

Generalized Zero-shot Intent Detection via Commonsense Knowledge

A.B. Siddique, Fuad Jamour, Luxun Xu, and Vagelis Hristidis {msidd005,fuadj,lxu051}@ucr.edu, vagelis@cs.ucr.edu

Motivation

- Identifying user intents from natural language utterances is crucial in conversational systems
- It has been extensively studied as a supervised classification problem
- However, in practice, unseen intents emerge after deploying the model and they do not have any training data
- We propose RIDE: a generalized zero-shot intent detection model that seamlessly adapts and classifies natural language utterances with both seen and unseen intents
- RIDE computes robust and generalizable relationship meta-features that capture deep semantic relationships between utterances and intent labels
- These meta-features are computed by considering how the concepts in an utterance are linked to those in an intent label via commonsense knowledge

Computation of Relationship Meta-features

User Utterance:

Look for something nearby, I am feeling hungry

Intent Label:

FindRestaurant

Relationship Meta-features:

(b) Relationship Meta-feature Generation

Relationship Meta-features Generator (RMG)

Input: $\mathcal{R} = \{r_1, \cdots, r_t\}$: relations in KG

 $\mathcal{G}_i = \{g_1, \cdots, g_q\}$: utterance n-grams

 $\mathcal{I}_j = \{\mathcal{A}, \mathcal{O}\}$: intent's Action and Object

(a) Automatic Commonsense KG Completion

Output: $\mathbf{e}_{relationship}$: \mathcal{X}_i - \mathcal{I}_j relationship meta-features

1 Let $\mathbf{e}_{\mathcal{X}_i}^{\overline{\mathcal{A}}} = \text{RM} (\mathcal{A}, \mathcal{G}_i, \rightarrow) // \text{ Action to utterance}$

2 Let $\mathbf{e}_{\mathcal{X}_i}^{\overrightarrow{\mathcal{O}}} = \mathtt{RM} \; (\mathcal{O}, \, \mathcal{G}_i, \,
ightarrow) \; // \; \mathrm{Object \; to \; utterance}$

з Let $\mathbf{e}_{\mathcal{X}_i}^{\overleftarrow{\mathcal{A}}} = \mathtt{RM} \; (\mathcal{A}, \, \mathcal{G}_i, \, \leftarrow) \; / / \; \mathrm{utterance} \; \mathrm{to} \; \mathrm{Action}$

4 Let $\mathbf{e}_{\mathcal{X}_i}^{\overleftarrow{\mathcal{O}}} = \mathtt{RM} \; (\mathcal{O}, \, \mathcal{G}_i, \, \leftarrow) \; / / \; \mathrm{utterance \; to \; Object}$

5 Let $\mathbf{e}_{\textit{relationship}} = [\mathbf{e}_{\mathcal{X}_i}^{\overrightarrow{\mathcal{A}}}, \, \mathbf{e}_{\mathcal{X}_i}^{\overrightarrow{\mathcal{O}}}, \, \mathbf{e}_{\mathcal{X}_i}^{\overleftarrow{\mathcal{O}}}, \, \mathbf{e}_{\mathcal{X}_i}^{\overleftarrow{\mathcal{O}}}]$

6 return e_{relationship}

7 Function RM(concept, phrases, direction):

Evaluation

Main result: F1 scores for competing models in the generalized zero-shot setting

	SNIPS		SGD		MultiWOZ	
Method	Unseen	Seen	Unseen	Seen	Unseen	Seen
BERT-SPC	0.2761	0.7152	0.1872	0.6401	0.1932	0.6413
IntentCapsNet	0.0000	0.6532	0.0000	0.5508	0.0000	0.6038
ReCapsNet	0.1601	0.6783	0.1331	0.5751	0.1467	0.6170
SEG	0.6991	0.8651	0.4032	0.6356	0.4143	0.6456
RIDE w/o PU	<u>0.9103</u>	<u>0.8799</u>	<u>0.4634</u>	<u>0.8295</u>	<u>0.4645</u>	<u>0.8816</u>
RIDE /w PU	0.9254	0.9080	0.5734	0.8298	0.5206	0.8847

• F1 scores for unseen intents for the competing models after integrating a PU classifier into them

(b) SGD dataset (c) MultiWOZ dataset