respectively. The run-time
costs are linear functions of hop lengths in the corresponding
paths with a weight of 100; the weight is chosen to make the
run-time cost comparable to the access cost.

We adopt the link failure model that is proposed by Athina
et al. [5] to determine the failure distribution. We only focus on
independent link failures which are the most common type of
failures in IP and wide area networks [15], [5]. The model
determines link failure probabilities by first specifying the

number of failures per link and then normalizing it by the
total number of failures. Ordering the links into decreasing
order of link failure probabilities, the model classifies the first
2.5% of links as high failure links and the rest as low failure
links. Let n(l) denote the number of failures n(l) for a link l
(with the l-highest failure probability). According to the model,
n(l) ∝ l−0.73 for high failure links and n(l) ∝ l−1.35 for low
failure links. Moreover, n(1) = 1000 for the highest failure
link.

In our simulations, we evaluate the robustness for a set
of paths R = by considering the provided rank and link
identifiability under failures. The link identifiability of a set
R is defined as the number of links for which it is possible
to determine a unique solution by solving the linear system
corresponding to the paths in R, as discussed in Section
II-A. We show average, standard deviation and cumulative
distribution function (CDF) of these metrics, calculated by
randomly selecting 5 sets of monitors and generating 500
failure scenarios for each set. The 500 failure scenarios are
generated randomly using probabilities of link failures, and
these may include the case with no link failures in the network.

B. Results

In the following, we refer to RoMe with the probabilistic
bound of ER described in Section IV-C as ProbRoMe. We
compare it to MonteRoMe, where RoMe approximates ER
using the Monte Carlo method over 50 randomly generated
failure scenarios. We compare our algorithms with an existing
approach called SelectPath [3]. SelectPath selects an arbitrary
maximal set of linearly independent paths (an arbitrary basis)
using Cholesky decomposition.

Since there is no existing algorithm that solves the problem
under budget constraint, we reasonably modify SelectPath for
comparison purposes. This is done by greedily modifying the
basis selected by the original SelectPath to fit the budget. In
particular, if the cost of the basis is below the budged, we
greedily add paths in increasing order of probing cost, until
the budget allows. On the contrary, if the cost of the basis
exceeds the budged, we greedily remove paths in decreasing
order of cost, until the budget constraint is met.

We also present results for MatRoMe that solves the
problem under unitary cost and linear independence constraint,
as described in Section IV-B. We compare MatRoMe to the
original SelectPath3. In this case, we set the budget B as the

3MatRoMe uses SVD decomposition, which is more accurate than Cholesky
decomposition adopted by SelectPath for the rank computation.
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rank of all candidate paths, i.e., number of paths in a basis.

1) Optimization with Statistical Knowledge of Failures:
In this section, we show the results for all three topologies:
AS1755, AS3257 and AS1239. We consider 400 (AS1755),
1600 (AS3257), and 2500 (AS1239) candidate paths.

In Figure 5, we plot the average rank of the selected paths
under failures along with its standard deviation as we vary the
budget. With increase in the budget, the rank increases for all
algorithms because the number of selected paths increases. In
all plots, ProbRoMe and MonteRoMe significantly outperform
SelectPath, showing the importance of considering robustness
when selecting probing paths. In particular, SelectPath requires
twice as much budget in order to maximize the rank compared
to ProbeRome. The performance of ProbRoMe is better than
MonteRoMe, because the computation of ER in ProbRoMe is
more accurate when the number of linearly dependent paths
is small, as illustrated in Section IV-C. However, the true
advantage of ProbRoMe is that it has a much lower run-
time complexity than MonteRoMe. In our simulations, the
run-time of MonteRome is around five times longer than
ProbeRoMe on average in various cases. Moreover, in the case
of ProbRoMe, the standard deviation in the rank is much lower
than MonteRoMe and SelectPath in all the plots in Figure
5. This further confirms the performance advantage of the
ProbRoMe algorithm.

To provide a more detailed comparison, in Figure 6, we
show the CDF of the rank for the case, where there are 1600
candidate paths in AS3257 and a budget of 80,000. We see
that ProbRoMe provides a higher rank than other approaches
in all scenarios, showing uniformly good performance. This is
also observed in other cases.

Next, we evaluate the link identifiability. In Figure 7, we
plot the average link identifiability along with its standard
deviation for AS3257 with 1600 candidate paths. We com-
pare SelectPath with the best of our proposed approaches,
ProbeRoMe, as seen in Figure 5. Similar to rank, the link
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identifiability increases with the increase in budget for both
algorithms. Again, ProbRoMe performs better than SelectPath,
both in average and in standard deviation. Compared with rank,
we observe that ProbRoMe provides much larger improvement
over SelectPath for link identifiability. This is because even a
small loss in rank can lead to a big loss in link identifiability.
We observe similar trends for other topologies, results are
omitted due to space limitation.

We now show the results for a more constrained case of
linear independence and unitary cost of paths, described in
Section IV-B. We compare our solution, MatRoMe, to the
original SelectPath algorithm. Since the budget is fixed for a
given set of candidate paths (to its rank), we vary the number
of candidate paths and consider slightly different performance
metrics. We evaluate the loss in rank for each simulated
failure scenario when compared to the case of no failure; this
performance metric is called rank loss. Similarly, we evaluate
link identifiability loss.

In Figures 8 and 9, we plot rank loss and link identifiability
loss for AS1239 topology with respect to the number of
candidate probing paths. It is evident from both plots that
MatRoMe performs better than SelectPath, again illustrating
the importance of considering path robustness when selecting
probing paths. As we increase the number of candidate paths,
rank loss and link identifiability loss for MatRoMe do not
vary much. In contrast, both performance metrics increase
significantly for SelectPath, because of the increase in the
total number of bases, since it picks an arbitrary basis without
taking account of robustness of paths. Together, these results
suggest that the advantage of MatRoMe over SelectPath is
more prominent for large networks with many candidate paths.

2) Optimization Without Statistical Knowledge of Failures:
We present the results for the LSR algorithm by varying the
available budget. We consider the final set of paths selected by
LSR, according to the learned path availabilities, after 500 and
1000 epochs. We compare LSR to ProbRoMe, for which we
assume that the failure distribution is known, and to SelectPath.
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We consider the topology AS3257 and 400 candidate paths.

Figure 10 shows the average rank achieved by the algo-
rithms. LSR has performance close to ProbRoMe, showing
that LSR is effective in learning path availabilities and hence
maximizing the rank under failures, even when the failure
distribution is initially not known. As expected, LSR has better
performance as the number of epochs increases, because of
the learned knowledge becomes more accurate knowledge.
SelectPath has worse performance than LSR in both cases,
highlighting the inefficacy of this approach in the presence of
failures.

VII. RELATED WORK

There is no prior work that considers the specific problem
of optimizing the robustness of e2e measurements under link
failures in the context of network tomography.

Zheng et al. [1] consider the problem of selecting the min-
imum number of paths that can be used to uniquely determine
the solution for a set of target links. Chen et al. [3] propose a
method to determine the complete set of e2e masurements from
an incomplete set, resulting in a scalable monitoring system
in large networks. These works minimize the number of paths
to be probed by using rank revealing decomposition methods
to determine a basis. However, they are agnostic to the effects
of network failures on the performance.

Current state of the art in network tomography [16],
[17], [18] consider the problem of minimizing the number
of monitors required to acquire the e2e measurements. These
approaches focus on different optimization objectives with
respect to our paper and do not consider failures in the
network. Furthermore, controlled routing is often assumed
[17], [18], such as source routing, which is impractical in
common networks.

The use of network tomography techniques in the context
of network failures has been considered by Nguyen et al.
[19], [4]. Differently from our approach, these papers exploit
network tomography to identifying links that experience poor
performance, instead of optimizing the performance under
failures.

VIII. CONCLUSION

In this paper we study, for the first time, the problem of
selecting a robust set of candidate paths to improve the per-
formance of network tomography applications under failures.

We define a function called expected rank to capture the
robustness of a set of paths and formulate an optimization

problem that aims at maximizing the expected rank under a
budget constraint on probing cost. We show that the problem is
NP-Hard. We proved that our objective function is submodular,
and we define an approximate algorithm called RoMe. We
also propose an upper bound to the expected rank function
which can be efficiently calculated. Furthermore, we show
that in the more constrained case in which selected paths are
linearly independent and paths have unit cost, RoMe provides
an optimal solution.

We tackle the issue of unknown failure distribution from
the perspective of reinforcement learning. We propose the LSR
algorithm which learns path availabilities through probing and
maximizes the expected rank over different epochs.

We evaluate our solutions through simulations based on
real network topologies and realistic failure models. Results
show that our solutions can significantly improve the perfor-
mance of network tomography over existing techniques in the
presence of failures.
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APPENDIX

Theorem. The budget-constraint optimization problem is NP-Hard.

Proof: In order to prove the NP-Hardness, we provide a reduction
from the knapsack problem. Let us consider a general knapsack
instance: a capacity B and a set of items Ω = {s1, . . . , sn}, where
each item si ∈ Ω has a value vi and a weight wi. The goal is to
find a set S∗ ⊆ Ω whose items provide maximum value and do not
exceed the capacity of the knapsack.

We translate the general knapsack instance into an instance of
our problem by defining a set of candidate paths RM in which we
construct a path qi, of length one, for each item si ∈ Ω. Different
paths are disjoint. We set PC(qi) = wi and the failure probability
of the single link in qi to pi = 1 − vi

TC
, where TC =

P
si∈Ω vi.

Since qi has a single link, ER({qi}) = 1 − pi. Finally, we consider
the budget B as the capacity of the knapsack instance.

Our problem aims at finding a set R
∗ whose paths provide

maximum expected rank and incur a cost no more than B. Since
paths in RM are linearly independent, for each R ⊆ RM , ER(R) =P

qi∈R ER({qi}), which is equivalent to the objective function of
the knapsack problem.

A solution to our problem can be translated into a solution of the
knapsack instance by selecting the items corresponding to the paths
in R

∗. As a result, solving our problem is at least as hard as solving
knapsack an thus our problem is NP-Hard.

Theorem. Given a set of paths RM , the function ER : 2RM → R
+

is submodular.

Proof: To prove the submodularity of ER, we need show that,
given two sets A, B of paths, such that A ⊆ B ⊆ RM , and a path
q ∈ RM , we have:

ER(A + q) − ER(A) ≥ ER(B + q) − ER(B) (14)

where we use the notation A+q for A∪{q} and similarly for B+q.
For a set A ⊆ RM , the ER function can be rewritten as:

ER(A) =

nX
i=1

r(Avi)αi

where n = 2|E|, αi = P(vi) and Avi is the set of available paths in
A under the failure scenario vi. Let us order the failure scenarios such
that under the failure scenario vi the path q is available if i ∈ [1, n1]
and it is not available if i ∈ [n1 + 1, n]. We can write the inequality
given in Eq. 14 as:Pn1

i=1 r(Avi + q)αi +
Pn

i=n1+1 r(Avi)αi −
Pn

i=1 r(Rvi
A )αi ≥Pn1

i=1 r(Bvi + q)αi +
Pn

i=n1+1 r(Bvi)αi −
Pn

i=1 r(Rvi
B )αi

The above formula can be rewritten as:Pn1
i=1 αi(r(A

vi + q) − r(Avi)) ≥Pn1
i=1 αi(r(B

vi + q) − r(Bvi))

Since A ⊆ B and the rank function is submodular, for each i ∈
[1, n1] we have that r(Avi +q)−r(Avi) ≥ r(Bvi +q)−r(Bvi). As a
result, the above inequality holds and the function ER is submodular.

Lemma. Given a set of paths RM , the function ER : 2RM → R
+

is non-decreasing and ER(∅) = 0.

Proof: Let us consider a generic set A ⊆ RM and a path q ∈
RM . According to the definition of the ER function, for each failure
scenario v ∈ {0, 1}|E|, r(Rv

A+q) ≥ r(Rv
A) because the element q

may increase the rank provided by the probed paths. As a result,
ER(A + q) ≥ ER(A) and thus ER is non-decreasing.

To complete the proof of the Theorem, we need to prove that
ER(∅) = 0. This follows trivially by the definition of the rank
function, as probing no path provides no rank.

Lemma. Given a set of paths RM and the corresponding matroid
ML = (RM , IL), the function ER : IL → R

+ is modular.

Proof: In order to prove the Lemma, we prove that for any given
set of paths R ∈ IL, the function ER can be rewritten as the sum of
positive weights given by the expected availabilities of the paths in
R.

Since R ∈ IL, it contains only independent paths. Hence, for any
failure scenario v, Rv ⊆ R is also in IL. As a result, under a failure
scenario v, the rank provided by the set Rv is |Rv|. We can rewrite
ER(R) as follows:

ER(R) =
P

v∈{0,1}|E| r(Rv)P(v)
=

P
v∈{0,1}|E| |Rv|P(v) =

=
P

v∈{0,1}|E|

P
q∈R

�q(v)P(v) =
=

P
q∈R

P
v∈{0,1}|E| �q(v)P(v) =

P
q∈R

EA(q)

Since in the case of independent paths the ER function is the
sum of positive weights, the function is modular.

Theorem. If R∗ is a linearly independent set, and δ > 0, then the
regret of LSR at slot n is bounded by

R(n) ≤ ΔN

"„
2L

δ

«2

(L + 1) log n + 1 +
π4

45
L

#
(15)

= O(
Δ

δ2
NL3 log n). (16)

Proof sketch: The essence of the proof is to convert the problem
with submodular reward to one with linear reward, which is then
completed by arguments analogous to those in the proof LLR [13].

We introduce a few notions that will be used in the proof. For
each slot t, let μi(t) denote the number of times probing (and
hence observing availabilities of) path qi ∈ RM (i = 1, . . . , N ),
θ̂μ(t) := (θ̂i,μi(t))

N
i=1 the empirical expected path availabilities

under sample size μ(t), and Cμ(t) := (Ct,μi(t))
N
i=1 (Ct,μi(t) :=
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p
(L + 1) log t/μi(t)) the confidence intervals. Define a counter

Ti(n) as follows: whenever a suboptimal path set is selected at time
n, we increment Ti(n) by 1 for i = arg minqj∈R(n) μj(n) (ties
broken arbitrarily). It is known from [13] (the corresponding notation
is T̃i(n)) that Ti(n) has two properties: (i)

PN

i=1 Ti(n) equals the
total number of times selecting suboptimal path sets among the first
n slots, and (ii) Ti(n) ≤ μj(n) for all qj ∈ R(n + 1).

We first bound Ti(n) by assuming it is always incremented in
the first l slots for a positive integer l:

Ti(n) ≤l +
nX

t=N

�

n
ER(R∗; θ̂μ(t) + Cμ(t))

≤ ER(R(t + 1); θ̂μ(t) + Cμ(t)); Ti(t) ≥ l
o

, (17)

where �{·} is the indicator function. Because R∗ is linearly inde-
pendent, and expected rank is upper bounded by expected availability,
we further have

�

n
ER(R∗; θ̂μ(t)+Cμ(t)) ≤ ER(R(t + 1); θ̂μ(t)+Cμ(t))

o

≤ �

8<
:

X
qi∈R∗

(θ̂i,μi(t) + Ct,μi(t)) ≤
X

qj∈R(t+1)

(θ̂j,μj(t) + Ct,μj(t))

9=
; ,

(18)

which converts an indicator on the submodular reward function ER(·)
to an indicator on a linear function. Note that the above bound still
holds if we replace ER(R; θ) by its upper bound in Eq. 11 in the
algorithm. Therefore, our regret bound applies to both the original
LSR and a modified LSR based on the approximated ER(R; θ)
function (approximated by its upper bound in Eq. 11).

From now on, we can apply techniques similar to the proof
of LLR to bound the righthand-side (RHS) of (18). Specifically,
probability of the RHS is upper bounded by sum of the probabilities
of the following events:
1)

P
qi∈R∗ θ̂i,μi(t) ≤

P
qi∈R∗ θi −

P
qi∈R∗ Ct,μi(t);

2)
P

qj∈R(t+1) θ̂j,μj(t) ≥
P

qj∈R(t+1) θj +
P

qj∈R(t+1) Ct,μj(t);
3)

P
qi∈R∗ θi <

P
qj∈R(t+1) θj + 2

P
qj∈R(t+1) Ct,μj(t).

Under the conditions of Ti(t) ≥ l and t ≤ n, we can bound the
probabilities of events (1) and (2) by Lt−2(L+1) using the Chernoff-
Hoeffding Bound. We can make the probability of event (3) zero by
setting l = �(2L/δ)2(L + 1) log n�. See the full proof in [14] for
details. Applying these bounds to (17) yields that

E[Ti(n)] ≤

„
2L

δ

«2

(L + 1) log n + 1 +
π4L

45
. (19)

Since the overall regret is bounded by Δ
PN

i=1 E[Ti(n)], we have

R(n) ≤ ΔN

"„
2L

δ

«2

(L + 1) log n + 1 +
π4

45
L

#
. (20)

Lemma. A sufficient condition of the conditions in Theorem 10 is
that the solution to the Knapsack Problem of maximizing EA(R; θ)
under the same budget constraint (assuming known θ) is unique, and
is a linearly independent set.

Proof: Let R
′ be the optimal Knapsack solution. Since the

expected availability upper bounds the expected rank, we see that
any other path set R ∈ A (R �= R

′) satisfies

ER(R; θ) ≤ EA(R; θ) < EA(R′; θ) = ER(R′; θ), (21)

where the last equality is because R
′ is an independent set. Thus,

R
′ = R

∗ is also the optimal solution to maximizing the expected

rank. Since R
′ is the unique maximum of expected availability and

the total number of path sets is finite, its gap to suboptimal path sets
δ must be positive.
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