
App-Aware Response Synthesis for User Reviews
Umar Farooq*, A.B. Siddique*, Fuad Jamour, Zhijia Zhao, Vagelis Hristidis

University of California, Riverside
ufaro001@ucr.edu, msidd005@ucr.edu, fuadj@ucr.edu, zhijia@cs.ucr.edu, vagelis@cs.ucr.edu

Abstract—Hundreds of thousands of mobile app users post
their reviews online. Responding to user reviews promptly
and satisfactorily improves application ratings, which is key to
application popularity and success. The proliferation of such
reviews makes it virtually impossible for developers to keep
up with responding manually. To address this challenge, recent
work has shown the possibility of automatic response generation
by training a seq2seq model with a large collection of review-
response pairs. However, because the training review-response
pairs are aggregated from many different apps, it remains
challenging for such models to generate app-specific responses,
which, on the other hand, are often desirable as apps have
different features and concerns. Solving the challenge by simply
building an app-specific generative model per app (i.e., training
the model with review-response pairs of a single app) may be
insufficient because individual apps have limited review-response
pairs, and such pairs typically lack the relevant information
needed to respond to a new review.

To enable app-specific response generation, this work proposes
AARSYNTH: an app-aware response synthesis system. The key
idea behind AARSYNTH is to augment the seq2seq model with
information specific to a given app. Given a new user review,
AARSYNTH first retrieves the top-K most relevant app reviews
and the most relevant snippet from the app description. The
retrieved information and the new user review are then fed
into a fused machine learning model that integrates the seq2seq
model with a machine reading comprehension model. The latter
helps digest the retrieved reviews and app description. Finally,
the fused model generates a response that is customized to the
given app. We evaluated AARSYNTH using a large corpus of
reviews and responses from Google Play. The results show that
AARSYNTH outperforms the state-of-the-art system by 22.2%
on BLEU-4 score. Furthermore, our human study shows that
AARSYNTH produces a statistically significant improvement in
response quality compared to the state-of-the-art system.

Index Terms—App reviews, Natural language generation, Ma-
chine translation.

I. INTRODUCTION

The wide adoption of smartphones has created a large and
growing market for mobile apps. Recent studies [1] predicted
that the number of smartphone users will reach 3.8 billion
worldwide by 2021, projecting a market of trillion dollars
for mobile apps by 2023. These apps are typically distributed
through app stores such as Apple App Store and Google Play.
App stores allow users to give their feedback, ask questions,
and publicly express their levels of satisfaction with an app
through reviews and ratings: positive reviews and ratings are
important factors to acquire and retain users. App developers
can respond to user feedback to maintain and improve their

* Equal contribution.

1. Open the talk you’d like to watch
2. Tap the play arrow
3. Tap the “red keyboard” icon at the bottom

of the video page
4. Choose your language

Response for YouTube AppResponse for TED Talks App

1. Open the talk you’d like to watch
2. Tap the play arrow
3. Tap the “red keyboard” icon at the bottom

of the video page
4. Choose your language

1. Open the talk you’d like to watch
2. Tap the play arrow
3. Tap the “red keyboard” icon at the bottom

of the video page
4. Choose your language

Response for YouTube AppResponse for TED Talks App

1. Tap the video.
2. Tap More icon.
3. To turn on Captions, tap “cc” icon.
4. To turn off Captions, tap “cc” icon again.

Response Synthesis using Existing Work [3]

Response Synthesis using This Work

- Retrieves App-specific information from relevant reviews and app description
- Augments Machine Learning models with App-Specific Information

✘✓

✓ ✓

★★★★★ February 11, 2019

A Google user

Hey how do you put subtitles on videos? I get a hard time understanding English without
subtitles even if I know how to speak it. Thanks! Will give 5 stars if you can help me.

Fig. 1: Example user review and automatic responses: The
response generated by RRGen [3] is suitable for TED Talks but
not for YouTube. By contrast, our system generates responses
specific to the considered app with the help of the most relevant
reviews and the app description.

app reviews and ratings. According to Google Play, responding
to user reviews leads to an increase of 0.7 stars for an app
on average [2]. While developers recognize the importance
of responding to user reviews promptly, the proliferation of
reviews makes it virtually impossible to manually provide
responses to all the reviews.

Given the importance of responding to user reviews and the
impossibility of manually responding to each review, it has
become crucial to automatically synthesize responses. Little
research has been done to build machine learning models
for automatically synthesizing responses to app reviews and
questions. RRGen [3] stands out as the first effort in this
direction, where the authors proposed using an attention-based
sequence-to-sequence (a.k.a. seq2seq) neural model [4]. The
authors trained their model using a dataset of review-response
pairs for a large collection of apps hosted on Google Play.
RRGen generates satisfactory responses to reviews common
among many apps (e.g., “lots of ads”); however, it fails to
synthesize responses specific to an app – see Figure 1 for an
example where RRGen generates the same response for two
different apps (TED Talks and YouTube). In this example,
RRGen was able to generate an appropriate response for TED
Talks but not for YouTube because its training data happened
to have information specific to TED Talks.978-1-7281-6251-5/20/$31.00 ©2020 IEEE

Apps Reviews &
Description
Collection

IR Module

New ReviewApp Name

Relevant Snippets

① Relevant Snippets Retrieval

Snippets Fusion

New Review

Review-aware Snippet Representation

② Fusion of Relevant Snippets
with input review

App-aware Response

③ App-aware Response Generation

App CategoryNew Rating

Encoder

Decoder

Encoder

Fig. 2: Overview of AARSYNTH.

There are two key challenges in generating app-specific
responses effectively. First, there may be a lack of sufficient
review-response pairs for the given app to reliably train a
generative model. Second, appropriate responses may not be
available in any of the existing training pairs. To address the
first challenge, we leverage the review-response pairs from
other apps. For the second challenge, we propose to feed the
generative model with the most relevant snippets extracted
from the app’s description and its existing user reviews –
important sources of information that have been neglected
or under-utilized by prior work. In fact, our analysis of
10 trending apps on Google Play revealed that 50% of the
analyzed apps provide FAQ sections and 32.3% have reviews
with snippets closely relevant to answer app-specific questions
raised in other reviews of the same app.

Figure 2 shows an overview of AARSYNTH. Given a new
user review for an app, our information retrieval (IR) module
first retrieves relevant text snippets from the app’s description
and existing user reviews. Then, the snippets fusion layer
uses these snippets to build a review-aware representation
(i.e., a representation of the snippets that is associated with
the input review) similarly to machine reading comprehension
models [5], [6] (MRC). Finally, the review-aware snippets
representation and the input review representation along with
other app-specific features produced by our encoder are passed
to the decoder to produce an app-specific response.

Note that neither an MRC model nor a seq2seq model
by themselves are sufficient for the above task. On one
hand, an MRC model typically produces a span text – a
substring extracted from a textual document, which is hard to
comprehend as the response to a review. On the other hand,
despite that a seq2seq model can produce free-form text, it can
not use the relevant snippets unless they are transformed into
a representation that is aware of the input review. Our fusion
between the seq2seq and MRC models resolves the limitations
of each model in the context of app response generation.

We evaluated AARSYNTH using a large corpus of reviews,
responses, and app descriptions collected from Google Play.
Our results show that AARSYNTH outperforms the state-
of-the-art system RRGen [3] by 22.2% in BLUE-4 score
– a widely used metric for text generation. Moreover, our
human study using Amazon Mechanical Turk shows that the
responses generated by AARSYNTH better address user con-

cerns, are app-specific, and are more fluent than the responses
generated by RRGen with a statistically significant difference.

In summary, this paper makes the following contributions:
• It proposes a novel neural architecture that fuses seq2seq

and machine reading comprehension models to synthesize
free-form responses specific to an app.

• It releases a large dataset1 that consists of more than
570K review-response pairs and more than 2 million user
reviews for 103 popular applications.

• It conducts extensive experimental analysis using our large
dataset and compares AARSYNTH against the state-of-
the-art systems. The evaluation using automatic metrics
and real-user studies confirms the competitiveness of
AARSYNTH with a statistically significant improvements.

In the following, we first present a brief review on at-
tentional encoder-decoder models and information retrieval
techniques in Section II. Then, we present AARSYNTH in
Section III, followed by our experimental setup (Section IV)
and evaluation (Section V). Finally, we discuss the related
work in Sections VI and conclude this work in Section VII.

II. BACKGROUND

AARSYNTH is built on top of seq2seq neural networks and
state-of-the-art information retrieval techniques. This section
offers a brief introduction to these topics.

A. Attentional Encoder-Decoder Model
The goal of an encoder-decoder model, like seq2seq [4], is

to synthesize a target sequence (e.g., developer response) Y =
(y1, y2, ..., ym) given an input sequence (e.g., user review) X =
(x1, x2, ..., xn), where m and n are target and input sequence
lengths. Figure 3 presents a high level overview of the seq2seq
model that shows the encoder and the decoder parts.

Encoding. The encoder reads an input sequence of length
n , one token at a time until it encounters the end of se-
quence token (i.e., < eos >). It transforms the sequence into
hidden states H = (h1,h2, ...,hn) by applying a Recurrent
Neural Network (RNN), such as Long Short-Term Memory
(LSTM) [7]. Specifically, it transforms input token xi to hidden
state hi = encoder(hi−1, emb(xi)), where encoder(·) is a non-
linear mapping function, emb(xi) is the word embedding of
input token xi , and hi−1 is the previous hidden state.

1Available at https://github.com/AARSynth/Dataset

LSTM LSTM LSTM LSTM LSTM LSTM

can i subtitle <sos>

to subtitles <eos>

Encoder Decoder

h
id

d
e
n

 s
ta

te

LSTM

how …

add

LSTM

…

Fig. 3: Overview of the seq2seq neural model.

LSTM LSTM LSTM LSTM LSTM LSTM

can i subtitle <sos>

LSTM

how …

LSTM

aention
context

Attention Layer

weights
vector

you add subtitles … <eos>

Encoder Decoder

…

…

1 i-1 i m… …

Decoder

time-steps

ai1 ai2 ai3 ain

Fig. 4: Attention-based seq2seq neural model.

Decoding. The decoder is initialized with the encoder’s last
hidden state hn and the start of sequence token (i.e., < sos >),
then it utilizes another RNN to generate the target sequence Ŷ .
The decoder also generates one token at a time, until the end
token (i.e., < eos >) is generated. The generation, at time-step
i , is conditioned on the previously generated words ŷi−1,...,
ŷ1, and the decoder’s current hidden state h′i , according to the
following probability distribution:

P (ŷi |ŷi−1, ..., ŷ1,X) = softmax(decoder(h′i , ŷi−1)),

where decoder(·) is a non-linear mapping function and
softmax(·) converts the given vector into a probability dis-
tribution. The encoder-decoder model is trained jointly by
minimizing the negative log-likelihood loss of the given N
training input-target sequence pairs of the form (X i , Y i):

L(θ) = −min
θ

1
N

N∑
i=1

log pθ(Y i |X i),

where θ is a set of trainable parameters estimated using
optimization algorithms such as stochastic gradient descent.

Attentional Decoding. Attention mechanisms [8] are used
in seq2seq models to pay attention to more relevant input
tokens while decoding. Figure 4 shows the computation of
an attention vector at time-step i . While decoding at time-
step i , the decoder(·) is not only conditioned on the decoder’s
current hidden state h′i and the previous generations yi−1,..., y1,
but also on the attention context vector vi , which is computed
as:

vi =

n∑
k=1

aikhk,

where aik is the attention weight for hidden state hk, capturing
how relevant is encoder’s k-th hidden state for predicting token

ID Documents

1 … use SMS permission …
2 … send SMS to contacts …
3 … upload contacts …
4 … SMS, contacts permission …

[2, 3, 4] ∩ [1, 2, 4] ⇒ [2, 4]

Term Doc. IDs
use 1
sms 1, 2, 4

permission 1, 4
send 2
to 2
contacts 2, 3, 4
upload 3

Answer

Index

Query

Document Collection Inverted Index

Query: [“contacts”, “sms”]

Fig. 5: Overview of IR indexing and searching.

ŷi while considering the decoder’s previous hidden state h′i−1.
The attention weight aik at time-step i can be computed as:

aik =
exp(eik)∑n
j=1 exp(eij)

,

where eik = align(h′i−1,hk) and align(·) is an alignment
model implemented as a Multi-Layer Perception (MLP) unit.
The attentional seq2seq neural network is trained jointly. We
employ the seq2seq framework as a basic building block in
our proposed approach for response synthesis.

B. Relevant Document Retrieval

Given a collection of documents (e.g., app description and
reviews) and a query (e.g., new review), an IR system returns a
subset of documents relevant to the query. Figure 5 illustrates
how an IR system works: the system creates an index for the
given document collection, based on which it finds relevant
document(s) for a given query.

Document Indexing. IR systems create inverted indexes to
facilitate faster document retrieval. An inverted index consists
of a set postings lists; a postings list is a list of individual post-
ings, each of which provides information about occurrences
of a term (i.e., word) in the document collection including
document id and the number of occurrences of the term in each
document that contains the term – term frequency (TF). We
use Apache Lucene [9], which uses SkipList [10] to implement
postings lists for fast retrieval.

Searching and Ranking. IR systems typically use vector
space retrieval with Term Frequency-Inverse Document Fre-
quency (TF-IDF) weighting [11]. TF captures the importance
of a term in a document, and IDF captures the significance of
the term in the whole collection. The BM25 [12] algorithm is
widely used by IR systems to improve search engine relevance.
BM25 scores a document D for input query Q with terms
q1, q2, ..., qn as follows:

score(D,Q) =

n∑
i=1

IDF(qi)·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · |D|avgdl)
,

where f(qi, D) represents the term frequency of qi in the
document D, the document D with length |D|, and avgdl

r
h1
^

vm

x

hu
r

h2

hj

r
h3

r
h1
r

LSTM LSTM

c1 cj…

LSTMg

C
a

te
g

o
ry

E
n

co
d

e
r

Rating
Encoder

LSTM LSTM LSTM

r2 r3 rt

LSTM

r1 …

Snippets Encoder

concatenate

…

Relevance Attention Layer

LSTM LSTM LSTM

x2 x3 xn

LSTM

x1 …

Review Encoder

LSTM LSTM LSTM<sos> LSTM

y1 y2 y3 … ym

Sequence Decoder

h1 h2 h3 hn
x x x

h1 h2 h3 ht
r r r r

…

v1 v2 v3 vm
x x x x

…

v1 v2 v3
r r r r…

c

h1
g

^ ^ ^ ^

……

Review Attention Layer
Relevant Snippets Fusion Layer

huh2 h3
^^^

…
r r r

Fig. 6: Architecture of AARSYNTH’s neural model.

is the average document length in the whole collection,
k1 ∈ [1.2, 2.0] and b = 0.75. In the context of AARSYNTH,
we use IR to retrieve the most relevant text snippets from
description and reviews of the given app.

III. APP-AWARE RESPONSE SYNTHESIS

In this section, we present AARSYNTH (see Figure 2 for an
overview). In the following, we first introduce the IR module,
then provide an overview of the neural model followed by the
details of each of its major components.

A. IR Module

AARSYNTH employs IR module as follows. First, it builds
an inverted index for all the app descriptions and reviews.
Then, it takes a new user review and the app name as
inputs, and retrieves top-k relevant documents (i.e., reviews
and description of the given app). To get the most relevant
text snippets from app description and reviews, we leverage
Lucene [9] Highlighter and Sentence Detector [13] to extract
the most relevant snippets from the retrieved document(s). We
refer to these text snippets as relevant snippets.

B. Overview of Neural Model

Figure 6 shows the architecture of the proposed app-aware
response synthesis model, which consists of the following
components: (i) input encoding layers to transform textual
inputs to high dimensional contextual representations; (ii)
relevant snippets fusion layer to produce a review-aware
representation of the relevant snippets; (iii) attention layers
to compute attention weights that capture the significance
of tokens in the input review and its relevant snippets; and
(iv) sequence decoding layer that fuses all the information
from the previous layers to ultimately synthesize an app-aware
response. We next explain each component in detail.

C. Input Encoding Layers

Review Encoder. To encode an input review X =
(x1, x2, ..., xn), the review encoder first maps each word xi
to a high dimensional vector space (i.e., word embedding)
embx

i , then an RNN is utilized to produce a new d -dimensional
representation HX = (hx

1 ,h
x
2 , ...,h

x
n) ∈ Rd×n of all the tokens

in the input review, where LSTM is used as an RNN. The
token encoding at time-step i is computed using an LSTM as
follows:

hx
i = LSTM(hx

i−1, embx
i).

This representation is used by the review attention layer to
compute the attention weights vector for the sequence decoder
and relevant snippets fusion layer to compute the review-aware
representation of the relevant snippets.

Snippets Encoder. The relevant snippets are retrieved by our
IR module based on the input review and app name, and
then passed to the snippets encoder, which produces a new
representation HR = (hr

1,h
r
2, ...,h

r
u) ∈ Rd×u where u is

the total number of tokens in all the retrieved snippets. The
representation is the result of concatenating the representations
produced by the RNN for each snippet. This representation
is used by the relevant snippets fusion layer to compute the
importance of the words in the snippets with respect to the
given user review X , and is used by the relevance attention
layer to generate an attention weights vector of the relevant
snippets.

Category and Rating Encoders. The category encoder pro-
duces a representation hc

1,h
c
2, ...,h

c
b for the category of the

app and the rating encoder encodes the review rating into
hg1 ∈ Rd . The final hidden states of these layers are passed to
the sequence decoder.

D. Relevant Snippets Fusion Layer

This layer associates and fuses information from the relevant
snippets and the words of the input review. First, we compute
a similarity matrix S ∈ Ru×n between the encodings of the
snippets HR and the encodings of the review HX , where
Sbk (value at row b and column k) represents the similarity
between the b-th word in the snippets and k-th word in the user
review, which is computed using Sbk = α(HR:b ,HX:k) ∈ R.
α is a function trained to capture the similarity between
input vectors HR:b and HX:k , where HR:b and HX:k are b-
th and k-th column-vectors of HR and HX , respectively.
α(r , x) = w>(s)[r⊕x ⊕ r⊗u], where ⊕ is vector concatenation,
⊗ is element-wise multiplication, and w(s) is a trainable
weight vector. Then, from the similarity matrix S, we can
get the most important snippet words with respect to the
review, i.e., with the closest similarity to the user review.
The attention weights for the snippet words are computed
using z = softmax(maxcol (S)) ∈ Ru , where maxcol represents
max across columns. Then, the most important words in the
snippets with respect to the review ĤR ∈ Rd×u can be
computed by tiling the operation ĥ

R
across columns u times,

where ĥ
R

=
∑
b zbHR:b ∈ Rd . The matrix ĤR ∈ Rd×u repre-

sents the fused information between user review and relevant
snippets, i.e., review-aware representation of the snippets. This
representation can be thought of an MRC model representation
of the snippets that is fused with seq2seq representations in
the sequence decoder while synthesizing the response.

E. Attention Layers

Review Attention Layer. This layer computes the attention
weights of each token in the review as follows. It takes in the
encoded representation of the review HX and the decoder’s
hidden state at previous time-step h′i−1, and produces an
attention context vector vx

i for the decoder at time-step i . The
context vector vx

i captures the importance of each hidden state
of the review encoder while generating token ŷi at time-step i .
The details on how to compute the context vector are presented
in section II-A.

Relevance Attention Layer. This layer produces a repre-
sentation that enables the decoder to pay more attention to
the important words in the relevant snippets while generating
the final response. It takes in the review-aware representation
of the relevant snippets ĤR and decoder’s hidden state at
previous time-step h′i−1 and computes attention context vector
vr

i for decoder at time-step i . The attention context vector vr
i

signifies the importance of each hidden state of the review-
aware representation produced by relevant snippets fusion
layer (Section III-D) that sequence decoder utilizes while
synthesizing the token at time-step i .

F. Sequence Decoder

The sequence decoder fuses the representations of the
review, review rating, and category with the MRC style review-
aware representation of snippets to generate the final response.
The sequence decoder has a softmax-based linear layer that
follows RNN to map the d -dimensional hidden states to a
probability distribution over the whole vocabulary. At time-
step i , the decoder computes a conditional probability to
generate ŷi as given below:

P (ŷi |ŷi−1, ..., ŷ1,X ,R, C, g) = decoder(h′i , embŷ
i−1, v

x
i , vr

i ,h
c
b,h

g
1).

Note that, at time-step i , the decoder considers its current
hidden state h′i , the embedding of the token prediction embŷ

i−1
at the previous time-step, review attention vector vx

i from the
review attention layer, relevant snippets attention vector vr

i
from the relevance attention layer, category encoding hc

b, and
rating encoding hg1 to generate a token ŷi .

G. Training and Inference

Training. All the components of the model are trained jointly
over N training examples in an end-to-end fashion to minimize
the negative log-likelihood loss as given below:

L(θ) = −min
θ

1
N

N∑
i=1

log pθ(Y i |X i ,Ri , C i , gi),

where Ri represents relevant snippets from app description
and reviews retrieved by the IR module. App category and
review rating are represented by C i and gi respectively, for
review-response training example i of form (X i , Y i). θ is a
set of trainable parameters of the model. The teacher forcing
algorithm that always passes ground truth to the decoder at
next time-step, has traditionally been used to achieve faster
convergence in training, but it causes an incompatibility in
the train and test set-ups. Whereas curriculum learning [14]
algorithm passes the current prediction of the decoder to the
next time-step to minimize the incompatibility of the train and
test set-ups, and enables the model to correct itself, but the
model may take longer to train and converge. In our training,
we use a mix of both algorithms with equal probability in the
sequence decoder layer to minimize the incompatibility of the
train and test set-ups and achieve fast convergence at the same
time.

Inference. We select the model with the best performance on
the validation set for inference. We utilize the beam search
algorithm [15] that has been employed in natural language
generation tasks like neural machine translation. While gen-
erating the response, it picks multiple alternative tokens (i.e.,
the ones with high probabilities) from the decoder’s probability
distribution at every time-step. The parameter B controls the
number of alternatives. At subsequent time-steps, B copies of
the decoder are created, each receives a different input from
the previous time-step and picks multiple alternative choices.
Finally, the output that maximizes the joint probability of the
response is selected. While this approach is computationally
expensive, it has shown better performance than greedy de-
coding that picks the word with maximum probability at every
time-step.

IV. EXPERIMENTAL SETUP

A. Dataset

Data Collection. We crawled 103 popular apps (those with at
least 25K star ratings and at least 100 developer replies) across
23 app categories, and collected over 3.4 million reviews
and more than 570K review-response pairs. We collected
app name, description, number of star ratings, app category,
review text, review time, review rating, developer response,
and response time. Thanks to our app selection criteria, we
were able to collect reviews with a much higher response rate:
14.4% compared to 2.8% in [16].

Preprocessing. User reviews often contain noisy data [17].
To mitigate this, we performed the following preprocessing
steps: (i) removed non-English reviews and responses using
a language detector [18], which ensures a concise and valid
vocabulary; (ii) performed standard natural language process-
ing (NLP) preprocessing steps such as conversion of letters
to lower case, replacement of numbers with “<number>”,
emails and URLs with “<email>” and “<url>”, respectively;
(iii) replaced greetings and signatures with “<salutation>”
and “<signature>“, respectively, to preserve user anonymity;

TABLE I: Sample input reviews along with relevant reviews and app description snippets: relevant reviews and app descriptions
not only contain contextual keywords, but also often provide partial answers to questions raised in input reviews.

App User review Relevant reviews from the same app App description

Udemy
(Education)

... intermittent coverage on my
train ride and wanted to watch
... seemingly impossible.

. ... download lecture videos for offline ... on my train ride to
campus Download courses to

learn offline. On the go ...
. ... problem with video ... It only work after I downloaded it.

Uber Eats
(Food)

... food was not delivered ...
cannot refund the money ...

. ... my order was cancelled ... my money was transferred back ... Track your food order ... See
the estimated delivery time food that is undercooked ... they refunded for the entire meal.

Uber
(Navigation)

... charge cancellation fee ... re-
quires credit or debit card ...

. ... do not charge cancellation fees, trust worthy,
make refunds easily ...

... request a ride ... pay with
credit or cash in select cities ...

and (iv) removed reviews and responses with less than four
words since such reviews/responses are not likely to con-
tain useful information. After preprocessing, we obtained
425, 618 review-response pairs and 2, 077, 674 reviews with
no response. We found that 47 out of 103 apps overlap
with RRGen [3] dataset apps. Next, we applied the same
preprocessing steps to the RRGen dataset, which resulted in
145K review-response pairs (out of 309K pairs in the original
RRGen dataset). We finally merged the two datasets and the
final dataset contains 570, 881 review-response pairs.

We randomly split the review-response pairs of our dataset
into training (530, 872), validation (19, 511), and test (19, 480
≈ 3.5% of dataset) sets.

Dataset Analysis. Table I shows a few examples of user
reviews, relevant reviews, and app description snippets from
our dataset. The snippets from the relevant reviews and app
description contain keywords and similar context that can help
synthesize a response. In fact, the relevant snippets in many
cases provide partial answers for the given user review. For
example, while using the Udemy app (see Table I), a user was
unable to watch a video due to intermittent network coverage
on a train ride. In this case, the app description happens to
have relevant guidance – “download courses to learn offline”.
Luckily, other users who faced a similar issue shared the
solution “download lecture videos”.

B. Evaluation Metrics

We use quantitative automatic metrics as well as subjective
human studies to evaluate the performance of AARSYNTH
and the competing systems.

Automatic Metrics. BLEU [19] score is a standard automatic
metric to evaluate natural language generation solutions such
as machine translation [20] and paraphrasing [21]. It has been
demonstrated to have a positive correlation with human judge-
ments. BLEU-n (n ∈ {1, 2, 3, 4}) score ∈ [0, 100] captures the
percentage of the n-grams from the synthesized response Ŷ
that also co-occur in the the ground truth Y , where 0 means no
matching n-grams and 100 means a perfect match. We utilize
BLEU-4, which is considered a standard metric. Moreover, we
also use the recall-based automatic metric ROUGE [22], which
measures n-grams overlap between the synthesized response Ŷ
and the ground truth Y . We use ROUGE-L that identifies the
longest co-occurrence of n-grams using the Longest Common
Subsequence (LCS) [23], which naturally evaluates sentence
structure similarity.

Human Study. We conducted a subjective human study
to evaluate the quality of the responses generated by
AARSYNTH and other competing methods with respect to
the developer responses. We made use of Amazon Mechanical
Turk, a crowd sourcing platform for human evaluation, where
human evaluators rate the quality of the response on a scale of
1−5, 1 being the worst and 5 being the best. We asked human
evaluators to consider three aspects in their evaluations: (i) the
response is specific to the app; and (ii) whether the response
addresses the concern of the user raised in the input review;
(iii) the language fluency and the grammatical correctness of
the response. We randomly selected 150 generated responses
by AARSYNTH and the competing systems for the same
reviews, and each response was scored by five different human
evaluators who are familiar with the respective app.

C. Competing Approaches

We compare AARSYNTH with two IR baselines, an MRC
model R-Net [5], and the state-of-the-art response genera-
tion system RRGen [3]. We briefly describe each competing
method below:
IR-Reviews: This baseline builds an index for the reviews in

the training set. For an input review and app name from the
test set, it retrieves the most relevant indexed review (i.e.,
top-1) as a response.

IR-Response: This baseline builds an index for the developer
responses in the training set. For an input review and app
name from the test set, it retrieves the most relevant indexed
developer response (i.e., top-1) as a response.

R-Net [5]: This system was proposed for machine read-
ing comprehension style question answering, and it
achieves state-of-the-art results on SQuAD [24] and MS-
MARCO [25] datasets. MRC models require annotated
answer spans in a passage (app description and reviews in
the context of response synthesis) for supervision, which
are not available in our dataset, and acquiring such manual
annotations is laborious. We annotated spans using BLEU-2
heuristics: the reviews that achieve the maximum BLEU-2
score with the developer response are considered a span. R-
Net obtains question matching representation of a passage
by passing the question and the passage through a GRU,
then self-matching attention mechanism is employed to
refine the generated repreentation.

RRGen [3]: RRGen uses attention-based seq2seq for pro-
ducing a response for an input review. It conditions
the response generation on app category, rating, review

TABLE II: Automatic metrics results: pn represents n-gram
precision for the ground truth and synthesized response.

Method BLEU ROUGE-L p1 p2 p3 p4
IR Reviews 13.67 12.76 21.49 15.56 11.44 8.56
IR Response 19.19 17.99 27.18 20.89 17.14 14.88
R-Net 29.16 39.92 42.89 29.83 23.19 16.72
RRGen 34.55 46.26 50.38 37.54 28.25 22.63
AARSYNTH 42.22 51.89 56.99 44.50 36.56 30.83

length, review sentiment, and a set of dictionary-based key-
words. RRGen achieves current state-of-the-art results on
BLEU [19] metric for the response generation task. Since
RRGen outperformed NNGen [26] and NMT [20] models,
we do not consider them as competing approaches in this
work. We used RRGen’s open-source implementation [27]
in our experiments.

D. Implementation Details

We used Apache Lucene [9] and the BM25 [12] scoring
algorithm in our IR module, which retrieves 4 snippets from
the relevant user reviews for an app and 1 snippet from the app
description. We implemented AARSYNTH in PyTorch [28].
The word embedding dimensions were set to 128 and the
vocabulary size was set to 10, 000. Based on the word length
outlier analysis, we set the maximum length for the review,
snippets, app category, rating, and response to 75, 50, 4, 1, and
120, respectively. AARSYNTH uses 128 LSTM units as an
RNN that has 2 layers for all the encoders (review, snippets,
app rating, and category encoders) and the decoder. We set
the batch size to 128 and the dropout rate to 0.2 (i.e., to avoid
over-fitting to training set). We trained the neural network for
25 epochs using Adam Optimizer and employ negative log
likelihood loss with a learning rate of 0.01.

V. RESULTS

A. Automatic Metrics

Performance comparison. Table II shows the BLEU,
ROUGE-L, and n-gram precision scores for all competing
systems. As expected, the IR baselines IR Reviews and IR
Response produce the worst results (13.67 and 19.19 BLEU
scores, respectively), since they can not generate a response
and are only capable of retrieving the most relevant reviews
or responses from the training set. The MRC model R-Net
produces mediocre results, mainly because of the limitation
of MRC models that they attempt to predict spans from the
related documents (i.e., app description and reviews), which
rarely contain perfect responses. However, R-Nets’s BLEU
score of 29.16 shows that snippets from the app description
and reviews can be helpful for synthesizing a high-quality
response. AARSYNTH achieves the best results on all auto-
matic metrics; specifically, it outperforms the state-of-the-art
system RRGen by 22.20% on BLEU and 12.17% on ROUGE-
L. The outstanding performance of AARSYNTH is attributed
to the core idea of this paper, i.e., fusing MRC with attention-
based seq2seq. The MRC model, coupled with our IR mod-
ule, discovers relevant app-specific knowledge from relevant

TABLE III: Contribution of each component on AARSYNTH’s
performance. The attention-based seq2seq is the basic compo-
nent of AARSYNTH; thus, it is present in all configurations.

Component BLEU ROUGE-L
Attentional seq2seq 21.36 26.19
+ Rating 24.20 31.80
+ Category 30.97 44.57
+ Rating + Category 31.81 44.96
+ Description 34.75 49.71
+ Rating + Category + Description 36.11 49.98
+ Description + Review 38.31 50.39
AARSYNTH (Rating + Category + Desc. + Review) 42.22 51.89

reviews and app descriptions, and produces a review-aware
representation that is associated with the input review and
its important keywords. The seq2seq model learns from the
available review-response training pairs. The seq2seq decoder
fuses knowledge from both MRC and seq2seq encoders, and
thus learns to synthesize responses that are not only fluent and
relevant but also app-aware.

Ablation study. Table III shows the effect of each component
on the performance of AARSYNTH; that is, the table shows
the performance of AARSYNTH when certain components are
enabled. When only the attention-based seq2seq is enabled,
AARSYNTH achieves a 21.36 and 26.19 BLEU and ROUGE-
L scores, respectively. Enabling the use of app features such
as review rating and app category results in a modest im-
provement of +2.84 and +9.61 on BLEU score, respectively.
While other features such as review length and sentiment may,
in principle, improve the performance of the system, it has
been confirmed in [3] that such features merely cause small
improvements. We highlight that enabling the use of our fused
architecture (configuration Att. seq2seq + Description + Re-
view) produces the maximum gain on all the metrics: +16.95
on BLEU and +24.2 on ROUGE-L metrics. Moreover, if no
relevant reviews are available for a given app (configuration
Att. seq2seq + Rating + Category + Description), AARSYNTH
continues to provide better performance compared to the state-
of-the-art system RRGen (36.11 vs. 34.55 BLEU scores).
Several other configurations are also provided in Table III for
completeness.

Effect of hyperparameters. Table IV shows the effect of
adjusting the hyperparameters on the overall performance of
AARSYNTH. Configuration 5, which has 128 hidden and word
embedding dimensions and uses up to top-5 relevant snippets,
outperforms the other configurations. Increasing the size of
the hidden units, word embedding dimensions, or the number
of relevant snippets does not necessarily improve the perfor-
mance. Additionally, configuration 3 and 5 are similar with
one exception: the number of layers. Increasing the number
of layers improves the results since more layers can capture
better representations. Note that even configuration 1, which
produces the worst results among the reported configurations,
outperforms the state-of-the-art system RRGen. This confirms
that our performance is not due to parameter tuning, but rather
due to fusing seq2seq and MRC architectures.

TABLE IV: Effects of different hyperparameters on the perfor-
mance of AARSYNTH. L is the number of layers, H is the
number hidden dimensions, E is the number of embedding
dimensions, and S is the number of relevant snippets.

Sr. # Configuration BLEU ROUGE-L
1 L=2, H=256, E = 256, S = 5 35.95 46.16
2 L=2, H=128, E = 256, S = 5 36.80 49.30
3 L=1, H=128, E = 128, S = 5 39.31 49.69
4 L=2, H=128, E = 128, S = 10 41.72 51.58
5 L=2, H=128, E = 128, S = 5 42.22 51.89

B. Human Study

We conducted a human study to evaluate the quality of
the responses generated by each of the competing systems
from a human perspective. We limit this study to the best
performing systems based on the results of the automatic
metric evaluation. Specifically, we compare AARSYNTH, R-
Net, and RRGen in this study. We randomly selected 150
input reviews and generated their respective responses using
each of the competing systems. For each input review, we
randomly selected 5 human evaluators to score the respective
responses without knowing which responses were generated
by which method or whether the response was produced by
a developer. Additionally, we required that the evaluators are
familiar with the app whose responses are under investigation;
in total, 750 evaluators participated in the evaluations. Evalu-
ators were asked to judge a response based on three criteria:
app-specificity, whether it contains information that addresses
user concerns, and fluency. We report average scores with
confidence intervals for responses generated by developers
(our ground truth) and each of the competing systems in
Table V. The responses generated by AARSYNTH achieve
the best scores on all the aspects when compared to other
generative methods. The statistical significance test result
(p−value < 0.01) [29] also shows that the responses generated
by our method achieve statistically significant improvement
on all three criteria when compared with R-Net and RRGen.
Moreover, responses generated by AARSYNTH achieve very
close scores to those manually generated by developers. While
AARSYNTH produces app-specific high-quality responses,
these are often not as fluent as manually written responses.
This is a common limitation in most conditional natural
language generation tasks. In future, we plan to improve the
fluency of AARSYNTH’s responses by incorporating a neural
language model. Overall, the results of our human study
show that the responses generated by AARSYNTH are not
only better than other automatic response generation methods,
but also on a par with the developers’ manually generated
responses.

C. Sample Responses

We present in Table VI sample responses generated by app
developers, R-Net, RRGen, and AARSYNTH. In what follows,
we highlight several interesting examples. Consider the UC
Browser app which offers a download option. When a user
faces problems while using this option, AARSYNTH is able

TABLE V: Human study results: AARSYNTH outperforms all
competing systems, and the quality of its responses is close
to that of expertly written responses (Developer responses).

Method App-specific Addresses Concern Fluent
R-Net 2.911±0.041 2.881±0.042 2.856±0.043
RRGen 2.915±0.041 2.769±0.044 2.957±0.042
AARSYNTH 3.408±0.038 3.403±0.038 3.456±0.038
Developer 3.436±0.039 3.420±0.039 3.575±0.037

to discover the resume feature in the download option through
relevant snippets, and it offers a possible solution for the prob-
lem by including “try resume again it starts downloading...” in
the response. Similarly, AARSYNTH learns whether “clear the
cache of the app” can possibly solve the issue for the Adobe
Reader app (see Table VI), and forwards this information
by assigning high weights for the important keywords to
the sequence decoder to generate app-aware responses. This
example highlights how AARSYNTH generates app-specific
responses. AARSYNTH takes advantage of the ever increasing
relevant snippets from other reviews of the same app, which
are likely to have answers to other reviews. This enables
AARSYNTH to generate responses that directly address user
concerns as opposed to responses that are vaguely related to
the input review. Consider the input review “that is not free.
they told free but not”, where the user is concerned about
the app content not being free. AARSYNTH is able to learn
that the user concern is about pricing and it communicates
a possible remedy by responding with “... you can use free
course filter...” (see Table VI).

VI. RELATED WORK

Dialogue Response Generation. Response generation is one
of the prominent topics in the field of NLP where a system
attempts to provide an answer to a given question [30],
[31]. IR systems [32]–[34] aim to retrieve the best matching
response, and machine translation based approaches [35]–
[37] try to generate the response for a given question. Touch
your heart [38] proposes to generate tone-aware responses for
customer care on social media. RRGen [3] employs features
such as category, review sentiments and so on, to generate
the responses for user reviews on Google Play. Since RRGen
is trained on the review-response pairs of many apps, it can
only provide generic responses, and it struggles to answer app-
specific reviews. Recently, Google Play also started offering
suggested replies [2]. This system also suggests generic replies
as others. We utilize snippets from app description and reviews
(retrieved through IR module) along with other features to
synthesize a fluent and app-aware response that addresses user
concerns raised in an input review by fusing seq2seq with
MRC models that employ attention mechanisms.

Question Answering. Question answering is an extensively
studied research problem, which includes several sub-tasks
and datasets. The selection of answers in community question
answering [39] and ranking question-answer pairs [40] are
related to response synthesis; however, in response synthesis,

TABLE VI: Sample user reviews, developer responses and generated responses using R-Net, RRGen and AARSYNTH.
Review Method Response

that is not free. they
told free but not

Developer <salutation> i’m sorry for the inconvenience you are having with the price on udemy. could you please contact
us via <email> so we can assist you better.

R-Net <salutation> it certainly sounds frustrating and unpleasant experience. we can look into this for you. let us know
by sending a quick note to <url>.

RRGen <salutation> please send a note us at: <email>.

AARSYNTH
<salutation> udemy is free, but all online contents are not free. you can use free course filter. please contact us
via <email> for further assistance.

not able to share
selection? you must
be joking. this is the
de facto standard
reader and behaves in
such an autistic way.

Developer please update your ”adobe reader app”. issue has been fixed. <signature>

R-Net <salutation> we are sorry to hear about your experience with about request you to reach out to us at <url> and
we’ll will take into this.

RRGen <salutation> we have facing difficulties with our app. email a concerns, please contact free to contact with support
team at <email>.

AARSYNTH
<salutation> we are sorry to hear about your experience. please clear the cache of app from the phone settings.
if you are still unable to make it work, reach out to us at <email> and we’ll will look into this.

fare must be deduce.

Developer <salutation> we appreciate your feedback and be work towards make this better. if there’s anything else we can
take a look into for you please let us know to <email> so we can further connect.

R-Net we like to hear into this. please email us at <email>.
RRGen we appreciate your concern and would like to investigate into your issue. please email us directly afterwards

<email> and <number>.

AARSYNTH
<salutation> we love to hear your feedback. we believe that fare must be higher but comfortable rides than others.
Our team is working on this aspect as well. please contact us directly : <email>.

movie downloading
stuck at <number> -
<number>. worst
app.

Developer
<salutation> we regret the inconvenience you have experienced. pls send us more details via menu-feedback
page(open in uc browser).you may clear cache, change download path, turn on/off cloud boost, change access
point and then <url> a nice day dear!

R-Net <salutation> we feel sorry for the inconvenience. if you resume again it starts downloading.
RRGen <salutation> we are sorry to hear that. if you will contact to <email> with the version from google app.

AARSYNTH
<salutation> we regret the inconvenience you have experienced. if you try resume again it starts downloading from
<number>. if issue persists, we suggest you to visit <url>.

the goal is to generate coherent and fluent answers rather than
answer selection. Similarly, open-domain question answering
by reasoning over knowledge bases [41] and large open-
domain sources such as Wikipedia [42] can not be employed
for the task of review response generation, as knowledge bases
are not helpful for synthesizing responses for reviews. Last but
not least, closed-domain question answering datasets such as
SQuAD [24], SearchQA [43], and MS MARCO [25] assume
that the answer to the question is a span from the accompany-
ing set of document(s), whereas developer response is rarely
a span from the related reviews or application description.

Analysis of App Reviews. Many studies collected and exam-
ined different aspects of app reviews. ChangeAdvisor [44] uses
app reviews to extract useful feedback to recommend software
maintenance changes. The authors in [45] studied user reviews
to improve automated testing. The authors in [17] used app
reviews to detect real-time emerging issues in the apps, others
used GitHub to study issues [46], [47]. The authors in [48]
used probabilistic techniques to classify reviews into bug
report, feature requests and so on. Sentiment analysis on app
features is performed in [49], [50]. Similarly, MARA [51]
uses reviews to predict app feature requests. [16] analyzed 4.5
million reviews and highlighted the importance of developer
replies to app reviews. Our research extends the findings of
these works by collecting a large dataset of reviews and using
the related review snippets to generate app-aware responses.

VII. CONCLUSION

We have presented AARSYNTH, a system for automatically
synthesizing app-specific responses to mobile app reviews.

AARSYNTH is motivated by the impossibility of manu-
ally responding to the large, growing number of reviews.
AARSYNTH enables developers to enjoy the benefits of
providing timely and relevant responses including improved
ratings and wider adoption of their apps. Our experimental
evaluation of AARSYNTH using a large corpus of reviews and
responses from Google Play showed that it significantly out-
performs the existing approaches: an improvement of 22.2%
in BLEU-4 score over the state-of-the-art system. Moreover,
human evaluators’ ratings of the responses generated by
AARSYNTH and other competing methods suggest that, with
a statistically significant difference, AARSYNTH’s responses
are app-specific, better address the concerns raised in an input
review, and are more linguistically fluent. The main novelty
of AARSYNTH is augmenting seq2seq models with app-
specific information, which is made possible due to utilizing
information retrieval techniques and our fusion of seq2seq and
machine reading comprehension neural architectures.

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under grants IIS-1838222 and IIS-1901379.

REFERENCES

[1] S. OD́ea, “Number of smartphone users worldwide from
2016 to 2021,” https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/, accessed: 2020-04-28.

[2] K. Glick, “Making it easier to respond to and improve user reviews,”
https://android-developers.googleblog.com/2019/05/whats-new-in-play.
html, 2020, accessed: 2020-04-28.

[3] C. Gao, J. Zeng, X. Xia, D. Lo, M. R. Lyu, and I. King, “Automating
app review response generation,” in 34th IEEE/ACM International
Conference on Automated Software Engineering, 2019, pp. 163–175.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[5] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “R-net: Ma-
chine reading comprehension with self-matching networks,” Microsoft
Research Asia, Beijing, China, Tech. Rep, vol. 5, 2017.

[6] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional
attention flow for machine comprehension,” arXiv preprint:1611.01603.

[7] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag
problems,” in Advances in neural information processing systems, 1997,
pp. 473–479.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[9] A. Lucene, “Apache lucene,” https://lucene.apache.org/.
[10] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”

Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.
[11] R. Baeza-Yates and B. Ribeiro-Neto, “Modern information retrieval

addison-wesley longman,” Reading MA, 1999.
[12] S. E. Robertson and K. S. Jones, “Relevance weighting of search terms,”

Journal of the American Society for Information science, vol. 27, no. 3,
pp. 129–146, 1976.

[13] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014, pp. 55–60.

[14] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 41–48.

[15] S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as beam-
search optimization,” arXiv preprint:1606.02960, 2016.

[16] S. Hassan, C. Tantithamthavorn, C.-P. Bezemer, and A. E. Hassan,
“Studying the dialogue between users and developers of free apps in
the google play store,” Empirical Software Engineering, vol. 23, no. 3,
pp. 1275–1312, 2018.

[17] C. Gao, W. Zheng, Y. Deng, D. Lo, J. Zeng, M. R. Lyu, and I. King,
“Emerging app issue identification from user feedback: experience
on wechat,” in IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice, 2019, pp. 279–288.

[18] M. Danilák, “Port of googleś language-detection library to python,”
https://github.com/Mimino666/langdetect, 2020, accessed: 2020-04-28.

[19] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[20] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint:1409.0473, 2014.

[21] A. Siddique, S. Oymak, and V. Hristidis, “Unsupervised paraphrasing
via deep reinforcement learning,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 1800–1809.

[22] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out. Barcelona, Spain: Association
for Computational Linguistics, Jul. 2004, pp. 74–81.

[23] C.-Y. Lin and F. J. Och, “Automatic evaluation of machine translation
quality using longest common subsequence and skip-bigram statistics,”
in Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics, Barcelona, Spain, Jul. 2004, pp. 605–612.

[24] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad:
100,000+ questions for machine comprehension of text,” arXiv
preprint:1606.05250, 2016.

[25] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder,
and L. Deng, “Ms marco: a human-generated machine reading compre-
hension dataset,” 2016.

[26] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 373–384.

[27] C. Gao, “Repository for the rrgen,” https://github.com/armor-ai/RRGen,
2020, accessed: 2020-04-28.

[28] N. Ketkar, “Introduction to pytorch,” in Deep learning with python.
Springer, 2017, pp. 195–208.

[29] R. Woolson, “Wilcoxon signed-rank test,” Wiley encyclopedia of clinical
trials, pp. 1–3, 2007.

[30] Z. Ji, Z. Lu, and H. Li, “An information retrieval approach to short text
conversation,” arXiv preprint:1408.6988, 2014.

[31] J. Zeng, J. Li, Y. He, C. Gao, M. R. Lyu, and I. King, “What you say
and how you say it: Joint modeling of topics and discourse in microblog
conversations,” Transactions of the Association for Computational Lin-
guistics, vol. 7, pp. 267–281, 2019.

[32] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-
tion retrieval. Cambridge university press, 2008.

[33] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11, pp.
613–620, 1975.

[34] G. Chen, E. Tosch, R. Artstein, A. Leuski, and D. Traum, “Evaluat-
ing conversational characters created through question generation,” in
Twenty-Fourth International FLAIRS Conference, 2011.

[35] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens et al., “Moses:
Open source toolkit for statistical machine translation,” in Proceedings of
the 45th annual meeting of the association for computational linguistics
companion, 2007, pp. 177–180.

[36] A. Ritter, C. Cherry, and W. B. Dolan, “Data-driven response generation
in social media,” in Proceedings of the conference on empirical meth-
ods in natural language processing. Association for Computational
Linguistics, 2011, pp. 583–593.

[37] O. Vinyals and Q. Le, “A neural conversational model,” arXiv
preprint:1506.05869, 2015.

[38] T. Hu, A. Xu, Z. Liu, Q. You, Y. Guo, V. Sinha, J. Luo, and R. Akkiraju,
“Touch your heart: A tone-aware chatbot for customer care on social
media,” in Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’18. ACM, 2018.

[39] W. Wu, X. Sun, and H. Wang, “Question condensing networks for
answer selection in community question answering,” in Proceedings
of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2018, pp. 1746–1755.

[40] S. Yoon, J. Shin, and K. Jung, “Learning to rank question-answer pairs
using hierarchical recurrent encoder with latent topic clustering,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), 2018, pp. 1575–1584.

[41] W. Yin, M. Yu, B. Xiang, B. Zhou, and H. Schütze, “Simple
question answering by attentive convolutional neural network,” arXiv
preprint:1606.03391, 2016.

[42] Y. Tay, A. T. Luu, S. C. Hui, and J. Su, “Densely connected attention
propagation for reading comprehension,” in Advances in Neural Infor-
mation Processing Systems, 2018, pp. 4906–4917.

[43] M. Dunn, L. Sagun, M. Higgins, V. U. Guney, V. Cirik, and K. Cho,
“Searchqa: A new q&a dataset augmented with context from a search
engine,” arXiv preprint:1704.05179, 2017.

[44] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. De Lucia, “Recommending and localizing change requests
for mobile apps based on user reviews,” in Proceedings of the 39th
International Conference on Software Engineering, ser. ICSE ’17. IEEE
Press, 2017, p. 106–117.

[45] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and H. C. Gall,
“Exploring the integration of user feedback in automated testing of an-
droid applications,” in IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering. IEEE, 2018, pp. 72–83.

[46] U. Farooq and Z. Zhao, “Runtimedroid: Restarting-free runtime change
handling for android apps,” in Proceedings of the 16th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, 2018.

[47] U. Farooq, Z. Zhao, M. Sridharan, and I. Neamtiu, “Livedroid: Identify-
ing and preserving mobile app state in volatile runtime environments,”
in Proceedings of the ACM on Programming Languages (PACMPL),
Volume 4, Article 160, Issue OOPSLA, 2020. ACM, 2020.

[48] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?
on automatically classifying app reviews,” in IEEE 23rd international
requirements engineering conference. IEEE, 2015, pp. 116–125.

[49] T. Mike, B. Kevan, P. Georgios, and C. Di, “Sentiment in short strength
detection informal text,” JASIST, vol. 61, no. 12, pp. 2544–2558, 2010.

[50] E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in IEEE 22nd international
requirements engineering conference. IEEE, 2014, pp. 153–162.

[51] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in 2013 10th working conference on
mining software repositories. IEEE, 2013, pp. 41–44.

