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ABSTRACT
Identifying user intents from natural language utterances is a cru-

cial step in conversational systems that has been extensively studied

as a supervised classification problem. However, in practice, new

intents emerge after deploying an intent detection model. Thus,

these models should seamlessly adapt and classify utterances with

both seen and unseen intents – unseen intents emerge after de-

ployment and they do not have training data. The few existing

models that target this setting rely heavily on the training data of

seen intents and consequently overfit to these intents, resulting

in a bias to misclassify utterances with unseen intents into seen

ones. We propose RIDE: an intent detection model that leverages

commonsense knowledge in an unsupervised fashion to overcome

the issue of training data scarcity. RIDE computes robust and gen-

eralizable relationship meta-features that capture deep semantic

relationships between utterances and intent labels; these features

are computed by considering how the concepts in an utterance

are linked to those in an intent label via commonsense knowledge.

Our extensive experimental analysis on three widely-used intent

detection benchmarks shows that relationship meta-features signif-

icantly improve the detection of both seen and unseen intents and

that RIDE outperforms the state-of-the-art models.
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1 INTRODUCTION
Virtual assistants such as Amazon Alexa and Google Assistant al-

low users to perform a variety of tasks (e.g., Alexa skills) through a

natural language interface. For example, a user can set an alarm by

simply issuing the utterance “Wake me up tomorrow at 10 AM” to a

virtual assistant, and the assistant is expected to understand that the

user’s intent (i.e., “AddAlarm”) is to invoke the alarm module, then

set the requested alarm accordingly. Intent detection is typically the

first step towards performing any task in conversational systems
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Figure 1: (a) Link Predictor learns from KG (solid lines) to
predict missing edges (dashed lines), (b) Example utterance,
intent, and computation of relationship meta-features that
facilitate GZS intent detection.

and it is a challenging problem due to the vast diversity in user utter-

ances. The challenge is further exacerbated in the more practically

relevant setting where intents are added over time. This setting is

an instance of the generalized zero-shot classification problem [9]:

labeled training utterances are available only for seen intents but

are unavailable for unseen ones, and at inference time, models do

not have prior knowledge on whether the utterances they receive

imply seen or unseen intents. This setting is the focus of this paper.

Little research has been conducted on building generalized zero-

shot (GZS) models for intent detection, with little success. Earlier

works [4, 16, 26] used zero-shot (ZS) learning to train an intent

classification model that could classify utterances from unseen

intent classes through transferring knowledge from seen classes.

The test set in the standard ZS setting is not representative of

the real world, as it exclusively includes samples from the unseen

classes (as opposed to having samples from both seen and unseen

classes as in the GZS setting) at inference time. ZS methods perform

poorly in the GZS setting [3, 25], which is primarily caused by

their strong bias towards seen classes; ZS intent detection models

misclassify almost all test samples from unseen classes into seen

ones [20, 32, 33].

To mitigate the issue of training data scarcity for unseen intents

and ZS models’ inability to effectively handle the GZS setting, we

propose incorporating commonsense knowledge into GZS intent

detection model. We argue that such knowledge, if incorporated

properly, helps overcome training data scarcity and allows detect-

ing intents regardless of whether they are seen or not, given that

commonsense knowledge is uniform across intents. We leverage

ConceptNet [27] — a rich and widely-used commonsense knowl-

edge graph (KG) that captures a large subset of knowledge in a

semi-structured format (i.e., facts in the form ⟨head, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, tail⟩
such as ⟨apple, 𝐼𝑠𝐴, fruit⟩). Given that ConceptNet in incomplete,

similarly to other KGs, we pre-train a link predictor [14] that learns
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from an existing KG to infer novel edges (i.e., relationships) among

nodes (i.e., head/tail) to overcome the missing information chal-

lenge. Figure 1 (a) presents a toy commonsense KG where a link

predictor can learn from existing facts such as ⟨feeling hungry,
𝐶𝑎𝑢𝑠𝑒𝑠𝐷𝑒𝑠𝑖𝑟𝑒, eat⟩ and ⟨restaurant, 𝑈 𝑠𝑒𝑑𝐹𝑜𝑟, eat⟩, and infer

missing facts such as ⟨feeling hungry, 𝐼𝑠𝑅𝑒𝑙𝑎𝑡𝑒𝑑, restaurant⟩.
We infuse the knowledge from our link predictor into our model

by extracting relationship meta-features. These features quantify
the level of relevance between an utterance and an intent in the

form of relationship weights, where each weight describes the

level of relatedness between the phrases in an utterance and an

intent label based on a certain relationship type. Figure 1 (b) shows

an example utterance, an intent label, and an inference about the

relationships between the phrases in an utterance and an intent

label in the from of a relationship meta-features. Relationship meta-

features augment our embeddings using commonsense knowledge,

which significantly reduces our model’s reliance on the scarcely

available seen intents training data. Furthermore, these features

reduce our model’s bias towards seen intents given that they are

similarly computed for both seen and unseen intents; i.e., they are

domain-oblivious.

Our model, RIDE1, combines relationship meta-features with

contextual word embeddings [22], and feeds the combined feature

vectors into a trainable prediction function. RIDE is able to ac-

curately detect both seen and unseen intents in utterances. Our

extensive experimental analysis using the three widely used bench-

marks, SNIPS [6], SGD [23], and MultiWOZ [37] show that our

model outperforms the state-of-the-art (SOTA) model in F1 scores

on unseen intents in the GZS setting by at least 25.66%. The source

code of RIDE is available
2
.

A secondary contribution of this paper is that we managed to

further improve the performance of GZS intent detection by em-

ploying Positive-Unlabeled (PU) learning [8] to predict if a new

utterance belongs to a seen or unseen intent. PU learning assists

intent detection models by mitigating their bias towards classifying

most utterances into seen intents. A PU classifier is able to per-

form binary classification after being trained using only positive

and unlabeled examples. We found out that the PU classifier also

improves the performance of existing intent detection works. Our

model, however, outperforms existing ones regardless of the PU

classifier integration.

2 PRELIMINARIES
GZS Intent Detection. Let S = {I1, · · · ,Ik } be a set of seen in-

tents and U = {I𝑘+1, · · · ,I𝑛} be a set of unseen intents where

S ∩ U = ∅. Let X = {X1,X2, ...,Xm } be a set of labeled training

utterances where each training utterance X𝑖 ∈ X is described with

a tuple (Xi ,Ij ) such that Ij ∈ S. An intent Ij is comprised of an

Action and anObject and takes the form “ActionObject”
3
(e.g., “Find-

Restaurant”); an Action describes a user’s request or activity and an

Object describes the entity pointed to by an Action [5, 28, 29]. Given

a test utterance X′
𝑖
, the problem is to predict a label I ′j ∈ S ∪ U.

Link Prediction in Knowledge Graphs. We pre-train a SOTA

link prediction model (LP) [14] on ConceptNet [27] to score novel

facts that are not necessarily present in the knowledge graph. Given

1RIDE: Relationship Meta-features Assisted Intent DEtection.

2
https://github.com/anonymous-sigir-researcher/GZS-IntentDetection

3
If intents are described using a complex textual description, Actions and Objects can

be extracted using existing NLP tools such as dependency parsers.

Algorithm 1: RMG

Input: R = {r1, · · · , rt }: relations in KG

G𝑖 = {𝑔1, · · · , 𝑔q }: utterance n-grams

I𝑗 = {A, O}: intent’s Action and Object

Output: erelationship : X𝑖 -I𝑗 relationship meta-features

Let e
−→A
Xi

= RM (A, Gi ,→) // Action to utterance

Let e
−→
O
Xi

= RM (O, Gi ,→) // Object to utterance

Let e
←−A
Xi

= RM (A, Gi ,←) // utterance to Action

Let e
←−
O
Xi

= RM (O, Gi ,←) // utterance to Object

Let erelationship = [e
−→A
Xi
, e
−→
O
Xi
, e
←−A
Xi
, e
←−
O
Xi
]

return erelationship

Function RM(𝑐𝑜𝑛𝑐𝑒𝑝𝑡 , 𝑝ℎ𝑟𝑎𝑠𝑒𝑠 , 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛):
Let e = []

foreach 𝑟 ∈ R do
if 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =→ then

Let 𝑝 = Max (𝐿𝑃 (𝑐𝑜𝑛𝑐𝑒𝑝𝑡, 𝑟, 𝑔)) for 𝑔 ∈ 𝑝ℎ𝑟𝑎𝑠𝑒𝑠
if 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =← then

Let 𝑝 = Max (𝐿𝑃 (𝑔, 𝑟, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 )) for 𝑔 ∈ 𝑝ℎ𝑟𝑎𝑠𝑒𝑠
e.append(p)

return e

a triple (i.e., fact) in the form ⟨head, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, tail⟩, a link predic-

tion model scores the triple with a value between 0 and 1, which

quantifies the level of validity of the given triple.

Positive-Unlabeled Learning Positive-Unlabeled (PU) classifiers

learn a standard binary classifier in the unconventional setting

where labeled negative training examples are unavailable. The PU

classifier [8] learns a probabilistic function 𝑓 (Xi ) that estimates

𝑃 (Ij ∈ S | Xi ) as closely as possible. We train a PU classifier

using our training set (utterances with only seen intents labeled as

positive) and validation set (utterances with both seen and unseen

intents as unlabeled). We use 512-dimensions sentence embedding

as features when using the PU classifier, generated using a pre-

trained universal sentence encoder [2].

3 OUR APPROACH
Given an input utterance X𝑖 , our model first invokes the PU classi-

fier (if it is available) to predict whether X𝑖 ’s intent belongs to set

S or U. Then, relationship meta-features, utterance embedding,

and intent embedding are concatenated and fed into a trainable

prediction function that predicts the probability 𝑃 (I𝑗 |X𝑖 ) ∈ [0, 1].
Finally, our model outputs the intent with the highest compatibility

probability, i.e., argmaxI𝑗 𝑃 (I𝑗 |X𝑖 ).
ComputingRelationshipMeta-features.Relationshipmeta-features

generator (RMG) extracts features by utilizing the “ActionObject”

structure of intent labels and commonsense knowledge graphs.

RMG takes the following inputs: a set of relations in a knowledge

graph (35 in the case of ConceptNet) R = {r1, r2, .., rt }; the set of
n-grams Gi = {𝑔1, 𝑔2, .., 𝑔q } that correspond to the input utterance

Xi , where |G| = q ; and an intent label Ij = {A,O}, where A and

O are the Action and Object components of the intent, respectively.

RMG computes a relationship meta-features vector in four steps,

where each step results in a vector of size |R |. The smaller vec-

tors are: e
−→A
Xi
, e
−→
O
Xi
, e
←−A
Xi
, and e

←−
O
Xi
, where e

−→A
Xi

captures the weights

https://github.com/anonymous-sigir-researcher/GZS-IntentDetection
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Table 1: Dataset statistics.

Dataset # of Samples Vocab. Size Avg. Length # of Intents
SNIPS 14.2K 10.8K 9.05 7

SGD 57.2K 8.8K 10.62 46

MultiWOZ 30.0K 9.7K 11.07 11

of Action to utterance relationships and e
−→
O
Xi

captures the weights

of Object to utterance relationships. The remaining two vectors

capture relationship weights in the other direction; i.e., utterance

to Action/Object, respectively. Capturing bi-directional relation-

ships is important because a relationship in one direction does not

necessarily imply one in the other direction. The final output of

RMG is the concatenation of the four aforementioned vectors.

RMG computes e
−→A
Xi

by considering the strength of each rela-

tion in R between A and each n-gram in Gi . That is, e
−→A
Xi

has |R |
cells, where each cell corresponds to a relation 𝑟 ∈ R. Each cell

is computed by taking𝑚𝑎𝑥 (𝐿𝑃 (A, 𝑟 , 𝑔)) over all 𝑔 ∈ Gi . 𝐿𝑃 (head,
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, tail) outputs the probability that the fact represented by

the triple ⟨head, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, tail⟩ exists. The vector e
−→
O
Xi

is computed

similarly, but with passing O instead of A when invoking the link

predictor. The vectors e
←−A
Xi

and e
←−
O
Xi

are computed similarly, but with

swapping the head and tail when invoking the link predictor. Al-

gorithm 1 outlines the previous process. Finally, the meta-features

are passed through a linear layer with sigmoid activation for nor-

malization.

Utterance and Intent Encoders.We use bi-directional LSTM to

produce a d -dimensional representation of the given utterance

Xi = {w1,w2, · · · ,wu } with u words, where contextual embeddings

from a pre-trained ELMo model and parts of speech (POS) tags are

employed to embed each word. The concatenation of the last hidden

states is used as utterance embedding eutterance . We encode intent

labels similarly to produce an intent embedding eintent ∈ Rd
.

Training. The training examples are of the form ((Xi ,Ij ),Y),
whereY is a binary label representing whether the utterance-intent

pair (Xi ,Ij ) are compatible or not. We prepare our training data by

assigning a label of 1 to the available utterance-intent pairs (where

intents are seen ones); these constitute positive training examples.

We create a negative training example for each positive one by

corrupting the example’s intent by modifying their Action, Object,

or both. We train the model by minimizing the cross-entropy loss

over all the training examples.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets.We used three widely used intent detection benchmarks:

SNIPS, SGD, and MultiWOZ; Table 1 summarizes the statistics

of these datasets. SNIPS [6] is a crowd-sourced single-turn NLU

benchmark with 7 intents across different domains. SGD [23] is

a comprehensive and challenging dataset with 46 intents across

16 domains. MultiWOZ [37] is a well-known dataset which has

utterances that span 11 intents

Evaluation Methodology. We use F1 scores to evaluate the com-

peting methods and report the per class averages weighted by the

respective class support.

Dataset splits. All models are trained on a subset of utterances

implying seen intents. At inference time, test utterances are drawn

from a set that contains utterances implying a mix of seen and

unseen intents (disjoint set from the training set). We decided the

train/test splits for each dataset as follows: For SNIPS, we first

randomly selected 5 out of 7 intents and designated them as seen

intents. We then selected 70% of the utterances that imply any of

the 5 seen intents for training. The test set consists of the remaining

30% utterances in addition to all utterances that imply one of the

2 unseen intents. For SGD, we used the standard splits proposed

by the dataset authors. Specifically, the test set includes utterances

that imply 8 unseen intents and 26 seen intents. For MultiWOZ, we

used 70% of the utterance that imply 8 (out of 11) randomly selected

intents for training and the rest of the utterances for testing; ; we

report average results over 10 runs for all the datasets.

Competing Methods. We compare our model RIDE against the

following SOTA models and several strong baselines:

SEG [35]: semantic-enhanced gaussian mixture model coupled with

a density-based outlier detection algorithm LOF.

ReCapsNet-ZS [19]: employs a capsule neural network (CapsNet)

and a dimensional attention module to learn generalizable trans-

formational metrices from seen intents.

IntentCapsNet [31]: utilizes CapsNet and routing-by-agreement to

adapt to unseen intents. This model was originally proposed for

detecting intents in the standard ZS setting, so we extended it to

support the GZS setting with the help of its authors.

Other Baseline Models. (i) Zero-shot DDN [16]: achieves zero-shot

capabilities by projecting utterances and intent labels into the same

high dimensional embedding space. (ii) CDSSM [4]: utilizes a con-

volutional deep structured semantic model to generate embeddings

for unseen intents. (iii) CMT [26]: employs non-linearity in the

compatibility function between utterances and intents to find the

most compatible unseen intents. (iv) DeViSE [11]: was originally

proposed for zero-shot image classification that learns a linear com-

patibility function. (v) BERT Sentence Pair Classifier (BERT-SPC):

BERT is pre-trained on the sentence-pair classification task and fine-

tuned on the utterances from the seen intents. Note that baseline
ZS models have been extended to support GZS setting.
Implementation Details. We trained out link predictor on the

lemmatized version of ConceptNet KG (1 million nodes, 2.7 mil-

lion edges, and 35 relation types). The link predictor has two 200-

dimensional embedding layers and a negative sampling ratio of 10;

it is trained for 1, 000 epochs using Adam optimizer with a learning

rate of 0.05, L2 regularization value of 0.1, and batch size of 4800.

Our relationship meta-features generator takes in an utterance’s

n-grams with n ≤ 4 and an intent label, and uses the pre-trained

link predictor to produce relationship meta-features with 140 di-

mensions. Our utterance and intent encoders use pre-trained ELMo

contextual word embeddings with 1024 dimension and POS tags

embeddings with 300 dimension, and two-layer bidirectional LSTM

with 300-dimensions. Our prediction function has two dense layers

with relu and softmax activation. Our model is trained for up to

200 epochs with early stopping using Adam optimizer and a cross

entropy loss with initial learning rate of 0.001 and ReduceLROn-

Plateau scheduler with 20 patience epochs. It uses a dropout rate

of 0.3 and a batch size of 32. A negative sampling ratio of up to 6 is
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Table 2: Main results: F1 scores for competing models.

Method SNIPS SGD MultiWOZ
Unseen Seen Unseen Seen Unseen Seen

DeViSE 0.0439 0.6521 0.0177 0.5451 0.0270 0.5770

CMT 0.0910 0.6639 0.0621 0.5803 0.0679 0.6216

CDSSM 0.0484 0.7028 0.0284 0.6379 0.0244 0.6515

Zero-shot DNN 0.1273 0.6687 0.1168 0.6098 0.1149 0.6012

BERT-SPC 0.2761 0.7152 0.1872 0.6401 0.1932 0.6413

IntentCapsNet 0.0000 0.6532 0.0000 0.5508 0.0000 0.6038

ReCapsNet 0.1601 0.6783 0.1331 0.5751 0.1467 0.6170

SEG 0.6991 0.8651 0.4032 0.6356 0.4143 0.6456

RIDE w/o PU 0.9103 0.8799 0.4634 0.8295 0.4645 0.8816

RIDE /w PU 0.9254 0.9080 0.5734 0.8298 0.5206 0.8847
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(b) SGD dataset
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(c) MultiWOZ dataset

Figure 2: F1 scores for unseen intents for the competing
models after integrating a PU classifier.

used. We use the same embedding and training mechanism for all

competing models.

4.2 Results
Main Results. Table 2 shows F1 scores averaged over 10 runs for

all competing models. For both seen and unseen intents, our model

RIDE outperforms all other competing models with a large margin.

Specifically, RIDE achieves 32.37%, 42.21%, and 25.66% better F1

scores than the SOTA model SEG on SNIPS, SGD, and MultiWOZ

for unseen intents, respectively. Moreover, our model consistently

achieves the highest F1 score on seen intents, which confirms its

generalizability. We highlight that RIDE outperforms the SOTA

model SEG regardless of whether a PU classifier is incorporated or

not. For SNIPS, the role of the PU classifier is negligible as it causes

only a slight improvement in F1 score. For SGD and MultiWOZ,

which are more challenging datasets, the PU classifier causes sig-

nificant improvements in F1 scores. Specifically, it results in 23.74%

and 12.08% improvement for SGD and MultiWOZ, respectively, on

unseen intents.

Effect of PU Classifier on Other Models.We observed that one

of the main sources of error for most models in the GZS setting

is their tendency to misclassify utterances with unseen intents

into seen ones due to overfitting to seen intents. We investigated

whether existing models can be adapted to accurately classify ut-

terances with unseen intents by partially eliminating their bias

towards seen intents. Figure 2 presents F1 scores of all models with

and without PU classifier. A PU classifier significantly improves the

results of all the competing models. For instance, the IntentCapsNet

model with a PU classifier achieves an F1 score of 74% for unseen

intents on SNIPS dataset compared to an F1 score of less than 0.01%

without the PU classifier. Note that the PU classifier has an accuracy

(i.e., correctly predicting whether the utterance implies a seen or

an unseen intent) of 93.69, 86.13, and 87.32 for SNIPS, SGD, and

MultiWOZ datasets, respectively. Interestingly, our model RIDE

Table 3: Ablation study: F1 scores for unseen intents.

Configuration SNIPS SGD MultiWOZ
UI-Embed w/o PU 0.2367 0.1578 0.1723

Rel-M w/o PU 0.7103 0.3593 0.3321

RIDE w/o PU 0.9103 0.4634 0.4645

UI-Embed /w PU 0.7245 0.4202 0.4124

Rel-M /w PU 0.8463 0.5167 0.4781

RIDE /w PU 0.9254 0.5734 0.5206

without PU classifier outperforms all the competing models even

when a PU classifier is incorporated into them, which highlights

that the PU classifier is not the component that does the heavy lift-

ing in our model. We did not incorporate the PU classifier into SEG

model because it already incorporates an equivalent mechanism to

distinguish seen intents from unseen ones (i.e., outlier detection).

Ablation Study. To quantify the effectiveness of each component

in our model, we present the results of our ablation study in Table 3.

Utilizing utterance and intent embeddings only (i.e., UI-Embed) re-

sults in very low F1 score, i.e., 23.67% on SNIPS dataset. Employing

relationship meta-features only (i.e., Rel-M) results in significantly

better results: an F1 score of 71.03% on SNIPS dataset. When ut-

terance and intent embeddings are used in conjunction with rela-

tionship meta-features (i.e., RIDE w/o PU), it achieves a better F1

score compared to the Rel-M or UI-Embed configurations. A similar

trend can be observed for the other datasets as well. Finally, when

our entire model is deployed (i.e., including utterance and intent

embeddings, relationship meta-features, and the PU classifier, i.e.,

RIDE /w PU), it achieves the best results on all datasets.

5 RELATEDWORK
Supervised intent detection works [15, 18, 24, 34, 38] assume the

availability of a large amount of labeled training data for all intents

to learn discriminative features. Whereas standard zero-shot intent

detection models [1, 7, 10, 12, 16, 30, 36] assume that all utterances

faced at inference time imply unseen intents only. Extending such

works to handle the generalized zero-shot intent detection setting

(i.e., removing the aforementioned assumptions) is nontrivial. Our

model is specifically designed for the generalized zero-shot intent

detection setting. The authors in [19] attempted to accommodate

GZS setting by adding a dimensional attention module to a cap-

sule network that learns generalizable transformation matrices

from seen intents. Recently, the authors in [35] proposed using a

density-based outlier detection algorithm LOF [1] and semantic-

enhanced gaussian mixture model with large margin loss to learn

class-concentrated embeddings to detect unseen intents. In contrast,

we leverage a rich commonsense knowledge graph to capture deep

semantic and discriminative relationships between utterances and

intents, which significantly reduces the bias towards classifying

unseen intents into seen ones. In a related, but orthogonal, line of

research, the authors in [13, 17, 21] addressed the problem of intent

detection in the context of dialog state tracking where an annotated

dialog state and conversation history are available in addition to

an input utterance. In contrast, this work and the SOTA models

we compare against in our experiments only consider an utterance

without having access to any dialog state elements.
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6 CONCLUSION
We have presented an accurate generalized zero-shot intent detec-

tion model. Our extensive experimental analysis on three intent

detection benchmarks show that our model achieves 25.66% to

42.21% better F1 score than the SOTA model for unseen intents.

The main novelty of our model is its utilization of relationship

meta-features and limited reliance on training data. Furthermore,

our idea of integrating Positive-Unlabeled learning in GZS intent

detection models further improves our models’ performance, and

significantly improves the accuracy of existing models as well.
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