
Euler++: Improved Selectivity Estimation for
Rectangular Spatial Records

A. B. Siddique
University of California, Riverside
Department of Computer Science

and Engineering
msidd005@ucr.edu

Ahmed Eldawy
University of California, Riverside
Department of Computer Science

and Engineering
eldawy@ucr.edu

Vagelis Hristidis
University of California, Riverside
Department of Computer Science

and Engineering
vagelis@cs.ucr.edu

Abstract—Selectivity estimation is one of the common research
problems for big spatial data, where the objective is to quickly
estimate the number of records in a given query range. Euler
histogram has been used to answer the selectivity estimation
queries for objects with extents such as rectangles in constant
time. However, it is only accurate when the query range is aligned
with the histogram grid lines. In this paper, we improve the
Euler histogram to accurately answer arbitrary queries, i.e.,
even if they do not align with the histogram grid lines. The
improved histogram, called Euler++, has the same space and time
complexity as the regular Euler histogram and provides a better
accuracy for objects with extents. We use both real and synthetic
datasets for extensive experiments, and show that the proposed
technique, Euler++, consistently outperforms the existing ones,
while still providing answer in constant time.

Index Terms—Euler++, Spatial data synopsis, big spatial data,
selectivity estimation, query optimization

I. INTRODUCTION

Recently, there has been an exponential increase in the
amount of big data, of which 60-80% is geo-referenced [1].
Big Spatial data is supporting many important applications,
such as brain simulation [2], event detection [3], climate
studies [4], and others. One of the most important research
problems for big spatial data is selectivity estimation, which
tries to estimate the number of records in a given query range.
It has been employed in many applications including load bal-
ancing [5]–[7], indexing [8], [9], and query optimization [10].

Selectivity estimation for objects with extents, e.g., rectan-
gles, is particularly an interesting research problem, as most
of the real-world objects are not just points, but have ex-
tended boundaries. Traditionally, selectivity estimation based
on spatial data synopsis techniques, such as random sampling,
uniform and non-uniform histograms [11], [12] convert objects
into points by computing their centroid, thus can not provide
accurate estimates for the range queries. Euler histogram (EH)
has been used to generate an efficient synopsis (i.e., summary
of the data) for such extended objects, which can be used
to answer selectivity queries in constant time. For example,
AQWA [5] proposes a technique which estimates the number
of the records which intersect a given spatial range query but it
is only accurate when the query boundary is perfectly aligned
to the histogram cells.

This paper builds on Euler histogram to provide a more
accurate estimate for the spatial query by carefully considering
partially covered histogram cells, and excluding the unwanted
regions. The proposed solution modifies the traditional Euler
histogram in two ways. First, during the offline histogram
construction phase, we collects two additional aggregate num-
bers, average width and height for all the records in the input.
Second, in the online query answering phase, we modify the
equations of the Euler histogram to take into account partially
overlapping cells with the help of the average record width and
height. Similar to the original Euler histogram, the proposed
formulas can be computed in constant time regardless of the
size of the query range, and provide a much higher accuracy.

We run extensive experiments on real as well as synthetic
datasets for a wide range of selectivity ratios, and compare
the accuracy and query response time against well-known
selectivity estimation techniques that use samples and his-
tograms [5], [13]. The experimental results show that the
proposed technique, Euler++, outperforms the existing ones,
especially, when the input records have large extents.

The rest of the paper is organized as follow: Section II
discusses the offline histogram construction phase, whereas the
online selectivity estimation phase is described in Section III.
The experimental evaluation is presented in Section IV, and
Section V concludes the paper.

II. HISTOGRAM CONSTRUCTION

The proposed histogram is constructed in an offline phase
that runs in two steps. The first step counts the number of
records in each grid cell. The second step computes a two-
dimensional prefix sum that allows the selectivity estimation
query in constant time.

A. Euler Histogram

a) Background on Euler Histogram: Traditional synopsis
techniques, such as sampling, and regular histograms convert
objects with extents, e.g., rectangles, to a point by comput-
ing its centroid. Therefore, they cannot accurately answer
the selectivity estimation query. Since rectangles can overlap
multiple cells, counting them in one cell only or counting them
in all overlapping cells results in underestimated or overesti-
mated numbers, respectively. Euler histogram (Figure 1) keeps978-1-7281-0858-2/19/$31.00 ©2019 IEEE



(a) Input dataset

35     35

35     35

314 310

314 310

784 760

784 760

176 133

176 133

243 243

231 231

481 463

464 447

889 849

845 806

423 402

402 383

c1                c2

c3                c4

(b) Euler Histogram Synopsis

Fig. 1: A Spatial dataset and its Euler Histogram Synopsis.

four counters, called C1, C2, C3, and C4 for each cell. C1

represents the number of records in the dataset that partially
or fully overlaps a cell. C2 is the number of records which
have their left edge intersecting with the cell. C3 maintains the
number of records which have their top edge intersecting with
the cell. C4 keeps track of the number of records which have
their top-left corner inside the cell. Figure 2 presents how each
record updates the Euler histogram, and Figure 1b shows the
computed Euler histogram for the input dataset in Figure 1a.

b) Efficient Construction of Euler Histogram: The input
is the big spatial dataset, and number of cells, d, in the
histogram. The histogram is represented by four 2d arrays.
Assuming, square-shaped cells, each cell has an area of
Area(I)/d and a side length of w =

√
Area(I)/d where

Area(I) is the area of the Minimum Bounding Rectangle
(MBR) of the input data. This results in a grid size of
C = bWidth(I)/wc columns and R = bHeight(I)/wc
rows. To compute the histogram, we scan the whole input in
parallel, and for every record, find the top-left and bottom-right
overlapping cells, and increment C1 by 1 for all cell(s) from
top-left through bottom-right cell(s), C2 for left edge cell(s),
C3 for top edge cell(s), and C4 for only top-left corner cell
(Figure 2). Moreover, width and height of each record are also
accumulated to compute the averages.

B. Prefix-Sum Technique

The prefix-sum technique [14] has been used to provide
selectivity estimations based on the histograms in constant
time. It aggregates the horizontal, and then vertical sum over
the histogram. To answer a selectivity query, which has the
top-left and bottom-right cells at (i1, j1) and (i2, j2) indices
of the histogram respectively, the answer can be evaluated by
adding the frequencies of (i1−1, j1−1) and (i2, j2) and sub-
tracting the (i2, j1−1) and (i1−1, j2) indices. This technique
is extended in [5] to work with the Euler histogram. For
C2 and C3, horizontal prefix-sums for each row and vertical
prefix-sums for each column are maintained respectively. For
C4, the values are aggregated horizontally and then vertically.
Then, our proposed technique, Euler++, can be used to provide
estimates for spatial range queries.

III. SELECTIVITY ESTIMATION USING EULER++

AQWA [5] always expands the query rectangle to align
with grid boundaries which might result in an over-estimation.
Moreover, taking a fraction of the cell, proportional to the
area covered by the query, cannot apply here because the
four counters have four different meanings and the data
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Fig. 2: How four counters are updated for EH.
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Fig. 3: Selectivity estimation using Euler++.

synopsis contains rectangles, not points. Therefore, the next
part provides deeper analysis and proposes a novel technique
for accurate selectivity estimation on Euler histogram which
is shown in the experiments section to be superior to other
types of samples/histograms.

To compute the value of partially covered cells accurately,
we need to use the values of C1, C2, C3, and C4 counters
partially for partially covered cells, as shown in Figure 3. To
simplify our analysis, we assume square cells of side length
w and that all data records are also squares of side length r
with uniformly distributed centers. The analysis can be easily
extended to records of arbitrary rectangular cells and data
records. The overlap between the query rectangle Q and a
cell is denoted Q′. The width and height of Q′ are denoted
w′1 and w′2, respectively. In the analysis below, please refer to
the illustration in Figure 3.
Case R1 (top-left corner): In this case, the counter C1 is
used which represents all data objects that overlap the cell.
This means that the centers of the data records are evenly
distributed in a buffer of size r/2 around the cell (denoted
with a gray square). Out of these data records, we only want
to count the records that overlap the portion of the cell that
overlaps the query Q′ (denoted with a solid black rectangle).
The centers of the records that overlap the query rectangle
are evenly distributed in a buffer of size r/2 around the black
rectangle. To compute the estimated number of records that
overlap Q′, we define two random events, A1 and B1. A1 is the



Name Size Records Description

edges 23 GB 70 million Polygons
all-objects 92 GB 263 million Mixed
synthetic 51 GB 250 million Rectangles

TABLE I: Datasets

event of a record overlapping Q′. B1 is the event of a record
overlapping the cell. The conditional probability Pr{A1|B1}
is equal to the cross-hatched area divided by the gray area as
shown below.

Pr(A1|B1) =
(w′1 + r) · (w′2 + r)

(w + r)2
(1)

Case R2 (top edge): In this case, C2 represents the number
of records that have a left edge in the cell. Since the records
are all squares with a side-length of r, their centers are evenly
distributed in the gray area. Out of these records, we only
want to compute the records that have left edge in Q′, the
cross-hatched area. We define the random events A2 and B2

as the event of a record having the left edge in Q′ and the
event of a record with a left edge in the cell, respectively. The
conditional probability is defined below.

Pr(A2|B2) =
w′1 × (w′2 + r)

w × (w + r)
(2)

Case R3 (left edge): In this case, the counter C3 represents
the records that have a top edge in the cell. Their centers are
evenly distributed in the gray area. Out of these, the records
that have top-edge in the Q′ have centers in the hatched area.
The conditional probability for this case is defined as:

Pr(A3|B3) =
w′2 × (w′1 + r)

w × (w + r)
(3)

Case R4 (other partial cells): In this case, the counter C4

represents the records that have a top-left corner in the cell.
Their centers are evenly distributed in the gray area. Out of
these, the records that have the top-left corner in the Q′ have
centers in the hatched area. The conditional probability for
this case is defined as:

Pr(A4|B4) =
w′1 × w′2

w2
(4)

Case R5 (fully contained cells): Since these cells are fully
contained, we add up their C4 counters without any partial
computations, i.e., the probability is 1.

The computed conditional probability is multiplied by the
corresponding counter C1, . . . , C4 to compute the estimated
number of records. In practice, records might not consist of
equi-sized squares. Therefore, as explained in Section II-A, the
synopsis step is extended to compute the average side width
and length of all objects. The computation of the averages can
be easily piggybacked on the synopsis step using counters or
accumulators (available in Hadoop and Spark) which add no
overhead. The computed averages are attached to the synopsis
to improve the accuracy for partially overlapping queries.
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Fig. 4: Synopsis generation time.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Experiments for offline phase are run using 12-node cluster
of Apache Spark with 12 cores, 64 GB RAM, and 10 TB
disk storage. The selectivity queries are executed on a machine
with 16 cores, 128 GB RAM, and 10 TB HDD. While any big
data system can be used to implement this technique, we use
Apache Spark to exploit its in-memory features, and available
implementations, where possible, to make the experiments
more transparent and trustworthy.

a) Datasets: We use both real [8] and synthetic datasets
(Table I). The MBR of the synthetic dataset is x1 =
−180, y1 = −90, x2 = 180, y2 = 90. In this MBR, uniformly
random points are generated to be used as the center of the
rectangles of width and height of ≈ 2, the rectangles close to
the MBR boundaries can have width or height < 2 to keep
the centers uniformly distributed and within the MBR.

b) Baselines: We compare our proposed technique,
Euler++, against three well-known selectivity estimation
techniques based on, stratified sampling (SS), non-uniform
histogram (NH), and Euler histogram-based technique
(AQWA) [5]. Following the benchmark in [13], we compare
these techniques while varying the memory budget, B, which
represents the amount of memory allotted for the synopsis,
e.g., sample or histogram. We also run selectivity estimation
queries for different selectivity ratios, i.e., ratio between the
areas of the query and the input dataset.

B. Synopses Performance

For offline phase, Euler++ has comparable or better running
time for edges (Figure 4a), and all-objects datasets.
Whereas it is significantly slower than SS and NH for the
synthetic dataset when B > 10MB, (Figure 4b), as
it contains records with relatively large extents, which can
overlap many grid cells. As the memory budget increases, we
have smaller grid cells, which leads to more overlapped cells,
thus resulting in more updates to the histogram computation
of the four counters.

The running time of the AQWA and Euler++ is affected
by large extent records, when B is also big. It should not be
critical, as the this step is performed only once for a dataset,
and all the future selectivity queries are answered based on
the synopsis only.
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C. Selectivity Estimation Performance

To prepare the query workload, we pick 1, 000 random
points from the input dataset and use these as query centers.
The queries are rectangles with an area of 10−4, 10−3, 10−2,
and 10−1 of the area of the MBR of the input dataset.

1) Quality Measure: We use average absolute-relative-
accuracy as the quality measure, which is on-the-average how
close is the estimate to the ground truth for all the queries.
We also use full dataset, which always computes exact answer
by scanning the whole input dataset in parallel, and filtering
all the intersecting records (we consider it as ground truth)
for the given query. For a query q, if the ground truth is
tq and the estimated value is eq , we compute the accuracy
of q as max{0, 1 − |tq − eq|/tq}. This gives a range of
[0, 1] for the accuracy. The average accuracy of all the 1, 000
queries for each selectivity ratio is used as the accuracy for
the corresponding technique.

Figures 5, 6, and 7 present the accuracy of our pro-
posed selectivity estimation technique, Euler++, compared
against other sampling, and histogram-based techniques on
the synthetic, all-objects, and edges datasets re-
spectively for different selectivity ratios ranging from 10−4

to 10−1, and memory budgets varying from 8MB to 80MB.
Euler++ is consistently more accurate or very close to all other
techniques. In particular, with the synthetic dataset, it is
much better than other techniques as it handles the partially
covered cell accurately, whereas AQWA [5] over-counts by
expanding the query region to the histogram cell boundaries.
The Euler++ has superior accuracy for very small to big
selectivity query ranges, and for a wide range of memory
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budgets on real all-objects dataset (Figure 6), which has
a wide range of objects. Similarly, in the real edges dataset,
only a small fraction of the records are large, yet Euler++ has
consistently better or comparable accuracy.

2) Performance Measure: To measure the performance, we
use the average time to answer the estimation query (Figure 8).
The histogram-based techniques are clear winners as they can
answer any query in constant time, ascribed to the prefix-sum
technique. Although we can get the exact answer using the full
dataset in parallel by filtering the records in the input dataset,
yet it takes significantly more time, e.g., 55 seconds to answer
a single selectivity query for synthetic dataset, as it has
to scan the whole dataset for every query.

V. CONCLUSION AND FUTURE WORK

We proposed a selectivity estimation technique, Euler++,
which carefully handles the partially covered histogram cells,
thus leads to better accuracy for objects with extents in
constant time. The experiments on real and synthetic datasets
show that our proposed method outperforms all other baseline
algorithms in terms of accuracy for a wide range of exper-
iments, and can answer the selectivity estimation queries in
O(1). In future we plan to provide error bounds and deep
theoretical analysis for this work.
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