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• Identifying user intents from natural language utterances is crucial in conversational 
systems 

• It has been extensively studied as a supervised classification problem
• However, in practice, unseen intents emerge after deploying the model and they do 

not have any training data
• We propose RIDE: a generalized zero-shot intent detection model that seamlessly 

adapts and classifies natural language utterances with both seen and unseen intents
• RIDE computes robust and generalizable relationship meta-features that capture 

deep semantic relationships between utterances and intent labels
• These meta-features are computed by considering how the concepts in an 

utterance are linked to those in an intent label via commonsense knowledge

Motivation
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RIDE Overview

• Main result: F1 scores for competing models in the generalized zero-shot setting

• F1 scores for unseen intents for the competing models after integrating a PU classifier into them
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Algorithm 1: RMG
Input: R = {r1, · · · , rt}: relations in KG

Gi = {g1, · · · , gq}: utterance n-grams

Ij = {A,O}: intent’s Action and Object

Output: erelationship: Xi-Ij relationship meta-features

1 Let e

�!
A

Xi = RM (A, Gi , !) // Action to utterance

2 Let e

�!
O

Xi = RM (O, Gi , !) // Object to utterance

3 Let e

 �
A

Xi = RM (A, Gi ,  ) // utterance to Action

4 Let e

 �
O

Xi = RM (O, Gi ,  ) // utterance to Object

5 Let erelationship = [e
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A

Xi , e
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O

Xi , e

 �
A

Xi , e

 �
O

Xi ]

6 return erelationship

7 Function RM(concept, phrases, direction):

8 Let e = []

9 foreach r 2 R do

10 if direction = ! then

11 Let p = Max (LP (concept, r, g)) for g 2 phrases

12 if direction =  then

13 Let p = Max (LP (g, r, concept)) for g 2 phrases

14 e.append(p)

15 return e

one direction does not necessarily imply one in the other direction – for example, htable,

AtLocation, restauranti does not imply hrestaurant, AtLocation, tablei. The final

output of RMG is the relationship meta-features vector erelationship, which is the concatenation

of the four aforementioned vectors. We explain next how the smaller vectors is computed.
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Table 2: Main results: F1 scores for competing models.

Method SNIPS SGD MultiWOZ
Unseen Seen Unseen Seen Unseen Seen

DeViSE 0.0439 0.6521 0.0177 0.5451 0.0270 0.5770
CMT 0.0910 0.6639 0.0621 0.5803 0.0679 0.6216
CDSSM 0.0484 0.7028 0.0284 0.6379 0.0244 0.6515
Zero-shot DNN 0.1273 0.6687 0.1168 0.6098 0.1149 0.6012
BERT-SPC 0.2761 0.7152 0.1872 0.6401 0.1932 0.6413
IntentCapsNet 0.0000 0.6532 0.0000 0.5508 0.0000 0.6038
ReCapsNet 0.1601 0.6783 0.1331 0.5751 0.1467 0.6170
SEG 0.6991 0.8651 0.4032 0.6356 0.4143 0.6456
RIDE w/o PU 0.9103 0.8799 0.4634 0.8295 0.4645 0.8816
RIDE /w PU 0.9254 0.9080 0.5734 0.8298 0.5206 0.8847
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Figure 2: F1 scores for unseen intents for the competing
models after integrating a PU classi�er.

with relu and softmax activation. Our model is trained for up to
200 epochs with early stopping using Adam optimizer and a cross
entropy loss with initial learning rate of 0.001 and ReduceLROn-
Plateau scheduler with 20 patience epochs. It uses a dropout rate
of 0.3,a batch size of 32 and a negative sampling ratio of up to 6.

4.2 Results
Main Results. Table 2 shows F1 scores for all competing models.
For both seen and unseen intents, our model RIDE outperforms
all other competing models with a large margin. Speci�cally, RIDE
achieves 32.37%, 42.21%, and 25.66% better F1 scores than the SOTA
model SEG on SNIPS, SGD, and MultiWOZ for unseen intents,
respectively. Moreover, our model consistently achieves the highest
F1 score on seen intents, which con�rms its generalizability. We
highlight that RIDE outperforms SEG regardless of whether a PU
classi�er is incorporated or not. For SNIPS, the role of the PU
classi�er is negligible. Whereas, for SGD and MultiWOZ, which
are more challenging datasets, the PU classi�er causes signi�cant
improvements in F1 scores.
E�ect of PU Classi�er on Other Models. Figure 2 presents F1
scores of all models with and without PU classi�er. A PU classi�er
signi�cantly improves the results of all the competing models. For
instance, the IntentCapsNet model with a PU classi�er achieves an
F1 score of 74% for unseen intents on SNIPS dataset compared to
an F1 score of less than 0.01% without the PU classi�er. Interest-
ingly, our model RIDE without PU classi�er outperforms all the
competing models even when a PU classi�er is incorporated into
them, which highlights that the PU classi�er is not the component
that does the heavy lifting in our model.
Ablation Study. We present the results of our ablation study in
Table 3. Utilizing utterance and intent embeddings only (i.e., UI-
Embed) results in very low F1 score, i.e., 23.67% on SNIPS. Em-
ploying relationship meta-features only (i.e., Rel-M) results in sig-
ni�cantly better results: an F1 score of 71.03% on SNIPS. When

Table 3: Ablation study: F1 scores for unseen intents.
Con�guration SNIPS SGD MultiWOZ
UI-Embed w/o PU 0.2367 0.1578 0.1723
Rel-M w/o PU 0.7103 0.3593 0.3321
RIDE w/o PU 0.9103 0.4634 0.4645
UI-Embed /w PU 0.7245 0.4202 0.4124
Rel-M /w PU 0.8463 0.5167 0.4781
RIDE /w PU 0.9254 0.5734 0.5206

utterance and intent embeddings are used in conjunction with re-
lationship meta-features (i.e., RIDE w/o PU), it achieves a better
F1 score compared to the Rel-M or UI-Embed con�gurations. A
similar trend can be observed for the other datasets as well. Finally,
when our entire model is deployed (i.e., RIDE /w PU), it achieves
the best results on all datasets.

5 RELATEDWORK
The deep neural networks have proved highly e�ective for many
critical NLP tasks [9, 15, 20, 23, 28, 30, 35, 43] including intent detec-
tion. Supervised intent detection works [17, 20, 26, 39, 43] assume
the availability of a large amount of labeled training data for all
intents to learn discriminative features. Whereas standard zero-shot
intent detection models [1, 7, 11, 13, 18, 35, 41] assume that all utter-
ances faced at inference time imply unseen intents only. Extending
such works to handle the generalized zero-shot intent detection
setting (i.e., removing the aforementioned assumptions) is nontriv-
ial. The authors in [21] attempted to accommodate GZS setting
by adding a dimensional attention module to a capsule network
that learns generalizable transformation matrices from seen intents.
Recently, the authors in [40] proposed using a density-based outlier
detection algorithm LOF [1] and SEGmixture model with large mar-
gin loss to learn class-concentrated embeddings to detect unseen
intents. In contrast, we leverage a rich commonsense knowledge
graph to capture deep semantic and discriminative relationships be-
tween utterances and intents, which signi�cantly reduces the bias
towards classifying unseen intents into seen ones. In a related, but
orthogonal, line of research, the authors in [14, 19, 23] addressed
intent detection in the context of dialog state tracking where an
annotated dialog state and conversation history are available in
addition to an input utterance. In contrast, this work and the SOTA
models we compare against in our experiments only consider an
utterance without having access to any dialog state elements. In-
terested readers can refer to [29] for more details about this work.

6 CONCLUSION
We have presented an accurate generalized zero-shot intent detec-
tion model. Our extensive experimental analysis on three intent
detection benchmarks show that our model achieves 25.66% to
42.21% better F1 score than the SOTA model for unseen intents.
The main novelty of our model is its utilization of relationship
meta-features and limited reliance on training data. Furthermore,
our idea of integrating Positive-Unlabeled learning in GZS intent
detection models further improves our models’ performance, and
signi�cantly improves the accuracy of existing models as well.
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Figure 2: F1 scores for unseen intents for the competing
models after integrating a PU classi�er.
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Figure 2: F1 scores for unseen intents for the competing
models after integrating a PU classi�er.
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