
Sabre: A Narrative Planner Supporting Intention and Deep Theory of Mind

Stephen G. Ware, Cory Siler
Narrative Intelligence Lab

University of Kentucky, Lexington, KY, USA 40506
sgware@cs.uky.edu, cory.siler@uky.edu

Abstract

Sabre is a narrative planner—a centralized, omniscient de-
cision maker that solves a multi-agent storytelling problem.
The planner has an author goal it must achieve, but ev-
ery action taken by an agent must make sense according to
that agent’s individual intentions and limited, possibly wrong
beliefs. This paper describes the implementation of Sabre,
which supports a rich action syntax and imposes no arbitrary
limit on the depth of theory of mind. We present a search
procedure for generating plans that achieve the author goals
while ensuring all agent actions are explained, and we re-
port the system’s performance on several narrative planning
benchmark problems.

Introduction
Virtual environments with interactive stories, like games,
training simulations, and tutoring systems, often give the
player control of one or more characters while the sys-
tem controls the others. These virtual characters need to
seem like realistic agents with their own goals and limited,
possibly wrong beliefs. Story generation techniques fall on
a spectrum from emergent to planned (Riedl and Bulitko
2013). Emergent systems generate a story from the inter-
actions of many realistic agents but struggle with “herd-
ing cats” when the narrative is required to contain certain
content. Planning systems centralize decision making to en-
sure they meet the author’s constraints but struggle to make
agents seem realistic. Narrative planning is an interesting
problem because it can be performed by a single agent but
needs to generate a solution befitting a multi-agent system.
A traditional planner ignores agent realism, while a tradi-
tional multi-agent system suffers limitations that don’t ap-
ply in virtual worlds, where an omniscient and omnipotent
author can coordinate the story behind the scenes.

This paper presents Sabre, a forward-chaining state-space
narrative planning system that models both the intentions of
the author (i.e. the system designer’s constraints on the so-
lution) as well as the intentions and beliefs of each virtual
character. Sabre finds plans that improve the author’s utility
but are only composed of actions that can be explained by
the intentions and beliefs of the characters who take them.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To our knowledge it is the first such system to support full
ADL action syntax (Pednault 1987) and an arbitrarily deep
theory of mind. We measure Sabre’s performance on bench-
mark problems and compare its solution space to ablated
versions to motivate its unique combination of features.

Related Work
Kybartas and Bidarra (2016) survey many approaches to nar-
rative generation, including expert systems, planning, multi-
agent simulations, and case-based reasoning. Since then,
deep learning techniques have also been applied (Martin
et al. 2018). We focus this survey on planning systems.

One branch of research prefers to use existing plan-
ning algorithms to generate stories. Examples include HTN
planning to generate plots for the television show Friends
(Cavazza, Charles, and Mead 2002) and fast classical plan-
ners to make The Merchant of Venice interactive (Porteous,
Cavazza, and Charles 2010). Work by Porteous et al. (2010),
in particular, highlights the use of PDDL 3 trajectory con-
straints and planning landmarks to control story pacing.

Another branch integrates computational models of nar-
rative directly into the knowledge representation and search
of the planner. Young et al. (2013) survey planning algo-
rithms that model intentionality, conflict, surprise, suspense,
and other phenomena. Some focus on generating the events
of the story (plot), while others focus on the telling (dis-
course). Sabre integrates narrative models into the algorithm
and generates plot, so we focus our survey here.

Intention Riedl and Young’s IPOCL (2010) introduced in-
tentional planning, which defines both author and charac-
ter goals. A valid plan accomplishes the author goal but can
only be composed of actions that contribute to the goals of
the characters who take them. Ware et al. (2014) extended
their model to allow conflict and failed plans. In CPOCL
(Ware and Young 2011) and Glaive (Ware and Young 2014),
a character action no longer needs to be part of a success-
fully executed plan to achieve their goal; as long as such a
plan exists, the action is reasonable, even if that plan is never
actually executed, perhaps because it failed or conflicted an-
other agent’s plan. Sabre uses a similar model, except that it
uses utility functions instead of discrete propositional goals.

Proceedings of the Seventeenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

(AIIDE 2021)

99

Theory of Mind Several narrative planners focus on char-
acter knowledge, partial observability, and wrong beliefs.
Virtual Storyteller (Brinke, Linssen, and Theune 2014),
HeadSpace (Thorne and Young 2017), and work by Chris-
tensen et al. (2020) use a 1 layer theory of mind, meaning
they reason about what is true, and what each character be-
lieves is true, but not what x believes y believes, and so
on. IMPRACTical (Teutenberg and Porteous 2013) uses a
1 layer model, and past that defers to a shared global set
of popular beliefs. Shirvani et al. (2017) demonstrate that
planner-generated stories need a multi-level theory of mind
to model some forms of deception, cooperation, anticipa-
tion, and surprise. Sabre places no arbitrary limit on the
depth of theory of mind.

Si and Marsella’s Thespian (2014) treats theory of mind
as central, while Ryan et al.’s Talk of the Town (2015) mod-
els characters that observe, forget, and lie. These and others
like them are multi-agent systems; they use a host of agents
with true partial observability and leverage little centralized
planning to coordinate the story.

Intention + Theory of Mind At least two systems model
intentions and theory of mind for centralized planning. Pre-
viously we defined a state space with these features (Shir-
vani, Ware, and Farrell 2017) but focused on validating
the knowledge representation and did not provide a plan-
ning algorithm or measuring performance. Ostari (Eger and
Martens 2017) has these features but models true uncertainty
via Dynamic Epistemic Logic. The high cost of modeling
all doxastically accessible possible worlds limits the scope
of problems it can solve. In Sabre’s model, agents can have
arbitrarily nested and wrong beliefs, but must always com-
mit to specific beliefs. We found this tradeoff allows us to
tell most of the stories we want to tell, and it allows Sabre to
solve larger problems.

Problem Definition
We use a domain from our previous work (Ware et al. 2019)
as a running example. Tom needs to get a potion for his
grandmother. He begins in her cottage with one coin. There
is a merchant at the market who is selling medicine and a
sword for one coin each. Also at the market is a guard with
a sword who wants to punish criminals. In a nearby camp, a
bandit has a sword and one coin and wants to acquire more
valuable items, like coins and medicine. A crossroads con-
nects the cottage, the market, and the bandit’s camp. Char-
acters can walk from place to place. Characters with a coin
can buy an item from the merchant. Armed characters (i.e.
those who have swords) can attack and kill other characters.
Armed characters can steal items from unarmed characters.

Characters and Fluents
A Sabre problem defines a finite number of characters, spe-
cial entities which should appear to have beliefs and inten-
tions. Henceforth we use the term “character” rather than
“agent” because the narrative planner is the only decision
maker, though it creates the appearance that each character

is an agent. Tom, the merchant, the guard, and the bandit are
the characters in our example domain.

A problem defines some number of state fluents, proper-
ties whose values can change over time. For some fluent f ,
letDf denote the set of possible values f can take on, called
the domain of f . Sabre supports two kinds of fluents: nom-
inal and numeric. For nominal fluents, Df is a finite set of
possible nominal values. For numeric fluents, Df = R. We
denote numeric fluents as fR.

Sabre supports seven types of logical literals l. The first
six are given by this grammar:

l := f = v | f 6= v | fR > n | fR ≥ n | fR < n | fR ≤ n
v := any value in Df

n := v | fR | n+ n | n− n | n · n | n÷ n

These six kinds of literals have a fluent f on the left, a re-
lation (=, 6=, > etc.) in the middle, and a value on the right.
For nominal literals, a value is one of Df . For numeric lit-
erals, a value is a real number, a numeric fluent, or an arith-
metic expression. Tom’s location is an example of a nominal
fluent whose domain is the cottage, market, camp, or cross-
roads. Tom’s wealth is an example of a numeric fluent.

The seventh kind of literal takes the form believes(c, l),
which we abbreviate b(c, l), and which means that character
c believes literal l is true. Beliefs can be arbitrarily nested, so
b(c1, b(c2, f = v)) means that character c1 believes charac-
ter c2 believes that fluent f has value v. Sabre does not limit
how deeply nested literals may be.

Logical Expressions
Sabre uses three kinds of complex logical expressions: pre-
conditions that must be checked, effects that describe how
states are modified, and utility functions that define prefer-
ences over states.

During pre-processing, preconditions are converted to
disjunctive normal form. We use a process similar to Weld’s
(1994) to compile out first order quantifiers. Universal quan-
tifications are replaced by conjunctions, and existential by
disjunctions, like so:

∀v(f = v)↔ (f = v1) ∧ (f = v2) ∧ ...
∃v(f = v)↔ (f = v1) ∨ (f = v2) ∨ ...

In keeping with classical planners, preconditions and effects
must be finite, so quantifiers over numeric fluents are not
permitted. We consider > and ⊥ to be in disjunctive normal
form. > is a disjunction of one empty clause and always
true, while ⊥ is a disjunction of zero clauses and always
false. Negated literals are compiled out like so:

¬(f = v)↔ (f 6= v)
¬(f > v)↔ (f ≤ v) etc.

Complex doxastic expressions about what a character be-
lieves are compiled out using these equivalencies:

¬b(c, x)↔ b(c,¬x)
b(c, x ∧ y)↔ b(c, x) ∧ b(c, y)
b(c, x ∨ y)↔ b(c, x) ∨ b(c, y)

These axioms, especially the first (not believing x is equiva-
lent to believing ¬x), reflects Sabre’s constraint that charac-
ters cannot be uncertain in their beliefs.

100

Preconditions may not be contradictions. For example, the
precondition b(c, f = v) ∧ b(c, f 6= v) is not allowed (be-
cause characters must commit to beliefs).

Effects describe how the state after an event differs from
the state before. Effects can be conditional, meaning they
may not apply, depending on the state before the event. Like
UCPOP (Penberthy and Weld 1992) and Fast Downward
(Helmert 2006), Sabre represents all effects as having a con-
dition, even if that condition is simply >.

A single effect e can be described by this grammar:
e := p→ g
g := f = v | fR = n | b(c, g)

All effects have a condition p in disjunctive normal form.
The effect p → (f = v) means that, when p holds in the
state before, fluent f has value v in the state after. Numeric
fluents can be assigned numeric values following the gram-
mar for n given above (i.e. n is a number, numeric fluent, or
arithmetic expression). For example, > → (fR = fR + 1)
means that fR has a value one higher in the state after.

Effects can modify character beliefs directly. p →
b(c, f = v) means that, when p holds in the state before,
character c believes fluent f has value v in the state af-
ter. Belief effects can also be arbitrarily nested, e.g. p →
b(c1, b(c2, f = v)) and so on. Having defined a single effect,
we define an effect expression as a conjunction of effects:

(p1 → g1) ∧ (p2 → g2) ∧ ...
In keeping with classical planning, effects must be deter-
ministic, so disjunctions and expressions equivalent to dis-
junctions (like existential quantifications) are not permitted
in effect expressions. Effects may not be contradictions.

Utility functions are compiled into a normal form similar
to effects. They are conditional, but exactly one condition
must hold in any state. A utility function is an ordered se-
quence of m conditional numeric expressions p→ n:

〈p1 → n1, p2 → n2, ...,> → nm〉
Here, m ≥ 1, p1...m−1 are conditions in disjunctive normal
form, and n1...m are numeric values following the gram-
mar for n above (a number, numeric fluent, or arithmetic
expression). The last condition pm must be > to ensure
that one case will always hold. Utility functions are similar
to if/elseif/else statements in a programming language. To
evaluate a utility function in a state, we consider each condi-
tional expression pi → ni in order until we find one where
pi holds, then we evaluate ni. In our example domain, the
honest merchant (M) wants money. Her utility function is:

〈criminal(M) = > → 0,> → wealth(M)〉
If she is a criminal, her utility is 0, else her utility is her
number of coins. She prefers plans that increase her wealth,
but will not commit crimes to do so.

Initial State and Goal
The initial state defines an assignment of a value to every
fluent; i.e. ∀f : f = v where v ∈ Df . It also defines
any wrong beliefs that characters initially hold; for example,
(f = v) ∧ b(c, f = u).

We use Shirvani et. al’s (2017) variant of the closed world
assumption to assume any beliefs not explicitly defined in

the initial state. When a character’s belief about a fluent is
not specified, we assume they believe its actual value. So if
f = v and there is no explicit statement otherwise, we as-
sume b(c, f = v). Similarly, characters assume other char-
acters have the same beliefs they do. If the initial state ex-
plicitly defines b(c1, f = v) but has no explicit statement for
what c1 believes c2 believes, we assume b(c1, b(c2, f = v)).
These assumptions are only used for the initial state.

A problem defines an author utility function, which ex-
presses preferences for the states the planner should attempt
to reach. Recall the planner is the only decision maker, but
each character should appear realistic. A Sabre problem also
defines a utility function for every character, and characters
should act to improve their utility, but the planner chooses
when and how they act to maximize the author’s utility. In
other words, the puppetmaster tells the best story it can with-
out making its puppets act out of character.

Let u(cauthor, s) denote the author’s utility in state s. Let
u(c, s) denote the utility of character c in state s. In our ex-
ample domain, the author’s utility is as follows (where T is
Tom, C the cottage, S the medicine, and loc is “location”):

〈loc(T) = C ∧ loc(S) = T → 2, alive(T) = ⊥ → 1,> → 0〉

The system prefers stories where Tom succeeds in bringing
home the medicine, and will accept stories where he dies.

Events: Actions and Triggers
Events change the world state. Domain authors can create
two kinds of events: actions, which the planner can choose
to take, and triggers, which must occur when they can.

An action a defines PRE(a) and EFF(a), which are its pre-
condition and effect expressions respectively. An action also
defines CON(a), a set of 0 to many consenting characters.
Consenting characters are the ones responsible for taking the
action. For an action to make sense in a narrative plan, every
consenting character needs a reason to take the action.

Actions also define when characters observe them occur-
ring. Formally, an action a defines a function OBS(a, c). For
any character c, OBS(a, c) returns a precondition expression
p such that, when p holds, c observes action a occur. When a
character observes an action, they update their beliefs based
on the action’s effects. When a character does not observe
an action, their beliefs remain the same (unless explicitly
modified by the effect). Consider this example action, where
character c1 attacks c2 at location x:

Action a: attack(c1, c2, x)
PRE(a) = alive(c1) = > ∧ loc(c1) = x ∧ loc(c2) = x
EFF(a) = armed(c1)→ alive(c2) = ⊥

CON(a) = {c1}
OBS(a, c) = loc(c) = x

Suppose c1 is the bandit, c2 is Tom, and x is the crossroads.
This action can only occur if the bandit is alive and the ban-
dit and Tom are both at the crossroads. After it occurs, if
the bandit was armed then Tom is dead, or else the action
has no effect. Only the bandit is a consenting character, be-
cause only she needs a reason to take the action (Tom is a
victim, and the action can occur whether or not he wants
it to happen). The observation function means that, for any

101

character c, when loc(c) = x holds, c observes the action;
i.e. any characters also at the crossroads will see the action
happen. They will know Tom is dead, whereas those not at
the crossroads will not know.

Triggers are events that must happen when their precondi-
tions are met. A trigger t defines PRE(t) and EFF(t) as above.
Any time the world is in a state where PRE(t) holds, EFF(t)
must immediately be applied to change the world state. Ac-
tions advance time, but triggers do not. In other words, after
time is advanced by taking an action, any number of triggers
may then apply to update the state, but they happen instantly.
If multiple triggers can apply in a state, Sabre chooses arbi-
trarily. To ensure determinism, triggers should not be defined
such that their outcome depends on order of execution.

Triggers are similar to the axioms and derived predi-
cates of PDDL planners (Thiébaux, Hoffmann, and Nebel
2005), but not identical. Triggers modify state fluents di-
rectly, whereas PDDL planners have basic predicates which
can be directly modified by effects and special derived pred-
icates whose values are deduced from basic predicates.

Triggers are commonly used for sensing and belief up-
dates based on character observations. Consider this exam-
ple, which means “When characters c1 and c2 are in the same
place, c1 sees that c2 is there.”

Trigger t: see(c1, c2, x)
PRE(t) = loc(c1) = x ∧ loc(c2) = x ∧ b(c1, loc(c2) 6= x)
EFF(t) = > → b(c1, loc(c2) = x)

Suppose the bandit is at the crossroads and believes Tom
is in the cabin when Tom is actually at the market. If the
bandit walks to the market, she should notice Tom is there
and update her wrong belief about Tom’s location.

Triggers represent rules of the world common to all, so
they do not define consenting characters or observation func-
tions (i.e. if a character believes a trigger can happen, it does,
regardless of whether they want it to).

Action Results Action effects have a finite number of con-
juncts as specified by the domain author, but because actions
can be observed and because we impose no limit on the
depth of theory of mind, actions can cause infinitely many
changes to the world state. In the above example, when Tom
is killed, the bandit knows it, and knows that she knows it,
and knows that any bystanders know it, and knows that they
know that she knows it, and so on. Shirvani et al. (2017)
showed these changes can be expressed in a finite graph,
and at any rate only a finite number of these changes actu-
ally need to be calculated.

Let RES(a) be the results of action a, a possibly infinite
conjunction composed of the action’s explicitly authored ef-
fects and any effects implied by observations. Its conjuncts
are in the same format as above, p→ g, where p is a condi-
tion and g is either an assignment of a value to a fluent or a
belief. RES(a) is defined by these two rules:

1. RES(a) |= EFF(A)
2. ∀c : (RES(a) |= p→ g)⇒

(RES(a) |= (OBS(a, c) ∧ b(c, p))→ b(c, g))

The first rule states the effects of a are also results of a. The
second defines results implied by observations. If RES(a)

includes the effect p→ g, and character c observes action a
occur, and c believes the condition p holds, then c will now
believe g. If the guard is at the crossroads when the bandit
attacks Tom, and the guard believes the bandit is armed, then
the guard now believes Tom is dead even though this was not
explicitly authored as an effect of the attack action.

Sabre’s belief and observation model is a key strength.
Authors can explicitly specify beliefs in preconditions and
modify them in effects using the believes predicate (for ex-
ample, to create the lie action used in some domains (Farrell
and Ware 2020)), but Sabre automates many common belief
updates via observed actions and triggers.

State Space
Sabre starts at the initial state and searches forward through
the space of possible future states for a solution. To save
memory, Sabre does not store a state as an array of values
for each fluent; rather, it stores the history of events that led
to that state, and when it needs to know the value of a fluent,
it looks back through the history for the last time the fluent
was modified. Let s be a state, and let σ(e, s) denote the state
after event e (recall an event is an action or a trigger). σ(e, s)
is only defined when s |= PRE(e), i.e. when the event’s pre-
condition holds in s. For any literal l, we can determine if l
holds in σ(e, s) using this procedure:

if e has result p→ g, and p holds in s, and g |= l then
return > . Case 1

else if e has result p→ g, and p holds in s, and g ∧ l→ ⊥ then
return ⊥ . Case 2

else if PRE(e) |= l then return > . Case 3
else if PRE(e) ∧ l→ ⊥ then return ⊥ . Case 4
else if l holds in s then return > . Case 5
else return ⊥ . Case 6

There are six cases. Case 1 states that l holds if e has a result
(whose condition holds) which makes l true. Case 2 states l
does not hold if e has a result which contradicts l. Consider
the precondition fR > 1. The effect fR = 0 is not an exact
negation of it, but fR > 1∧fR = 0 is a contradiction, so this
effect would make that precondition ⊥.

Characters can have wrong beliefs, so it is possible for
them to observe an action happen which they did not believe
was possible. We call this a surprise action. When a charac-
ter is surprised, they first update their beliefs so the action’s
precondition holds and then update their beliefs based on its
effect. If the guard believes the bandit is dead, but then ob-
serves the bandit attack Tom, this would be a surprise. The
guard updates his beliefs to realize the bandit is alive and
then considers the results of the attack. Cases 3 expresses
this—that l holds if it is implied by e’s precondition. Case 4
states that l does not hold if it contradicts e’s precondition.
Since cases 1 and 2 are checked first, 3 and 4 only apply
when l was not changed by a result of the event. If none of
these cases apply, event e has no bearing on l, so we check l
in the previous state s (cases 5 and 6).

Recall that a trigger must be applied when its precondition
holds, and triggers happen instantly. When the world state is
s and there exists a trigger t such that s |= PRE(t), the world
must immediately transition to σ(t, s). For an event e and
state s, we define α(e, s) to be the state of the world after

102

taking event e and then applying any relevant triggers. α is
defined recursively as:

function α(e, s)
if σ(e, s) is undefined (i.e. s 6|= PRE(e)) then

return undefined
else if ∃ trigger t such that σ(e, s) |= PRE(t) then

return α(t, σ(e, s))
else return σ(e, s)

As shorthand, let α({a1, a2, ..., an}, s) represent the state
after a sequence of n actions taken in that order from state s.

Explanations and Solutions
Having defined Sabre’s representation of the problem and
its search space, we can now define a solution. Informally, a
solution is:

• A sequence of actions which can be executed and leads to
a state where the author’s utility is improved.

• Every action taken by a character can be explained; i.e.
each character believes the action can lead to increasing
their utility.

To state this formally, we need a way to refer to what a char-
acter believes the state to be. Let c be some character, and
let s be any state. We define β(c, s) to be the state that c
believes to be the case when the actual state is s. This equiv-
alence defines β(c, s):

s |= b(c, l)↔ β(c, s) |= l

We say an action a1 is explained in state s when it is ex-
plained for all of CON(a1), its consenting characters. An ac-
tion a1 is explained for character c in state s when:

1. There exists a sequence of n ≥ 1 actions {a1, a2, ..., an}
that starts with a1.

2. α({a1, a2, ..., an}, β(c, s)) is defined.

3. u(c, α({a1, a2, ..., an}, β(c, s))) > u(c, β(c, s)).

4. All actions ai where i > 1 are explained in the state be-
fore they occur; i.e. a2 is explained in α(a1, β(c, s)), a3
is explained in α({a1, a2}, β(c, s)), and so on.

5. No strict subsequence of {a1, a2, ..., an} also meets these
5 criteria and achieves the same or higher utility.

Requirement #1 states that there exists a plan which starts
with action a1. #2 states that character c believes the plan
can be executed. In other words, the plan can be executed
from β(c, s), even if it cannot be executed from s, perhaps
because c has wrong beliefs. #3 states that c believes the
plan will lead to a state where their utility is higher (even if
it actually won’t). #4 states that the rest of the actions (after
a1) must also be explained. For example, if the plan relies on
actions by other characters, those actions must make sense
for those characters. #5 states that the sequence should not
include redundant or unnecessary actions.

Suppose Tom is at the cottage, has one coin, and wants
medicine. The merchant is at the market, has medicine, and
wants coins. Tom knows where the merchant is and that
the merchant has medicine, but the merchant does not know
Tom has money. When characters are in the same place, they

see what things each other have via a trigger. Would Tom
walking to the market be explained?

To be explained, it must be explained for all of its con-
senting characters, which in this case is just Tom. Tom can
imagine a plan to walk to the market, buy the medicine, and
return to the cottage (#1). This plan is possible based on
his current beliefs (#2), and he thinks it will lead to a state
where his utility is higher (#3). Both Tom and the merchant
are consenting characters for the buy action. Tom anticipates
the merchant will let him buy, which is reasonable given his
beliefs about her (#4). Note that, in the initial state, the mer-
chant cannot form a plan to walk to the cottage and have
Tom buy medicine, because the merchant does not think
Tom has any money. However, once Tom arrives at the mar-
ket, the merchant will see he has money via a trigger that
updates the merchant’s beliefs. Now the merchant will con-
sent to buy. Requirement #5 means Tom cannot plan to walk
to the market, walk home, walk back to the market, buy the
medicine, and walk home. This plan is redundant; the first
two actions could be removed and it would still achieve the
same utility.

Finally, we define a solution. Let s0 be the initial state.
A solution to a Sabre problem is a sequence of n actions
{a1, a2, ..., an} such that:

1. α({a1, a2, ..., an}, s0) is defined.

2. u(cauthor, α({a1, a2, ..., an}, s0)) > u(cauthor, s0).

3. All actions in {a1, a2, ..., an} are explained in the state
immediately before they occur.

4. No strict subsequence of {a1, ..., an}meets these criteria.

In short, the plan is possible, leads to a state where the au-
thor’s utility is higher, has only actions that make sense for
characters, and is non-redundant. We validated this model
of believable actions with human subjects (Shirvani, Farrell,
and Ware 2018), but we also acknowledge believable char-
acter behavior is more than simply seeking higher utilities.
Parallel work is using Sabre to expand our definition to in-
clude emotion and personality (Shirvani and Ware 2020).

Pre-Processing and Simplification
Sabre does several pre-processing steps before planning be-
gins. Recall that actions can have an infinite number of re-
sults. Fortunately, there are a finite number of preconditions
that ever need to be checked—those that appear in event pre-
conditions, action observation functions, effect conditions,
and utility conditions. As long as Sabre calculates all rele-
vant results (i.e. all results that would affect this finite list of
preconditions) it can be sound. During pre-processing, Sabre
does this, adding explicit effects to actions so that all rele-
vant results are accounted for.

The astute reader may also notice a challenge that arises
when dealing with triggers and beliefs. Triggers are not only
checked in the current state s, but also in every character’s
beliefs. Consider an example trigger, where x and y are
shorthand for any two literals:

Example trigger t:
PRE(t) = x ∧ ¬y
EFF(t) = > → y

103

Algorithm 1 The Sabre algorithm
1: Let A be the set of all actions defined in the domain.
2: SABRE(cauthor , s0, ∅, s0)
3: function SABRE(c, r, π, s)
4: Input: character c, start state r, plan π, current state s
5: if u(c, s) > u(c, r) and π is non-redundant then
6: return π
7: Choose an action a ∈ A such that s |= PRE(a).
8: for all c′ ∈ CON(a) such that c′ 6= c do
9: Let state b = α(a, β(c′, s)).

10: if b is undefined then return failure.
11: else if SABRE(c′, b, ∅, b) fails then return failure.
12: return SABRE(c, r, π ∪ a, α(a, s))

And imagine c is a character and the state is:

x ∧ y ∧ b(c, x) ∧ b(c,¬y)
The trigger does not apply in this state, but it does apply in
β(c, s). The state should immediately transition to:

x ∧ y ∧ b(c, x) ∧ b(c, y)
The above procedure defining α fails to capture this case.
Even if it did, since Sabre does not limit how far theory of
mind can be nested, it is difficult to know how many lev-
els of beliefs need to be checked to make sure all triggers
have been applied. We previously proposed a solution to this
problem (Shirvani, Ware, and Farrell 2017), but it requires
graph isomorphism checks. Sabre works differently.

During pre-processing, for every character c, if there exist
a trigger t with the effect p → g, and b(c, g) is in the set of
all possible preconditions, a new trigger t′ is generated with
PRE(t′) = b(c, PRE(t)) and EFF(t′) = b(c, EFF(t)). This en-
sures triggers also account for all relevant effects. To use the
earlier example:

Original trigger t:
⇒

New trigger t′:
PRE(t) = x ∧ ¬y PRE(t′) = b(c, x) ∧ b(c,¬y)
EFF(t) = > → y EFF(t′) = > → b(c, y)

The preconditions of these new triggers may add to the set of
all possible precondition literals, so the process is repeated
until no new triggers are needed. It is possible to construct
triggers that would cause this process to run infinitely, in
which case we would need to revert to our previous graph-
based solution, but in practice we have never encountered
such a domain.

Sabre also uses methods adapted from other planners
(Hoffmann 2003; Helmert 2006) to simplify the problem by
detecting propositions which must always be true or false.
This sometimes allows the removal of fluents, actions, and
triggers from the domain to reduce the time and memory re-
quired during search.

Search
Sabre’s search procedure is given in Algorithm 1. It takes
four inputs: the character c for whom we want to find a plan,
the state r where the search began, a plan π, and the current
state s. The plan π is the sequence of actions that can be
executed from r to reach s. SABRE can find a plan for any
character from any state. The initial call to SABRE (line 2)

uses the special author character cauthor, the initial state of
the problem s0, and the empty plan ∅.

SABRE starts by checking if the current plan is a solution
(line 5). It is a solution if character c’s utility is higher in s
than it was in r and the plan does not contain unnecessary
actions. If the current plan is not a solution, we nondeter-
ministically choose an action a to add to the plan. Before
exploring further, Sabre checks whether that action can be
explained for all the consenting characters other than c (lines
8 to 11). When c is cauthor Sabre needs to find an explana-
tion for all consenting characters. When c is a character, they
must be able to anticipate the cooperation of other characters
who are part of their plan. Tom must expect the merchant
will consent to the buy action to include it in his plan.

There are two cases where a cannot be explained for a
consenting character c′. The first is when α(a, β(c′, s)) is
undefined (line 10), meaning c′ does not think a is possible.
The second is when c′ cannot imagine a plan starting with a
that improves their utility (line 11), so they have no reason
to consent to it. Tom cannot expect the merchant to sim-
ply give him the medicine, because it wouldn’t improve the
merchant’s utility. If the action can be explained for all con-
senting characters besides c, we add a to the plan, advance
the current state to α(a, s), and recursively call SABRE.

If the first call to SABRE on line 2 returns a plan, it is a so-
lution to the problem; i.e. it can be executed from the initial
state, leads to a state where the author’s utility is higher, and
all actions can be explained for all characters. SABRE may
not terminate if no solution exists, so in practice we impose
a maximum depth on the search.

Evaluation
Sabre has a unique set of features; it is a centralized planner
that reasons about intentions and beliefs with no limit on the-
ory of mind but without uncertainty. These features are ideal
for the interactive narratives we generate, but they make it
difficult to compare to other systems, so we use benchmark
problems to convey the scope of what Sabre can solve and
an ablation study to motivate its combination of features.

Intentional planners like IPOCL (Riedl and Young 2010),
Glaive (Ware and Young 2014), and the original IMPRAC-
Tical (Teutenberg and Porteous 2013) do not reason about
beliefs, so either Sabre must reason about belief when it is
not required, or the problems are unsolvable by the inten-
tional planners. HeadSpace (Thorne and Young 2017) and
a later version of IMPRACTical (Teutenberg and Porteous
2015) limit theory of mind. Multi-agent systems like Thes-
pian (Si and Marsella 2014) and Talk of the Town (Ryan
et al. 2015) reason about theory of mind but have limited
centralized planning, so they would need to run many times
until they happen to achieve the author’s goal. Ostari (Eger
and Martens 2017) is centralized with intentions and beliefs
but allows true uncertainty, which dramatically increases the
size of its search space. As a test, the smallest example from
the Lovers domain (described below) was implemented and
tested in Ostari, but it quickly ran out of memory before find-
ing any solutions. None of these makes for a fair empirical
comparison.

104

Domain Char. Fluents Actions Triggers Time Visited Generated Sabre Intention Belief
3 3 7 3 7

Raiders (1) 3 21 39 66 1.4 s 905 17,815 3 0 0 0 110
Space (1) 2 16 32 0 6 ms 18 192 2 1 1 1 0

Treasure (1) 3 4 34 0 1 ms 22 288 2 0 0 2 2
Hubris (1) 2 29 14 0 47 ms 58 831 1 0 0 1 2

BearBirdJr (1) 2 13 20 0 14.0 m 290,711 34,084,608 6 0 0 0 110
Lovers (9) 3 111.3 312.0 370.0 40.3 m 126,983 5,198,414 10.0 0.0 0.0 3.2 50.7

Grandma (2) 4 61.0 836.0 896.0 6.2 h 598,577 105,178,466 1.0 0.0 0.0 1.0 13.0

Table 1: Performance on benchmark problems (left) and ablation study solution counts for those problems (right)

Since we cannot make a direct comparison, we demon-
strate the scale of problems Sabre can solve with a suite
of benchmark narrative domains from the literature by sev-
eral authors. Raiders was introduced with Glaive (Ware and
Young 2014) as a problem that requires failed plans and con-
flict; Space is an additional Glaive domain. Since Glaive
domains were authored for a planner that did not support
belief, we added common sense beliefs and triggers (e.g.
characters observe actions that occur in their location, etc.).
Raiders had a pseudo-belief predicate (“knows location of”)
which we replaced with true beliefs. Treasure (Shirvani, Far-
rell, and Ware 2018) and Hubris (Christensen, Nelson, and
Cardona-Rivera 2020) require intentions and wrong beliefs.
BearBirdJr simplifies Sack’s (1992) Micro-TaleSpin version
of Meehan’s (1977) story generator. Lovers was introduced
for belief and intention recognition tasks (Farrell and Ware
2020); this domain is parameterizable, so we randomly gen-
erated 10 instances known to be solvable. 9 were success-
fully solved by Sabre. Grandma is from a recent planning-
based narrative game (Ware et al. 2019) with intention and
belief and has two instances: one where the player wins and
one where the player dies. We will publish these domains
and problems with our modifications in a technical report.

Table 1 shows the number of characters, fluents, actions,
and triggers for the problems in each domain after ground-
ing and simplification. The table shows the time required to
find the first solution for each problem in the domain and the
number of nodes visited and generated by the search. When
a domain has several problems (and thus may have a differ-
ent numbers of triggers, solutions, etc.), we give averages.
We used a deterministic A* version of Algorithm 1 (Pohl
1970), using Bonet and Geffner’s h+ heuristic (2001) on a
Dell Precision 7920 x64 with a 2.1 GHz processor.

Since we cannot compare directly to other planners, we
motivate Sabre’s features via ablation. For our test prob-
lems, we generated all plans at or below a fixed length and
counted which are solutions according to full Sabre, Sabre
with only intention, and Sabre with only belief. Only inten-
tion means characters try to improve their utility, but beliefs
are not tracked and all characters are omniscient; it approx-
imates intentional planners like IPOCL, Glaive, and early
IMPRACTical. Only belief means beliefs are tracked and
characters only take actions they think possible, even if the
actions can’t lead to improving their utility; it approximates
belief-only planners like HeadSpace. The fixed length for a
problem is the min depth at which any Sabre solutions exist.

The right of Table 1 show how many solutions Sabre

found vs. the ablated planners. 3 counts solutions which
were also valid Sabre plans, and 7 counts those which were
valid according to the ablated model but not Sabre. As em-
phasized above, it is unfair to compare these ablated plan-
ners on problems they were not designed to solve. These
numbers do not prove Sabre better than previous planners;
we report them only to motivate reasoning about intention
and belief together. We want to show that one could not,
for example, simply add an extra check on solutions gen-
erated by an intentional planner to get a system that effec-
tively reasons about belief as well. We previously demon-
strated that audiences significantly prefer stories with both
intention and belief and notice flaws when one or the other
is lacking (Shirvani, Farrell, and Ware 2018).

Implementation
The planner and relevant documentation can be found here:

http://cs.uky.edu/∼sgware/projects/sabre

Limitations, Future Work, and Conclusion
This paper describes Sabre, the first narrative planner to sup-
port ADL, numeric fluents, intention, and deep theory of
mind. Though Sabre enables automated story generation, the
general problem of author burden remains; domain authors
must still define fluents, actions, triggers, and utility func-
tions, and debugging narrative planning domains is hard.
Supporting theory of mind enables new stories (Shirvani,
Ware, and Farrell 2017), but adds significant cost above an
intention-only planner. Sabre does not support uncertainty,
which may be necessary for some stories, like murder mys-
teries (Eger 2020).

The most obvious direction for future work is to explore
improvements to the search process via pruning and better
heuristics that account for the beliefs and intentions, an ap-
proach which dramatically improved performance for other
narrative planners like Glaive and IMPRACTical.

Acknowledgments
This work was supported by the National Science Founda-
tion, Grant No. IIS-1911053. All opinions are our own. We
thank Markus Eger for implementing a sample problem in
Ostari to evaluate the suitability of comparing it to Sabre.
We thank Rachelyn Farrell for her help in converting do-
mains to Sabre’s format.

105

References
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1): 5–33.

Brinke, H. t.; Linssen, J.; and Theune, M. 2014. Hide and
Sneak: story generation with characters that perceive and as-
sume. In Proceedings of AIIDE, 174–180.

Cavazza, M.; Charles, F.; and Mead, S. J. 2002. Character-
based interactive storytelling. IEEE Intelligent Systems spe-
cial issue on AI in Interactive Entertainment 17(4): 17–24.

Christensen, M.; Nelson, J.; and Cardona-Rivera, R. E.
2020. Using domain compilation to add belief to narrative
planners. In Proceedings of AIIDE, volume 16, 38–44.

Eger, M. 2020. Murder mysteries: the white whale of narra-
tive generation? In Proceedings of AIIDE, 210–216.

Eger, M.; and Martens, C. 2017. Character beliefs in story
generation. In Proc. of INT Workshop at AIIDE, 184–190.

Farrell, R.; and Ware, S. G. 2020. Narrative planning for
belief and intention recognition. In Proc. of AIIDE, 52–58.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26: 191–246.

Hoffmann, J. 2003. The Metric-FF planning system: trans-
lating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20: 291–341.

Kybartas, Q.; and Bidarra, R. 2016. A survey on story gen-
eration techniques for authoring computational narratives.
IEEE Transactions on Computational Intelligence and Ar-
tificial Intelligence in Games 9(3): 239–253.

Martin, L. J.; Ammanabrolu, P.; Wang, X.; Hancock, W.;
Singh, S.; Harrison, B.; and Riedl, M. O. 2018. Event repre-
sentations for automated story generation with deep neural
nets. In Proceedings of AAAI, 868–875.

Meehan, J. R. 1977. TALE-SPIN, an interactive program
that writes stories. In Proceedings of the 5th International
Joint Conference on Artificial Intelligence, 91–98.

Pednault, E. P. D. 1987. Formulating multiagent, dynamic-
world problems in the classical planning framework. In Rea-
soning About Actions & Plans, 47–82.

Penberthy, J. S.; and Weld, D. S. 1992. UCPOP: a sound,
complete, partial order planner for ADL. In Proceedings of
the 3rd International Conference on Principles of Knowl-
edge Representation and Reasoning, volume 92, 103–114.

Pohl, I. 1970. First results on the effect of error in heuristic
search. Machine Intelligence 5: 219–236.

Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
planning to interactive storytelling: Narrative control using
state constraints. ACM Transactions on Intelligent Systems
and Technology 1(2): 1–21.

Riedl, M. O.; and Bulitko, V. 2013. Interactive narrative: an
intelligent systems approach. AI Magazine 34(1): 67–77.

Riedl, M. O.; and Young, R. M. 2010. Narrative planning:
balancing plot and character. JAIR 39(1): 217–268.

Ryan, J. O.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2015. Toward characters who observe, tell, mis-
remember, and lie. In Proceedings of EXAG Workshop at
AIIDE, 56–62.
Sack, W. 1992. Micro-TaleSpin: a story generator. http:
//lispm.de/source/misc/micro-talespin.lisp. Accessed: 2021-
08-06.
Shirvani, A.; Farrell, R.; and Ware, S. G. 2018. Combin-
ing intentionality and belief: revisiting believable character
plans. In Proceedings of AIIDE, 222–228.
Shirvani, A.; and Ware, S. G. 2020. A formalization of emo-
tional planning for strong-story systems. In Proceedings of
AIIDE, 116–122.
Shirvani, A.; Ware, S. G.; and Farrell, R. 2017. A possible
worlds model of belief for state-space narrative planning. In
Proceedings of AIIDE, 101–107.
Si, M.; and Marsella, S. C. 2014. Encoding Theory of Mind
in character design for pedagogical interactive narrative. Ad-
vances in Human-Computer Interaction .
Teutenberg, J.; and Porteous, J. 2013. Efficient intent-based
narrative generation using multiple planning agents. In
Proceedings of the 2013 international conference on Au-
tonomous Agents and Multiagent Systems, 603–610.
Teutenberg, J.; and Porteous, J. 2015. Incorporating global
and local knowledge in intentional narrative planning. In
Proceedings of the 2015 international conference on Au-
tonomous Agents and Multiagent Systems, 1539–1546.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1-2): 38–69.
Thorne, B. R.; and Young, R. M. 2017. Generating stories
that include failed actions by modeling false character be-
liefs. In Proceedings of INT Workshop at AIIDE, 244–251.
Ware, S. G.; Garcia, E. T.; Shirvani, A.; and Farrell, R. 2019.
Multi-agent narrative experience management as story graph
pruning. In Proceedings of AIIDE, 87–93.
Ware, S. G.; and Young, R. M. 2011. CPOCL: a narrative
planner supporting conflict. In Proc. of AIIDE, 97–102.
Ware, S. G.; and Young, R. M. 2014. Glaive: a state-space
narrative planner supporting intentionality and conflict. In
Proceedings of AIIDE, 80–86.
Ware, S. G.; Young, R. M.; Harrison, B.; and Roberts, D. L.
2014. A computational model of narrative conflict at the fab-
ula level. IEEE Transactions on Computational Intelligence
and Artificial Intelligence in Games 6(3): 271–288.
Weld, D. S. 1994. An introduction to least commitment
planning. AI magazine 15(4): 27–61.
Young, R. M.; Ware, S. G.; Cassell, B. A.; and Robertson,
J. 2013. Plans and planning in narrative generation: a re-
view of plan-based approaches to the generation of story,
discourse and interactivity in narratives. Sprache und Daten-
verarbeitung, Special Issue on Formal and Computational
Models of Narrative 37(1-2): 41–64.

106

