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ABSTRACT Attacks on computer networks have increased significantly in recent days, due in part to the
availability of sophisticated tools for launching such attacks as well as the thriving underground cyber-
crime economy to support it. Over the past several years, researchers in academia and industry used
machine learning (ML) techniques to design and implement Intrusion Detection Systems (IDSes) for
computer networks. Many of these researchers used datasets collected by various organizations to train
ML classifiers for detecting intrusions. In many of the datasets used in training ML classifiers in such
systems, data are imbalanced (i.e., not all classes had equal number of samples). ML classifiers trained with
such imbalanced datasets may produce unsatisfactory results. Traditionally, researchers used over-sampling
and under-sampling for balancing data in datasets to overcome this problem. In this work, in addition to
random over-sampling, we also used a synthetic data generation method, called Conditional Generative
Adbversarial Network (CTGAN), to balance data and study their effect on the performance of various widely
used ML classifiers. To the best of our knowledge, no one else has used CTGAN to generate synthetic
samples to balance intrusion detection datasets. Based on extensive experiments using widely used datasets
NSL-KDD and UNSW-NB15, we found that training ML classifiers on datasets balanced with synthetic
samples generated by CTGAN increased their prediction accuracy by up to 8% and improved their MCC
score by up to 13%, compared to training the same ML classifiers over imbalanced datasets. We also show
that this approach consistently performs better than some of the recently proposed state-of-the-art IDSes
on both datasets. Our experiments also demonstrate that the accuracy of some ML classifiers trained over
datasets balanced with random over-sampling decline compared to the same ML classifiers trained over
original imbalanced dataset.

INDEX TERMS Cyber security, conditional generative adversarial network (CTGAN), data imbalance
problem, intrusion detection, machine learning, over-sampling, under-sampling.

I. INTRODUCTION will cease operations within six months. Symantec’s Internet

There has been significant increase in the number of intru-
sions into computer networks over the past few years due
in part to the availability of sophisticated tools to launch
such attacks as well as a thriving underground economy to
support such attacks [19]. According to a 2017 report [35],
data breaches cost an average of $141 per record. It is esti-
mated that 60% of small businesses that suffer a data breach
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Security Threat Report for 2017 indicated that the number
and intensity of attacks were significantly higher than those
in previous years [30]. Traditional tools such as firewalls can
not cope with these sophisticated attacks.

To prevent/detect network intrusions, hardware and soft-
ware tools can be installed to continuously monitor the
network. James Anderson published a report on the need
for detecting network intrusions in computer systems [3]
in 1972 [6]. Since then, several intrusion detection systems
(IDSes) have been proposed and implemented. These systems
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FIGURE 1. ML classifiers trained on imbalanced datasets show poor performance - no matter what type of machine
learning classifier is employed. Augmenting minority classes in the training dataset with synthetic data can help in
overcoming the data imbalance issue and improve the performance of ML classifiers.

can be further classified as host-based, network-based, and
hybrid [59]. System architectures for intrusion detection can
be centralized, distributed, or hybrid, based on how intrusion/
attack events are collected, processed, and acted upon.
Certain approaches are superior to others based on factors
such as cost, performance, and other metrics. These sys-
tems can be further classified based on the techniques used
for intrusion detection — signature-based or anomaly-based.
A signature-based IDS detects attacks based on the signatures
of previously known attacks. These IDSes cannot detect zero-
day attacks. In contrast, anomaly-based IDSes are capable
of detecting zero-day attacks by modeling users’ behaviors.
In the training phase of an anomaly-based approach, legit-
imate users’ behaviors are first collected and analyzed in
order to build a model of legitimate users’ behavior. The
model is then used to determine whether the current observed
behavior is that of legitimate user or not. Some methods
used for such classification are [59]: Statistical approach:
classification is based on univariate, multivariate, or time-
series models. Knowledge based approach: expert system
is used to model legitimate behavior according to a set of
rules. Machine learning based approach: automatically
classified based on some clustering algorithms. However,
anomaly-based IDSes often generate more false positives
and signature-based IDSes generally generate more false
negatives.

ML based IDSes have been extensively studied in the
literature. For example, following ML based approaches have
been tested by various researchers for intrusion detection:
Artificial Neural Networks, Association Rules and Fuzzy
Association Rules, Bayesian Networks, Clustering, Decision
Trees, Evolutionary Computation, Hidden Markov Models,
Inductive Learning, Naive Bayes, Sequential Pattern Mining,
and Support Vector Machine [7], [8], [19], [53]. In many of
the datasets used for training ML classifiers in such studies,
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datasets are not balanced. That is, number of samples in one
class surpasses the number of samples in another class [1].
The classes that have a large number of samples are called
majority classes, while the classes that have a small number of
samples are called minority classes. The ratio of the number
of samples in a minority class to the number of samples in a
majority class may be as small as 1:100, or as large as 1:1000,
or even larger [12]. Figure 1 illustrates how imbalance in
datasets can affect the performance of ML classifiers. Many
of the researchers (i) ignored this problem, or (ii) balanced the
training dataset using over-sampling (randomly replicating
samples in minority classes) or under-sampling (randomly
eliminating samples in majority classes) techniques. Over-
sampling and under-sampling help in balancing data. How-
ever, since the new samples added under over-sampling are
exact copies of the original samples, it may lead to overfitting.
Similarly, since random samples are eliminated from majority
classes in under-sampling, the dataset may become too simple
to build an effective model, resulting in underfitting problem.
In general, an overfit model has low bias and high variance,
while an underfit model has high bias and low variance.

In this paper, we studied the effect of balancing training
datasets on the performance of various ML classifiers; we
used (i) the most commonly used random over-sampling
method, and (ii) synthetic data generated using the Condi-
tional Generative Adversarial Network (CTGAN) [66] for
balancing training datasets. We compared the performance
of various ML classifiers (i) after training them on origi-
nal imbalanced data, (ii) after training them on the original
data balanced with over-sampling, (ii) after training them on
the original data, balanced with synthetic samples generated
using CTGAN [66]. CTGAN exploits a conditional gener-
ative adversarial network, learns from input data (i.e., both
discrete and continuous features), and generates high-fidelity
synthetic samples. It is important to emphasize that the new
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synthetic samples generated by CTGAN are not copies of the
samples in the original dataset but look-alike instances. To the
best of our knowledge, this is the first time CTGAN has been
used to generate synthetic data for balancing data related to
intrusion detection, even though it has been used for image
data.

We used the datasets NSL-KDD (Network Socket Layer-
Knowledge Discovery in Database) [62] and UNSW-
NB15 [41] in our experiments; these are some of the widely
used datasets for studying intrusion detection in computer
networks. We evaluated the performance of the following
ML classifiers through extensive experiments: Decision Tree
(DT), Support Vector Machine (SVM), Random Forest (RF),
Naive Bayes (NB), Feed Forward Network (FNN), Long
Short Term Memory (LSTM), and Convolutional Neural
Network (CNN). Additionally, we compared our proposed
approach against some of state-of-the-art IDSes, namely,
CNN-BiLSTM [58] and PB-DID [71]; experimental results
on both datasets demonstrate that our method performs better
than CNN-BiLSTM and PB-DID.

Our focus is on multi-class classification rather than binary
classification — a more challenging problem setup. Multi-
Class classification makes it possible to evaluate the perfor-
mance of various classifiers with respect to different types of
intrusions. Our experimental results show that on the NSL-
KDD dataset, with training data balanced with synthetic data
generated using CTGAN, prediction accuracy of some of the
ML classifiers increased by as much as 8% and their MCC
score improved by as much as 13%. Following is a summary
of our contribution in this paper:

o We show that, using improved algorithms for generating

synthetic data for balancing the datasets used for training
ML classifiers, could improve the performance of ML
classifiers in detecting intrusions in computer networks
more accurately.

o We used CTGAN to generate synthetic samples to bal-
ance the training datasets in NSL-KDD and UNSW-
NBI15. To the best of our knowledge, this is the first
time CTGAN has been used to generate synthetic data
for balancing data associated with intrusion detection.
It is noteworthy to mention that CTGAN has been used
for image augmentation in the literature.

o We evaluated the performance of several widely used
ML classifiers. Our evaluations show that ML clas-
sifiers trained on training datasets of NSL-KDD and
UNSW-NBI15, balanced with synthetic samples gener-
ated by CTGAN, performed better compared to their
performance when trained on (i) the original imbal-
anced training datasets, and (ii) the original training
datasets balanced using random over-sampling. More-
over, we also show that the proposed approach performs
better than some of the state-of-the-art IDSes CNN-
BiLSTM [58] and PB-DID [71].

The rest of the paper is organized as follows. In Section II,

we present our proposed approach as well as discuss the
various ML classifiers used for evaluation. In Section III,
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we present our experimental setup and results. In Section IV,
we discuss related works, and Section V concludes the paper.

Il. PROPOSED APPROACH AND CLASSIFICATION
METHODS USED

In this section, we discuss how we model data, preprocess
data, and use CTGAN to generate synthetic data to balance
data in the training datasets of NSL-KDD and UNSW-NB15.
Then, we discuss various ML classifiers that we used in our
experimental evaluation.

A. MODELING DATA

We modeled the input data as a two-dimensional matrix X =
(x1,x2,x3,---,xy), where x;, € RP (1 < i < N)isa
vector with D dimensional network feature space. Each x;
(1 <i < N)isassociated with a label y; and y; € {1, ---, L}.
In our case, N is the number of samples in the dataset and
L is the number of distinct attack categories. The feature
vectors are mapped to labels by a function ¥ = f(x) that is
unknown. As part of supervised learning, the training dataset
was used to obtain an estimate of . This estimated function
is referred to as f (x). The goal is to make f (x) as close as
possible to f(x).

B. PREPROCESSING OF DATA

We transformed all the categorical variables into numerical
variables during the preprocessing step. For this transforma-
tion, we used label encoding [24], [40]. During this process,
each label of a categorical feature is assigned a unique numer-
ical value in alphabetical order. Imagine a two-dimensional
matrix X containing column C;. Column C; contains four
categorical labels — rcp, smtp, ftp and http. These are different
types of protocols. Our label encoding assigns the values 1,
2, 3, and 4 to the labels fip, http, smtp, and fcp, respectively,
in alphabetical order.

In the next step, we normalized the input data. In this study,
we used L, normalization or Euclidean normalization [65].
We used the same input matrix X and i feature C;. The
feature C; is normalized using Equation 1.

C‘
Ci=—
[ICill2

ey

where

ICill2 =

and C; = [cy,, ¢3;, ¢3;, - - -, ck;], a vector of length K. ||C;||2
is the L, norm of the vector C;.

C. SYNTHETIC DATA GENERATION USING CTGAN

TO BALANCE DATA

Data imbalance occurs when the number of samples in some
classes is significantly higher than those in other classes [12].
Consequently, ML classifiers will be overwhelmed by the
majority classes (which have higher number of samples com-
pared to some of the other classes) and ignore the minority
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classes (which have fewer instances). In the literature several
methods such as over-sampling, under-sampling, stratified
sampling (SS), etc. [19], have been used to address the data
imbalance problem, as we mentioned earlier.

In addition to over-sampling, we used CTGAN [66] for
generating synthetic data for balancing data. To generate
synthetic tabular data from original tabular data, CTGAN
uses a GAN-based (generative adversarial network) model.

CTGAN introduces mode specific normalization, which
allows it to deal with columns with complex distributions.
This procedure consists of the following three steps.

« Each continuous column C; is identified by using a
variational Gaussian mixture model (VGM) [60] to
determine the number mode m; and fit it in a Gaussian
mixture.

o In order to compute the probability density for each
mode, it computes the value of ¢;; in column C; for
Jjth row.

o Then, samples one mode using the calculated probability
density and uses the sampled mode to normalize the
value.

A new row is resampled in such a way that all categories from
the columns are equally distributed at the time of training
so that it can be used to capture the actual distribution of
data during testing. Let k be the value of the i column C;.
Suppose 7 is a generated sample, and the original value has
to be matched with the generated samples 7 in a way that
the generator can be explained as the conditional distribution
of rows, given that particular value at that particular column,
where

7~ Pg(row|C; = k). 2)

One of the most important tasks for the conditional gen-
erator is to learn the real distribution of data, i.e., Pg(row|
C; = k) = P(row|C; = k). The following equation can be
used to reconstruct the original distribution.

P(row) = Z Py(row|C; = k)P(C; = k) 3)
keC;

In order to achieve this, three methods were introduced:
conditional vectors, generator losses, and sampling-based
training. Two fully connected hidden layers were used in both
the generator and discriminator of the network architecture
in order to capture all possible correlations between columns.
In the generator, batch normalization and relu activation func-
tion are used.

D. ML CLASSIFIERS
In this subsection, we discuss various ML classification algo-
rithms we evaluated in this paper.

1) DECISION TREE (DT)

In many applications, DT has been used to classify different
types of data such as power quality disturbance, Parkinson’s
disease, product review classification, etc. [2], [31], [51],
[61], [72]. A DT is tree structure, in which each leaf node
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represents a class label and each internal node is a decision
node or a chance node [19]. DT constructs a tree by seg-
menting the feature space into several subregions. Hence,
tree is constructed by recursively binary splitting the feature
space [34]. Two splitting methods are usually used to split
the tree, namely, cross entropy and Gini index. We used Gini
index-based splitting [48]. Gini index can be calculated using
Equation 4.

L L
Gini =) pi(1=p)=1-) pf. “
I=1 I=1

where L is the number of classes and p; is the set of items in
classl € {1,2,3,---,L}.

2) SUPPORT VECTOR MACHINE (SVM)

SVM model is a renowned machine learning classifier that
can be used for both classification and regression tasks. It is,
however, primarily used for classification tasks [10], [11],
[63], [64]. SVM uses Statistical learning theory to find the
optimal hyperplane as a decision function in high dimen-
sional space [45]. We used supervised learning for classifi-
cation, and considered a input set with N vectors from the
d-dimensional feature space X. For each vector x;, there is
a target y; [5]. The goal of SVM is to identify an optimal
hyperplane that maximizes the separation margin. The data
are first mapped to a high dimensional feature space using
a kernel method, i.e., ¢(X). The optimal hyperplane can be
defined as

f)=w- o)+ b (5)

Here f(x) represents the discriminant function, w is weight
vector and b is the bias. b minimizes a cost function. The cost
function can be expressed as

1 N
Yow ) = SIwll® +C 3 & (6)
i=1

Here &; is a slack variable used for nonseparable data. The
constant C is a regularization parameter to control the shape
of the discriminant function.

3) Naive BAYES (NB)

NB classifiers are a family of probabilistic classifiers based
on Bayes’ Theorem. NB classifiers, combined with kernel
density estimation, can achieve high accuracy levels. NB is
widely used by researchers to solve various classification
problems that arise in their research [14], [18], [23]. NB clas-
sifier is based on conditional probability [42]. The probability
of one attribute does not affect another attribute, given the
class label. Therefore, the presence of an attribute in a class is
unrelated to any other attribute. The Naive Bayes probability
is defined as

P(CIL)P(L)

P(L|C)=W, @)
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where L is the class variable and C is the feature set
C1,C,C3,---,Cqo. P(L|IC), P(C|L), P(L), and P(C) are
respectively the posterior probability, probability of feature
set given class, prior probability of class, and prior probability
of feature set.

4) RANDOM FOREST (RF)

Due to its simplicity and diversity, RF is also one of the
most commonly used algorithms. Both regression and clas-
sification can be performed using RF [21], [32], [49], [55].
RF combines multiple decision trees to make more accurate
and stable predictions. It builds a decision forest based on sev-
eral decision trees, usually trained with the bagging method.
A bagging method, based on the concept that combining
different learning classifiers, increases overall performance.
In our approach, we used the Gini Index (Equation 4) to
determine how a node in a decision tree should be split.

5) FEED-FORWARD NEURAL NETWORK (FNN)

FNNs have been successfully used for pattern classification,
clustering, regression, association, optimization, control, and
forecasting [4], [9], [28], [67]. FNN contains one input layer,
one output layer, and H number of hidden layers. Let W), €
R2*P and W, € RV*M pe the weight matrices for hidden
layer and output layer respectfully where Q is number of input
neurons, P is the number neurons in a hidden layer and M is
the number of output neurons. Each row of these matrices
represents a weight vector for a neuron. Now we can write
the equation of output matrix of a hidden layer as:

H = f(XW), + bp), (8)

where X = {x1, x2, x3, -+, xn} is the input matrix with N
rows, by, is the bias matrix and f(.) is the activation function
of the hidden layer.

We can express the equation of the output layer as:

Y = g(HW, + b,), )

where g(.) is the activation function of the output layer and
b, is the bias matrix of the output layer.

6) LONG SHORT TERM MEMORY (LSTM)

Although LSTM is a recurrent neural network, it is bet-
ter in terms of memory than traditional recurrent networks.
By memorizing certain patterns, LSTM is able to perform
relatively better [26], [43], [52], [68]. LSTM can have multi-
ple hidden layers and as data passes through each layer, the
relevant information is retained and the irrelevant information
is discarded. An LSTM consists of an input gate i;, an output
gate oy, and a forget gate f;. The equations for the LSTM gates
at time step ¢ can be expressed as:

it = g(Wilhi—1, x:] + by), (10)
S = gWrlhi—1, x:]1 + by), (1)

and
0r = g(Wolht—1, x¢1 + by), (12)
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where g(.) is a activation function of a gate, W is the weight
of the corresponding gate, h;_1 is the output of the previous
LSTM block, x is the input vector at time #, and by is the bias
for the respective gate.

7) CONVOLUTIONAL NEURAL NETWORK (CNN)

In addition to computer vision, CNNs have shown outstand-
ing performance in many other fields [17], [39], [50], [70].
Convolutions are used in this neural network to transform
the input features into meaningful information, which is then
used to build the subsequent layers of neural network com-
putations. The convolutional layer is used to extract features
to perform linear operations, and is usually a combined con-
volution. In convolution, multiple kernels or filters are used.
A convolutional operation is usually defined as:

A

Y=xxk+b. (13)

The kernel k has a dimension of n x m. The input and bias are
represented by x and b, respectively. The input and bias have
the same dimensions k.

IIl. EXPERIMENTAL RESULTS

In this section, we discuss evaluation criteria, metrics used,
datasets used, experimental setup, details about some of the
state-of-the-art competing methods, implementation details
of classifiers, and performance results of various classifiers.

A. EVALUATION CRITERIA AND METRICS USED

FOR EVALUATION

To evaluate the performance of various ML-classifiers, we
used the following quantitative metrics: (i) Accuracy (Acc),
(i1) Precision (Pre), (iii) Recall (Rec), and (iv) Fp-score,
following the relevant literature [29], [44]. Recently, a more
robust metric, called The Matthews correlation coefficient
(MCC) [13], has been proposed. So, in addition to these
metrics (mentioned above and discussed in detail below),
we also used MCC in our evaluation. MCC is not affected
by the imbalance in datasets. MCC is based on a contingency
matrix method used to calculate the Pearson product-moment
correlation coefficient. Next, we describe in detail the metrics
mentioned above:

o Accuracy (Acc): Acc is the measure of how well the
algorithm correctly predicts the occurrence of an event.
That is, how well an event is predicted as normal or a
type of intrusion.

o Precision (Pre): Pre refers to how frequently the algo-
rithm correctly predicts the types of intrusions.

« Recall (Rec): Rec refers to the proportion of actual
intrusions that the algorithm predicted as intrusions.

o Fi-Score: Fi-Score is the reciprocal of the arithmetic
mean of Pre and Rec, which is the harmonic mean of
both variables.

The formulas for calculating these metrics are given in
Table 1. To calculate these metrics for various ML classifiers
studied in this paper, we counted the True positives (7P),
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True negatives (TN), False positives (FP), and False neg-
atives (FN). In this work, all of our ML classifiers are
multi-class.

TABLE 1. Performance metrics and how they are computed.

Metric Formula for computing the metric
TPTTN
Accuracy (Acc) TPITNLFPIFN
. TP
Precision (Pre) TP+FP
TP
Recall (RCC) TP+FN
Pre-Rec
F1 Score 2 Pre+Rec
MCC Score TP.TN—FP-FN
\/(TP+FP)-(TP+FN)-(TN+FP)-(TN+FN)

B. DATASETS USED FOR EVALUATION

We used the datasets NSL-KDD and UNSW-NB15, which
are widely used datasets in the intrusion detection literature.
Next, we discuss these datasets.

1) NSL-KDD DATASET

NSL-KDD dataset consists of training dataset (KDDTrain+)
and two test datasets: KDDTest+ and KDDTest-21. They
contain 41 features and it does not contain they do not dupli-
cate records [62]. They have one normal class and four attack
type classes.

The four attack types [25] are:

o Denial of Service (DoS) Attack: In this type of attack,
the attacker blocks resources or services in a system or
network through malicious means.

o User to Root Attack (U2R): In this type of attack, the
attacker uses a normal user account to gain access to
the system and exploits vulnerabilities to take over the
system.

+ Remote to Local (R2L) Attack: In this type of attack,
an attacker sends data packets over the network to gain
users’ access or root access to do unauthorized acts.

« Probing Attack: In this type of attack, an attacker gath-
ers information about potential vulnerabilities of target
systems so that he/she can launch attacks later.

It is important to highlight that there is significant differ-
ence in the sizes of the samples of U2R and R2L classes in
the training dataset. Table 2 shows distribution of samples
for various attack types in the training and testing datasets.
We can easily see that each of these datasets (training and test
datasets) is imbalanced. Figures 2(a) and 2(b) show the partial
T-Distributed Stochastic Neighboring Entities (T-SNE) pro-
jections for the NSL-KDD testing datasets KDDTest+ and
KDDTest-21, respectively. From these projections, we can
see that large number of samples are of normal and DoS class
types in each of these test datasets.

2) UNSW-NB15 DATASET

UNSW-NB15 [41] is the other dataset we used in our exper-
iments. We obtained this dataset from the University of New
South Wales. In the Cyber Range Lab of the Australian
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Centre for Cyber Security (ACCS), the authors of the dataset
generated a hybrid of the realistic modern normal activities
and the synthetic contemporary attack behaviors through the
use of the IXITA PerfectStorm tool [41]. It has 42 features and
includes nine types of attack classes and one normal class.
We describe these attack types below:

o Fuzzers attack: An attack in which the attacker
attempts to discover security holes in software, operating
systems, or networks by overloading them with large
amounts of random data in order to cause the software
to crash.

o Analysis attack: An intrusion method for infiltrat-
ing the Internet via ports (e.g., port scanning), emails
(e.g., spam), and web scripts (e.g., HTML files).

« DoS attack: NSL-KDD also has this type of attack class,
which we already described in Section III-B1.

« Backdoor attack: A way of bypassing normal authen-
tication and securing unauthorized high level access
(e.g., root access) and remain undetected.

« Exploit attack: A series of instructions that takes advan-
tage of a security flaw, bug, or vulnerability that is
caused by an unforeseen action taken by a host or net-
work.

« Generic attack: Employs a hash function to establish
a collision against every block cipher, regardless of the
configuration of the block cipher.

« Reconnaissance attack: Also known as probe, this is
an attack that gathers information about a computer
network in order to evade its security measures.

« Shellcode attack: A technique used by attackers to gain
control of the compromised system by manipulating a
small part of the code.

« Worm attack: A computer virus, in which the attacker’s
code replicates itself in order to spread to other comput-
ers. Sometimes, it uses a computer network to spread
itself by taking advantage of security flaws in the target
computer.

Table 3 shows the distribution of the above attack type sam-
ples in the training and testing datasets of UNSW-NBI15.
UNSW-NBI15 comes with one training dataset and one testing
dataset.

C. EXPERIMENTAL SETUP

To evaluate the performance of various ML classifiers on each
of the two datasets NSL-KDD and UNSW-NB15, we con-
ducted the following three experiments.

« Experiment ORG: In this experiment, we used the
original training datasets of both NSL-KDD and UNSW-
NB15 to train the ML classifiers and evaluated their
performance.

o Experiment RandomSamp: In this experiment,
we used random over-sampling [46] to balance the
training datasets of both NSL-KDD and UNSW-NB15
and trained the ML classifiers on the balanced training
datasets and evaluated their performance.
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TABLE 2. Data distribution in NSL-KDD training and testing datasets.

TABLE 3.

Class KDDTrain+ (%) KDDTest+ (%) KDDTest-21 (%)
Normal 67343 53.5 9711 43.1 13449 53.3
DoS 45927 36.4 7458 33.1 9234 36.7
Probe 11656 9.3 2421 10.7 2289 9.1
U2R 52 0.04 67 0.3 11 0.04
R2L 995 0.78 2887 12.8 209 0.83
1007 dos 100 - R2L
754 normal dos
probe normal
504 R2L | probe
U2R 50 U2R
o~ 251 o~
a a
£ 0 £ 0
8 8
—25
_50 -50 4
—~75 4
—100 1 T T T T T 7100 1 T T T T T T T T T
-100 =75 -50 =25 0 25 75 -100 -75 -50 =25 0 25 50 75 100
comp-1 comp-1

(a) KDDTest+

FIGURE 2. T-SNE projection of NSL-KDD test datasets.

Data distribution in UNSW-NB15 training and testing datasets.

(b) KDDTest-21

approximately 75% of the samples are in normal class type.
On the other hand, samples in Analysis, Backdoor, Shellcode,

Class Train (%) Test (%)
Normal 37000 T 755 | 56000 1 32.0 and Worms attack classes are only 1.2%, 1.2%, 0.77%, and
DoS 4089 | 8.3 | 12264 | 7.0 0.09% respectively. So, training datasets of both NSL-KDD
Generic 18871 | 38.5 | 40000 | 22.8 and UNSW-NB15 are highly imbalanced.
Exploit 11132 | 22.7 | 33393 2.0
Fuzzers 6062 | 12.4 | 18184 | 104
Reconnaissance | 3496 | 7.1 | 10491 | 6.0 2) SETUP FOR EXPERIMENT RandomSamp
Analysis 677 1.4 2000 1.2 . .. .
Backdoor 583 1.2 | 1746 | 1.0 For experiment RandomSamp, we balanced the original train-
Shellcode 378 | 0.77 | 1133 | 0.6 ing datasets of both NSL-KDD and UNSW-NBI15 using
Worms 44 1009 130 | 01 random over-sampling technique and used the resulting bal-
anced datasets to train the ML classifiers and studied their
. . . erformance. Random over-sampling is a naive technique
o Experiment CTGANSamp: In this experiment, p pung 4

we used the synthetic samples generated by CTGAN

to balance the training datasets of both NSL-KDD and

UNSW-NBI15 and trained the ML classifiers on the bal-

anced training datasets and evaluated their performance.

Next, we describe the setup for each of the above three
experiments.

1) SETUP FOR EXPERIMENT ORG

For experiment ORG, we used the original training datasets
from both NSL-KDD and UNSW-NBI15 to train the ML
classifiers and studied their performance. The bar graph in
Figure 3(a) shows the distribution of samples under vari-
ous classes in the original training dataset of NSL-KDD.
As shown in Table 2, the percentage of samples under normal
and DoS class types of NSL-KDD training dataset are 53%
and 36%, respectively. However, the percentage of samples
under Probe, U2R, and R2L attack types are approximately
9%, 0.04%, and 0.83% respectively. Similarly, Figure 4(a)
shows the distribution of data for various attack classes in the
training dataset of UNSW-NB15. As we can see from Table 3,
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for balancing distribution of data under various class types.
It involves duplicating samples randomly from minority
classes to balance the dataset. In this method, each mem-
ber of the population in a minority class stands an equal
chance of being selected for addition to the dataset. During
the entire sampling process, each subject is independently
selected from the other members of the population [54].
Figure 3 (b), shows the distribution of data in the NSL-KDD
training dataset after balancing the dataset using random
over-sampling; there are approximately 67000 samples in
each class. After balancing UNSW-NBI15 training dataset
using random over-sampling, each class had 37000 samples
as shown in Figure 4(b).

3) SETUP FOR EXPERIMENT CTGANSamp

For experiment CTGANSamp, we balanced the original
training datasets from both NSL-KDD and UNSW-NB15,
using synthetic data generated with CTGAN [66] and used
the resulting balanced datasets to train the ML classifiers and
studied their performance. In the original NSL-KDD training

96737



IEEE Access

A.S. Dina et al.: Effect of Balancing Data Using Synthetic Data on the Performance of Machine Learning Classifiers

70000 70000

60000 60000

50000 50000

40000 40000

30000 30000

20000 20000

10000 10000

(a) ORG

(b) RandomSamp

100000

80000

60000

40000

20000

>
8 o o & e

(¢) CTGANSamp

FIGURE 3. Data distribution in training datasets (generated from NSL-KDD training dataset) for the three experiments.
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FIGURE 4. Data distribution in training datasets (generated from UNSWNB-15 training dataset) for the three experiments.

dataset, the total number of samples in normal class type is
67343 and total number of samples in Probe Attack, DoS
Attack, U2R Attack, and R2L Attack are 11656, 45927,
52, and 995 respectively. Since the number of samples for
normal class type is already high, we decided not to add more
synthetic samples to that class type using CTGAN generated
synthetic samples. As shown in Figure 3 (c), the distribution
of samples after balancing data using synthetic samples gen-
erated by CTGAN are 41149, 102589, 39483, and 55350 for
the attack types Probe Attack, DoS Attack, U2R Attack,
and R2L Attack, respectively. As we already observed, the
original training dataset in UNSW-NB15 is highly imbal-
anced. After balancing this training dataset with synthetic
samples generated by CTGAN, the total number of samples in
the attack classes Analysis, Backdoor, DoS, exploit, Fuzzer,
Generic, Normal, Reconnaissance, Shellcode, and Worms
are respectively 10677, 10572, 14089, 16132, 18871, 37000,
9946, 15378, and 10044, as shown in Figure 4(c).

D. COMPETING METHODS

To demonstrate the effectiveness of our proposed approach,
we conducted extensive experiments using several
ML-classifiers. Moreover, we also compared our approach
with two recently proposed state-of-the-art models in the
literature, namely, CNN-BiLSTM and PB-DID. Next, we dis-
cuss these two competing new models.
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1) CNN-BIiLSTM

CNN-BiLSTM [16] uses 1D-CNN layer with activation func-
tion relu and maxpooling of size five. It uses batch normal-
ization to prevent slower training times. In this model, two
Bi-LSTM layers have been arranged in a manner that doubles
the kernel size in each iteration. The first Bi-LSTM layer had
64 units and the second layer had 128 units. A fully con-
nected dense layer with softmax activation function was used
as the final layer. We used the open-source code provided
for CNN-BiLSTM [16] in our experiments for performance
comparison.

2) PB-DID

PB-DID [71] uses an auxiliary dataset that has common
features with the main dataset. Therefore, as in [71], we used
the two training datasets NSL-KDD and UNSW-NB15 (with
one as main and the other as auxiliary) to train PB-DID for
comparison because these two datasets have six common
features and two common class types, namely, normal and
DoS. So, to study the performance of PB-DID, we added
the samples from the training dataset of UNSW-NBI15 that
are in these common class types to the NSL-KDD training
dataset. This merged dataset was used to train the model, and
the original testing sets of NSL-KDD were used to test the
model. A similar approach (added samples from NSL-KDD
to UNSW-NB15) was used to process the UNSW-NB 15 train-
ing and testing datasets. Since PB-DID classifier relies on
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an additional dataset to compensate for the data imbalance
issue, we did not conduct the experiments RandomSamp and
CTGANSamp with PB-DID. We used the open-source code
supplied for PB-DID [15] to conduct our experiments.

E. IMPLEMENTATION DETAILS

As we mentioned earlier, we evaluated the performance
of various ML classifiers under three experiments, namely,
ORG, RandomSamp and CTGANSamp; for each of these
three experiments, we used the two datasets - NSL-KDD and
UNSW-NB15. We evaluated the following ML classifiers:
Decision Tree (DT), multinomial Naive Bayes (NB), Random
Forest (RF), Support Vector Machine (SVM), Feed-Forward
Neural Network (FNN), Long Short term Memory Net-
work (LSTM), and Convolutional Neural Network (CNN).
We implemented DT, NB, RF, and SVM algorithms using
the scikit-learn python package version 1.1 [36]. We used the
Gini index splitting criteria for DT and L1 regularization for
SVM. When estimating an RF, we considered the number of
trees in the forest to be 100. With respect to NB, we used
alpha 1.0, as smoothing parameter.

We also evaluated the following three neural networks:
FNN, LSTM, and CNN. With FNN, we used three hidden lay-
ers, each containing 50, 30, and 20 neurons respectively; and
the output layer had five neurons. In the final layer, we used
softmax function to do the final classification. We used relu
as activation function, adam as optimizer, and categorical
cross entropy as a loss function. In total, this network had
5285 trainable parameters. We designed a two-layer LSTM.
Each layer in the LSTM had 100 units. The activation func-
tion, optimizer, loss function and final layer are same as
in FNN. Since, our datasets consisted of one-dimensional
sequence of data, we used a single one dimensional CNN
(convlD). We used 32 filters with kernel size of 3. We used
maxpooling with a pool size of 2. Then, we used a dense
hidden layer with 100 neurons and the final layer had five
neurons. Like FNN and LSTM, we used the same activation
function, optimizer, and loss function for CNN. Each of these
networks had been trained for 100 epochs with early stop-
ping. We implemented all three neural networks using ten-
sorflow and Nvidia GPU driver version 455.32.00 with cuda
version 11.1. We also evaluated the performance of state-of-
the-art models CNN-BiLSTM [16] and PB-DID [71]. Next,
we discuss the results from our experiments.

F. RESULTS FROM OUR EXPERIMENTS

1) PERFORMANCE COMPARISON BASED ON THE

MCC SCORE

For comparing the performance of ML classifiers, MCC score
has been shown to be more robust compared to other metrics
such as F'1-score. This is a statistical technique used to eval-
uate the performance of models. The higher the number, the
better the model. So, in addition to the other metrics, we also
used MCC score for evaluating the performance of various
ML classifiers.
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In all three experiments (ORG, RandomSamp, and
CTGANSamp), we compared the performance of all the
classifiers based on their MCC scores. Tables 4 and 5,
contain the MCC scores of different classifiers for the test
sets KDDTest+ and KDDTest-21, respectively for the three
experiments ORG, RandomSamp and CTGANSamp. The
MCC scores of the ML-classifiers under CTGANSamp are
consistently higher than their MCC scores under ORG and
RandomSamp. Specifically, after ML classifiers were trained
on NSL-KDD training dataset, balanced with synthetic data
generated with CTGAN, they showed up to 4% improve-
ment in performance with respect to MCC score on the
dataset KDDTest+ and up to 7.52% improvement on the
dataset KDDTest-21. It is worth noting that when synthetic
data generated by CTGAN is used to balance the training
dataset, performance of state-of-the-art CNN-BiLSTM also
improved; the MCC score of CNN-BiLSTN on KDDTest+
and KDDTest-21 improved by 2.7% and 3.32% respectively,
compared to its MCC scores when trained using original
training dataset.

The MCC scores of various ML classifiers on the dataset
UNSW-NBI15 under all three experiments are presented in
Table 6. For this dataset also, the MCC score under the
experiment CTGANSamp is higher compared to their MC
scores under the other two experiments for all ML classifiers.
It is worth noting that the MCC score of the state-of-the-art
competitor PB-DID on the original dataset of UNSW-NB15
is 35%, is lower than MCC score of all the other classifiers
under CTGANSamp. Specifically, the MCC score for all
classifiers under the experiment CTGANSamp is up to 61%
higher than that of PB-DID, which signifies that the proposed
data balancing technique using synthetic data generated with
CTGAN, not only improves the performance for well estab-
lished ML classifiers but also improves the performance of
recently published state-of-the-art models such as PB-DID
and CNN-BiLSTM.

2) COMPARISON OF PERFORMANCE BASED ON

OTHER METRICS

In this subsection, we compare the performance of vari-
ous ML-classifiers with respect to the following metrics:
accuracy (Acc), precision (Pre), recall (Rec), and F; score.
Table 7 and Table 8 how various classifiers perform under the
experiments ORG, RandomSamp, and CTGANSamp, tested
on KDDTest+ and KDDTest-21 respectively, with respect
to these metrics. The values shown in these tables for var-
ious metrics are weighted-average scores [19], [47]. These
scores clearly show that the performance improvement in
accuracy varied from 1% to 8% under CTGANSamp for both
datasets KDDTest+ and KDDTest-21. We also notice that the
performance of DT, LSTM, and CNN classifiers is consis-
tently better under CTGANSamp compared to their perfor-
mance under ORG and RandomSamp for both KDDTest+
and KDDTest-21 datasets with respect to all of the the follow-
ing quantitative metrics: accuracy, precision, recall, and the
F scores. Similarly, we observe significant improvement in
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TABLE 4. MCC scores of all classifiers on the KDDTest+ test dataset under the three experiments ORG, RandomSamp and CTGANSamp.

TABLE 5. MCC scores of all classifiers on the test dataset KDDTest-21 under the three experiments ORG, RandomSamp and CTGANSamp.

TABLE 6. MCC scores of all classifiers on the UNSW-NB15 dataset under the three experiments ORG, RandomSamp and CTGANSamp.

Classifier MCC-ORG | MCC-RandomSamp | MCC-CTGANSamp
DT 0.6078 0.6437 0.6518
SVM 0.5643 0.5547 0.5999
RF 0.6288 0.6209 0.6472
NB 0.3892 0.2790 0.4244
FNN 0.6501 0.6514 0.6700
LSTM 0.6607 0.6326 0.6635
CNN 0.6374 0.6417 0.6506
CNN-BIiLSTM 0.6201 0.6343 0.6471

PB-DID 0.0794 - -

Classifier MCC-ORG | MCC-RandomSamp | MCC-CTGANSamp
DT 0.4038 0.4639 0.4790
SVM 0.3378 0.3379 0.3822
RF 0.4443 0.4324 0.4650
NB 0.0316 0.0533 0.0944
FNN 0.4741 0.4654 0.4922
LSTM 0.4684 0.4411 0.4746
CNN 0.4406 0.4497 0.4615
CNN-BiLSTM 0.4278 0.4363 0.4610

PB-DID 0.0012 - -

Classifier MCC-ORG | MCC-RandomSamp | MCC-CTGANSamp
DT 0.5582 0.5319 0.5788
SVM 0.3934 0.3387 0.3941
RF 0.5579 0.5221 0.5675
NB 0.3946 0.2638 0.3947
FNN 0.3987 0.3373 0.5295
LSTM 0.5300 0.4374 0.5342
CNN 0.5336 0.4811 0.5459
CNN-BiLSTM 0.4007 0.4559 0.4854

PB-DID 0.3587 - -

recall score for all ML classifiers under CTGANSamp com-
pared to their recall scores under ORG and RandomSamp.
It is evident that the FN rate is low and the TP rate is high
under CTGANSamp. We would also like to highlight that
the accuracy of all the classifiers has been consistently better
under CTGANSamp compared to their accuracy under ORG
and RandomSamp. With respect to F'; score, all the classifiers
either have better score or have competitive (e.g., within
1.5 percentage point) score under CTGANSamp compared
to their scores under ORG and RandomSamp. However, for
SVM and NB, the precision scores under CTGANSamp are
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not as good as their precision scores under ORG or Random-
Samp. Additionally, the results also show that the accuracy
of some of the classifiers decreased under RandomSamp,
compared to their accuracy under ORG. Overall, it can be
conclusively claimed that all the classifiers show significant
improvement with respect to various metrics on both datasets
under CTGANSamp. Next, we discuss the results in more
detail.

As shown in Table 7, for dataset KDDTest+, accu-
racy of DT under ORG is 73.15%; it increases to 74.58%
under RandomSamp; it further increases to 75.22% under
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TABLE 7. Performance comparison of various ML classifiers on the test dataset KDDTest+ under the three experiments ORG, RandomSamp, and
CTGANSamp with respect to the metrics Acc, Pre, Rec and F1-score.

Classifier ORG RandomSamp CTGANSamp
Name Acc Pre Rec Fi Acc Pre Rec F1 Acc Pre Rec F1
DT 0.7315 0.7144 0.7315 0.6830 | 0.7458 0.7992 0.7458 0.7036 | 0.7522  0.7995 0.7522  0.7203
SVM 0.7014  0.6547 0.7014 0.6561 | 0.6935 0.7169 0.6935 0.6964 | 0.7326  0.6869  0.7326  0.6842
RF 0.7393  0.8162 0.7393  0.6917 | 0.7355 0.7485 0.7355 0.6876 | 0.7394  0.8162 0.7394  0.6916
NB 0.6105 0.5395 0.6105 0.5254 | 0.4483 0.5695 0.4483 0.4937 | 0.6273 0.5168 0.6273  0.5592
FNN 0.7534 0.7304 0.7534  0.7200 | 0.7587 0.7567 0.7587 0.7399 | 0.7736 0.8081 0.7736  0.7372
LSTM 0.7629  0.8010 0.7629  0.7260 | 0.7498 0.7899  0.7498  0.7130 | 0.7762  0.8182  0.7762  0.7462
CNN 0.7505  0.6887  0.7505 0.7021 | 0.7517 0.7849  0.7517 0.7156 | 0.7717  0.8037 0.7717  0.7344
CNN-BILSTM | 0.7462  0.7932  0.7462  0.7102 | 0.7603  0.7596 0.7603  0.7350 | 0.7656  0.7021 0.7656  0.7175
PB-DID 0.4526  0.6154 0.4526 0.2878 - - - - - - - -

TABLE 8. Performance comparison of various ML classifiers on the test dataset KDDTest-21 under the three experiments ORG, RandomSamp, and
CTGANSamp with respect to the metrics Acc, Pre, Rec and F1-score.

Classifiers ORG RandomSamp CTGANSamp

Name Acc Pre Rec Fi Acc Pre Rec F, Acc Pre Rec Fi
DT 0.4917 05956 0.4917 0.4573 | 0.5248 0.7344  0.5248 0.5020 | 0.5423  0.7560  0.5423 0.5345
SVM 0.4349  0.5120 0.4349 0.4248 | 0.4823 0.5585 0.4823  0.4910 | 0.4993 0.5664 0.4993 0.4761
RF 0.5036  0.8085 0.5036 0.4846 | 0.4963 0.6804 0.4963 0.4772 | 0.5043 0.8092  0.5043  0.4855
NB 0.2659 0.3144 0.2659 0.2023 | 0.2772 0.3006 0.2772  0.2787 | 0.3503  0.2402  0.3503  0.2699
FNN 0.5344 05975 0.5344 05148 | 0.5464 0.6425 0.5464  0.5548 | 0.5719  0.7656  0.5719  0.5569
LSTM 0.5535 0.7528 0.5535 0.5370 | 0.5279 0.7265 0.5279  0.5088 | 0.5774 0.7837  0.5774  0.5752
CNN 0.5289  0.5558 0.5289  0.4997 | 0.5315 0.7352 0.5315 0.5236 | 0.5661  0.7575  0.5661 0.5531
CNN-BILSTM | 0.5200 0.7417 0.5200 0.5066 | 0.5470 0.6700  0.5470  0.5236 | 0.5589  0.5458  0.5589 0.5121

PB-DID 03382 0.1144 0.3382  0.1710 - - - - - - - -

TABLE 9. Performance comparison of various ML classifiers on UNSW-NB15 test dataset under the three experiments ORG, RandomSamp, and
CTGANSamp with respect to the metrics Acc, Pre, Rec and F1-score.

Classifiers ORG RandomSamp CTGANSamp

Name Acc Pre Rec Fi Acc Pre Rec Fi Acc Pre Rec F1
DT 0.656 0.6226  0.6566  0.6268 | 0.6291  0.6413  0.6291  0.6113 | 0.6731 0.6369  0.6731  0.6477
SVM 0.5304 0.3648  0.5304 0.3899 | 0.3602 0.5856 0.3602 0.3892 | 0.5257 0.4151 0.5257 0.3832
RF 0.6515 0.6273  0.6515 0.5949 | 0.5938 0.7139  0.5938  0.6239 | 0.6595 0.6356 0.6595 0.5977
NB 0.5256 04080 0.5256  0.3728 | 0.3095 0.4424 03095 0.2866 | 0.5257 0.4417  0.5257 0.373
FNN 0.5295  0.4854 0.5295 0.3860 | 0.4057 0.5261 0.4057 0.3836 | 0.6291 0.7656  0.6291  0.5529
LST™M 0.6123 05933  0.6123  0.5156 | 0.5054 0.6729 0.5054  0.5566 | 0.6333  0.5758  0.6333  0.5622
CNN 0.6330  0.5746  0.6330  0.5607 | 0.5547 0.6818  0.5547 0.5944 | 0.6454 0.5881  0.6454  0.5815
CNN-BIiLSTM | 0.5314 0.375 0.5314  0.3875 | 0.5250 0.7093 0.5250  0.5795 | 0.5837 0.5041  0.5837  0.4637

PB-DID 0.5471  0.3545  0.5471  0.4292 - - - - - - - -

CTGANSamp. Similarly, for the dataset KDDTest-21, accu-
racy of DT under ORG, RandomSamp, and CTGANSamp
are 49.17%, 52.48%, and 54.23%, respectively, as shown in
Table 8 for KDDTest-21. For KDDTest+, F scores of the
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classifiers DT, NB, LSTM, and CNN are significantly higher
under CTGANSamp compared to their F; scores under ORG
and RandomSamp. For instance, NB achieved 55.92% F|
score under CTGANSamp, while its F; score under ORG
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and RandomSamp are 52.54% and 49.37%, respectively.
Table 7 shows that for KDDTest+, SVM, RF, and FNN, had
better F; scores under ORG and RandomSamp compared
to their F| scores under CTGANSamp. However, the dif-
ference F score is small (e.g., difference in F scores of
RF under ORG and CTGANSamp is only 0.01%). Table 8
also shows that there is significant improvement in F; scores
for DT, RF, FNN, LSTM, and CNN under CTGANSamp
compared to their F| scores under ORG and RandomSamp.
For the same dataset, SVM and NB, had slightly higher F
scores under RandomSamp compared to their F; scores under
CTGANSamp; again, the difference is small (i.e. around 1%).
Table 7 indicates that the accuracy of NB on KDDTest+
under RandomSamp decreases by 16% compared to its accu-
racy under ORG. This is because, performance of the NB
classifier is determined by the distribution of samples in the
training dataset; so, when duplicate samples are added to
balance the training dataset, NB becomes more biased to
some identical samples and hence achieved lower accuracy.
Several other classifiers including SVM, RF, and LSTM also
have lower accuracy score under RandomSamp compared to
their accuracy under ORG as seen from Table 7. As shown
in Table 8, the accuracy of RF and LSTM on the dataset
KDDTest-21 decrease by 0.73% and 2.56%, respectively
under RandomSamp compared to their accuracy under ORG.
However, on both datasets KDDTest+ and KDDTest-21,
accuracy of all classifiers is higher under CTGANSamp
compared to their accuracy under both ORG and
RandomSamp.

Performance of the various machine learning classifiers
on the dataset UNSW-NB15 under the three experiments
(ORG, RandomSamp and CTGANSamp), with respect to
various metrics, shown in Table 9, is similar to their perfor-
mance on KDDTest+ and KDDTest-21; their performance
under CTGANSamp is better compared to their perfor-
mance under ORG and RandomSamp. In general, accuracy
and recall are good performance indicators for the classi-
fiers DT, RF, NB, FNN, LSTM, CNN, and CNN-BiLSTM.
Accuracy of SVM under ORG is about 1% higher than
its accuracy under CTGANSamp. Other than that, accuracy
of all the other classifiers under CTGANSamp is higher
than their accuracy under ORG as well as RandomSamp.
Precision achieved by various classifiers on the dataset
UNSW-NBI15, under the three experiments, is similar to their
precision on KDDTest+ and KDDTest-21. With respect to
F score, all the classifiers performed reasonably well under
CTGANSamp compared to their performance under ORG
and RandomSamp.

From Tables 7, 8, and 9, it is clear that the training data
augmented with synthetic data generated by CTGAN for
balancing data resulted in improvement in the accuracy of
CNN-BiLSTM on the datasets KDDTest+, KDDTest-21 and
UNSW-NBI15 by 2%, 3%, and 5% respectively. We reiterate
that we have not conducted RandomSamp and CTGANSamp
experiments for PB-DID because PB-DID implementers
employed an auxiliary dataset to address the data imbalance
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issue; thus established data augmentation techniques such as
over-sampling or under-sampling have not been utilized in
their experiments.

G. T-SNE PROJECTION OF SELECTED DATA SAMPLES

We randomly drew 300 samples from KDDTest+ and per-
formed T-SNE projection on the selected data samples for
qualitative analysis. Figure 5 shows the visualization of
T-SNE projection for all three experiments alongside ground
truth for the classifier CNN. Figure 5(a) shows the actual
classes (ground truth), Figure 5(b) shows the classifica-
tion under ORG, Figure 5(c) shows classification under
RandomSamp and Figure 5(d) shows classification under
CTGANSamp. In Figure 5, we drew five circles (i.e., one for
each class or cluster) shown in blue (I), green (II), black (III),
purple (IV), and red (V) colors. We can see that the classifi-
cation based on CTGANSamp is much closer to the ground
truth.

In the ground truth (Figure 5(a)), majority of the samples
inside the blue circle are of type DoS. ORG (Figure 5(b))
performs very well in predicting DoS and its prediction is
in line with the ground truth. RandomSamp (Figure 5(c)),
on the other hand, predicts them all as normal. CTGAN
(Figure 5(d)) has incorrectly predicted some DoS samples
as normal, but overall it is able to detect most of the DoS
samples. The majority of the samples in the green circle of
ground truth are normal, and only a few are U2R, R2L, and
probe samples. ORG is not able to detect any of the U2R and
R2L samples in the green circle, and some of the normal sam-
ples are also labeled as probes. Among all the experiments,
RandomSamp performs the worst in predicting the samples in
the green circle correctly; RandomSamp labels many normal
samples as probes. CTGANSamp, on the other hand, predicts
all the normal samples along with the minority classes U2R
and R2L correctly. Inside the black circle of the ground
truth, majority of the samples are probes; however, ORG
and RandomSamp predict all these samples to be normal.
CTGANSamp’s prediction, on the other hand, is similar to the
ground truth. It is also the case with the purple and red circles;
CTGANSamp’s prediction results of samples in these two
circles are the same as ground truth. In contrast, both ORG
and RandomSamp fail to capture the actual truth of samples
in these two circles as well.

Finally, we also performed statistical significant test based
on the performance of the three experiments (ORG, Ran-
domSamp, and CTGANSamp) on the dataset KDDTest+.
P-values are presented in Table 10. We notice that the
P-values are consistently very small when we compare the
performance of CTGANSamp with ORG and RandomSamp.
On the other hand, when we compare the performance of
ORG with RandomSamp, the P-values are not always small
(for example, the P-value of RF is 0.91). This result also
signifies that ML classifiers show improvement when they
are trained with datasets balanced with synthetic samples
generated using CTGAN.
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FIGURE 5. Qualitative analysis of the CNN classifier under ORG, RandomSamp, and CTGANSamp on KDDTest+.

IV. RELATED WORKS
In this section, we first discuss some intrusion detection
techniques based on Machine Learning, presented in the lit-
erature. Then, we discuss data augmentation techniques used
in various applications.

A. MACHINE LEARNING BASED INTRUSION DETECTION
Machine Learning has been used extensively in designing
and implementing IDSes. Ever ef al. [20] used three machine
learning classifiers, ANN, SVM, and DT in their study. The
primary goal of this study was to determine the optimal
machine learning technique. As part of their experiments,
they used 60% and 70% of the dataset NSL-KDD for train-
ing, and the rest of the dataset for testing. Based on their
experiments, they showed that DT achieved better accuracy
compared to the other two.

A new approach to detect intrusion in computer networks
was introduced by Gao et al. [22]. In order to address the
data imbalance problem in NSL-KDD dataset, they proposed
a MultiTree algorithm using DT of four levels, with the
proportions of the types of classes adjusted accordingly. The
authors introduced a model in which they ensembled DT, RF,
K-NN, and DNN and used their adaptive voting algorithm to
decide on classification.

To build effective IDSes, in depth analysis of network
data is mandatory, as the volume of network data increases.
Due to the different types of protocols used on the Internet,
we have diverse network data. Therefore, it is difficult to
distinguish between normal network traffic and attack traffic.
Shone et al. [56] studied the feasibility and sustainability of
current approaches in network intrusion detection. Deep and
shallow learning were combined in their model. For unsuper-
vised feature learning, the authors applied two layers of non-
symmetric deep auto-encoders (NDAE). Unlike conventional
auto encoders, the NDAE contains no decoder. In order to
perform the final classification of the network traffic into
normal and attack, RF was used. Based on NSL-KDD and
KDD99 datasets, the authors evaluated their model using five
and thirteen layers of classification. To overcome the problem
of over-fitting and under-fitting, they performed a 10-fold
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cross validation. Due to the imbalanced nature of the datasets,
the false alarm rate was high in some attack classes.

Yin et al. [69] presented a two-step approach for intrusion
detection based on deep learning. One hot encoding was used
to transform categorical data to numerical values during the
preprocessing stage. In the following step, min-max method
was used to normalize the dataset due to large variations
in the data distribution. To classify data, recurrent neural
networks (RNNs) with forward propagation and backward
propagation were used. In the forward propagation method,
output values were calculated, and the backward propagation
method calculated the error and updated the weights. Cross-
entropy was used to compute the difference between the
output values produced by forward propagation and the true
value. Using this methodology, both binary and multi-class
classification were performed.

Javaid et al. [27] introduced a deep learning technique
based on Auto Encoder (AE) for feature representation and
feature learning. They used softmax regression for clas-
sification. Additionally, in the preprocessing stage, they
transformed categorical features into continuous features and
normalized the whole dataset using min-max method. They
performed two types of evaluations. In order to do cross val-
idation, they used training data for both training and testing.
In the second approach, they used different datasets for testing
and training.

In all of the above works, NSL-KDD dataset was used.
As we saw, this dataset is imbalanced. However, none of the
authors addressed this issue. The purpose of our study is
to focus on the data imbalance problem and to investigate
how this impacts the overall performance of various machine
learning classifiers.

B. AUGMENTATION TECHNIQUES APPLIED TO

VARIOUS APPLICATIONS

Synthetic data generation or data augmentation has been
used in a variety of applications such as image classifica-
tion and natural language processing. Various augmentation
techniques have been proposed, primarily based on deep
learning models. In this subsection, we review some recent
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TABLE 10. Results of T-Test on the performance of various classifiers on KDDTest+ under ORG, RandomSamp, and CTGANSamp.

c Classifier DT SVM RF NB FNN LSTM CNN | CNN-BILSTM
ompared
P-value P-value P-values P-value P-value P-value P-value P-value
ORG, CTGANSamp 3.10e~10 [ 3.34¢= 78 | 2.52¢~16 | 3.01e—2%3 0.05 0.001 1.64e=37 0.004
ORG, RandomSamp 2.64e~17 | 1.73¢—301 0.91 0.0 1.79¢=16 | 6.65e~13 | 2.05¢~18 7.75e~11
RandomSamp, CTGANSamp | 2.69e~12 | 5.70e=128 | 9.99¢=17 | 7.94¢=151 | 3.46e=26 | 8.01e=%% | 0.00028 5.55e~ 05

works on data augmentation and how this technique was
applied in different areas of research.

Shorten et al. [57] presented a critical survey on image data
augmentation using deep learning techniques. They explored
the use of data augmentation, a data-space approach to the
problem of limited data. Additionally, they state that data
augmentation encompasses a suite of techniques to augment
the size and quality of training datasets in order to build better
deep learning models. This survey discussed image augmen-
tation algorithms including geometric transformations, color
space augmentations, kernel filters, mixing images, random
erasing, feature space augmentation, adversarial training,
generative adversarial networks, neural style transfer, and
meta-learning. A significant portion of the survey is devoted
to the application of GANs for augmentation.

Li et al. [33] proposed a novel deep learning technique for
rotating machinery fault diagnosis. Generally, the following
five data augmentation techniques were examined: additional
Gaussian noise, masking noise, signal translation, amplitude
shifting, and time stretching. Sample-based as well as dataset-
based augmentation techniques were considered. They used
two datasets to conduct their experiments, namely: Bearing
Data Center of Case Western Reserve University (CWRU)
and Intelligent Maintenance System (IMS). Their approach
was able to achieve 99.9% accuracy.

Zhou et al. [73] proposed a novel approach combining data
augmentation and deep learning methods, which addresses
the issue of a lack of training samples in deep learning
when used to forecast emerging technologies. In order to
construct a sample dataset, Gartner’s hype cycle and multiple
patent features were utilized. As a second step, a generative
adversarial network was used to create many synthetic sam-
ples (i.e., data augmentation) in order to expand the sample
dataset. Lastly, a deep neural network classifier was trained
with the augmented dataset to forecast emerging technolo-
gies, and it was able to accurately predict up to 77% of the
emerging technologies in a given year. Based on patent data
from 2000-2016, this approach was used to predict emerging
technologies in Gartner’s hype cycles for 2017. A total of four
out of six emerging technologies were accurately predicted,
demonstrating the precision and accuracy of the proposed
method. This article showed that deep learning now can be
used to forecast emerging technologies with limited training
samples.

Hilda et al. [38] used the idea of gradient boosting-
based ensembles, such as gradient boosting machine (GBM),
extreme gradient boosting (XGBoost), LightGBM, and
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CatBoost. The goal of this paper is to assess the performance
of various imbalanced datasets using metrics such as Matthew
correlation coefficient (MCC), area under the receiver oper-
ating characteristic curve (AUC), and F score. In this article,
an example of anomaly detection in an industrial control
network is presented; more specifically, threat detection in a
cyber-physical smart grid is discussed. According to the test
results, CatBoost outperformed its competitors, regardless of
the imbalance ratio in the datasets. In [37], the same authors
also address the issue related to data imbalance. They have
developed a framework for comparing nine cost-sensitive
individual and ensemble models designed specifically to
deal with imbalanced data, including cost-sensitive C4.5,
roughly balanced bagging, random under-sampling bagging,
synthetic minority over-sampling bagging, random under-
sampling boosting, synthetic minority over-sampling boost-
ing, AdaC2, and EasyEnsemble.

Sinha et al. proposed a hierarchical model by combining
1D-CNN layers and Bi-LSTM layers [58]. CNN is used to
identify spatial features of a dataset, while LSTM (essentially
a subset of RNN) is used to identify long-term temporal
patterns of the dataset, enabling a predictive model to be
constructed. They performed both binary and multi class
classification on two state-of-the-art datasets, i.e. NSL-KDD,
and UNSW-NB15. Additionally, they used random over-
sampling in order to balance the two datasets. It is important
to note that in both datasets, they initially combined the
training and testing sets. Later, they randomly divided the
training and testing sets. In our experiments, we evaluated
the performance of this approach.

Zeeshan et al. [71] introduced an architecture based on
Protocol Based Deep Intrusion Detection (PB-DID), in which
the authors compared features of UNSW-NB15 and Bot-IoT
data-sets based on flow and Transmission Control Protocol
(TCP). It was then possible to classify Normal traffic, DoS
traffic, and DDoS traffic uniquely by taking into account
problems such as imbalance and overfitting. First they found
the common features between the UNSW-NB 15 dataset and
the Bot-IoT dataset. For addressing the imbalance issue in the
dataset, they combined both data-sets based on features that
fall into the flow and TCP categories. Then, a deep neural
network was used to classify them as normal, DoS, and DDoS
attacks. During preprocessing, they combined training and
testing datasets, and later separated them randomly as training
and testing datasets.

ML-classifiers trained with imbalanced datasets affect
their performance. We utilized synthetic data generated
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with CTGAN, to augment and balance well known training
datasets and studied its effect on the performance of various
well-known ML-classifiers.

V. CONCLUSION

Over the past several years, many researchers used Machine
Learning in designing and implementing IDSes. They used
different datasets for training ML classifiers. Most com-
monly used dataset are: NSL-KDD, UNSW-NB15. In many
of the datasets used for designing IDSes, data are imbal-
anced (i.e., not all classes have equal number of samples).
ML classifiers trained on such imbalanced datasets may pro-
duce unsatisfactory results which would affect accuracy in
predicting intrusions. Traditionally, researchers used over-
sampling and under-sampling techniques to balance data in
datasets, to overcome this problem. In this work, we used
over-sampling, and also used a synthetic data generation
method, called Conditional Generative Adversarial Network
(CTGAN) to balance data and study their effect on the per-
formance of various ML classifiers. To the best of our knowl-
edge, no one else has used CTGAN to generate synthetic
samples to balance training datasets designed for intrusion
detection in computer networks. Based on extensive experi-
ments with the widely used datasets NSL-KDD, and UNSW-
NB15, we found that training various ML classifiers on
data balanced with synthetic samples generated by CTGAN
increased not only prediction accuracy by as much as 8%,
but also performed well with respect to other metrics such
as recall, precision and F'| score. Moreover, their MCC score
increased by as much as 13%, compared to training the same
ML classifiers over imbalanced data. Our experiments also
show that the accuracy of some ML classifiers trained over
data balanced with random over-sampling declined compared
to the same ML classifiers trained over imbalanced data.
We also compared the performance of two recently pro-
posed models. They also perform much better under our new
approach for balancing data.
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