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Abstract—Conflict is an essential element of interesting stories.
In this paper, we operationalize a narratological definition of
conflict and extend established narrative planning techniques to
incorporate this definition. The conflict partial order causal link
planning algorithm (CPOCL) allows narrative conflict to arise in
a plan while maintaining causal soundness and character believ-
ability. We also define seven dimensions of conflict in terms of this
algorithm’s knowledge representation. The first three—partici-
pants, reason, and duration—are discrete values which answer
the “who?” “why?” and “when?” questions, respectively. The last
four—balance, directness, stakes, and resolution—are continuous
values which describe important narrative properties that can
be used to select conflicts based on the author’s purpose. We
also present the results of two empirical studies which validate
our operationalizations of these narrative phenomena. Finally,
we demonstrate the different kinds of stories which CPOCL can
produce based on constraints on the seven dimensions.

Index Terms—Conflict, narrative, planning.

I. INTRODUCTION

C ONFLICT is a key component of interesting stories. Ab-
bott notes that it “is so often the life of the narrative” [1].

Herman et al. go so far as to declare it a “minimal condition for
narrative” [2], while Brooks and Warren even tell us that “story
means conflict” [3]. It serves at least two important functions.
• Conflict structures the discourse: Traditionally, stories in-
troduce a central conflict early. This jars the world out
of equilibrium and causes characters to plot toward the
climax—the resolution of that conflict. Longer stories are
often segmented into chapters based on smaller conflicts.

• Conflict engages the audience: It causes the audience to ask
questions and form expectations about the outcome, which
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propels them forward through the plot [1], [4], even when
the outcome is already known [1], [4], [5].

This agreement on the importance of narrative conflict
throws into sharp relief the lack of computational literature
written on the subject. Narratologists as far back as Aristotle [6]
rely on a reader’s implicit understanding of conflict. Because
machines have no such implicit understanding to fall back
on, a formal model of narrative conflict needs to be distilled
in order to leverage its important properties in automatically
generated stories. Narrative-oriented virtual environments
like role-playing games (RPGs), training simulations, and
interactive tutoring systems often need to adapt their stories in
response to user actions, so these systems stand to benefit from
such a model. A computational formalism can also provide
important insights for the overall project of studying human
narrative cognition.
This paper describes a computational model of plan-based

fictional narrative conflict along with a planning algorithm suit-
able for automatic story generation systems. It also presents
seven dimensions that can be used to differentiate one conflict
from another—participants, reason, duration, balance, direct-
ness, stakes, and resolution.We present the results of two human
subject experiments which demonstrate that our formalization
of these concepts corresponds to the narratological definitions.
Last, we demonstrate how the dimensions of conflict can be used
to constrain the algorithm to produce stories with certain prop-
erties.

II. RELATED WORK

We survey related work in three important areas: computa-
tional narratology, previous narrative generation systems, and
the quantitative analysis of stories.

A. Conflict in Computational Narratology
In our previous work, partial order causal link (POCL) plans

have been useful data structures for representing stories be-
cause they explicitly model action, temporality, and causality
[7]. These are key ingredients for a story’s fabula, as described
by narratologists [4], [8], and they constrain story generators to
produce stories which have a logical causal progression from
one event to the next. POCL plans have been used to model
suspense and surprise [9], task learning in a narrative environ-
ment [10], salience of events in a narrative [11], and other phe-
nomena.
Previous work by Riedl and Young [12] further constrained

POCL planning to produce more believable stories in which
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characters are seen to pursue their personal goals while the story
as a whole moves toward goals defined by the author. In this
formalism, every character’s plan must succeed, and Riedl and
Young identified the need to further extend the model to allow
for conflict via thwarted and failed plans.
Many narratological definitions of conflict focus on the cen-

tral role of actions, plans, and the thwarting of plans [2], [13],
[14]. Egri [13] andDibell [14] distinguish conflict from themore
general notion of tension by specifying that conflict is a prop-
erty of thwarted intentional actions (i.e., plans). Tension is the
general sense of opposition between forces, so while conflict de-
livers tension, it is not the only source. In terms of the belief de-
sire intention (BDI) framework [15], conflict arises from inten-
tions, not desires. Here our work differs from others like Szilas
[16], who defines conflict as opposition between a character’s
actions and moral principles—something we would label as ten-
sion. The definition we have chosen to operationalize is this:
conflict occurs when a character forms a plan that is thwarted
by another event in the story, or would have been thwarted if
the event had succeeded. The thwarting event can be part of an-
other character’s plan (external conflict), part of the same char-
acter’s plan for a different goal (internal conflict), or an accident
or force of nature (environmental conflict).

B. Conflict Generation

As far back as Talespin [17] and as recently as PaSSAGE
[18], narrative generation systems have relied on human authors
to supply the conflict that drives the story. This is also common
in the games industry; most story-based games have a preestab-
lished plot. While stories may branch based on user choices, the
content of these branches is usually also preestablished at de-
sign time.
This method was generalized by systems such as Universe

[19] and Mexica [20], which combined prescripted plot frag-
ments (or plot grammars) to produce whole stories. However,
the general problem of building well-structured plot fragments
from atomic actions remains unsolved. Systems which utilize
prescripted plot fragments rely on their authors to model conflict
implicitly. By making conflict explicit in the model, we gain a
greater ability to reason about this essential phenomenon and
adapt interactive stories.
Smith and Witten [21] generated conflict by casting the pro-

tagonist and the antagonist of a story as competing agents in a
zero-sum game and using the minimax game playing algorithm
to generate stories. This is a principled approach to conflict gen-
eration, but it oversimplifies the antagonist’s motivation. The
antagonist is not simply a malevolent force to make trouble for
the protagonist, but a character with its own goals that should
thwart the protagonist only when those goals require it to do so.
Barber and Kudenko [22] created dramatic tension in their

GADIN system with dilemmas—decisions the user must make
which will negatively affect at least one character. GADIN
detects when these dilemmas are applicable to the story and
applies them to engage the user. However, since GADIN’s
dilemmas arise and get resolved immediately, it is difficult
to model the thematic and extended conflicts that provide
important macrostructural features of a story.

Teaching conflict resolution strategies was a focus for the
Fearnot! [23] and SIREN [24] narrative systems. Both used a
model of conflict based on organizational psychology research,
as opposed to our narratology-inspired model, so they tended
to emphasize different aspects. For example, conflict resolution
games designed to teach real-world skills tend to focus on co-
operation and compromise, whereas fictional conflicts are more
often resolved by competition or trickery.
Our model leverages threatened goals in story plans to rep-

resent conflict. At least two previous systems have used sim-
ilar models. Carbonell [25] described an early model of plans
and counterplans, but it requires detailed situational informa-
tion such as when and how goals interact, plan scripts, counter-
plan scripts, and domain-specific heuristics for selecting which
strategies to apply. By extending the general framework of clas-
sical AI planning we hope to reduce the authoring burden and
benefit from the reusability of narrative planning domains.
Before our model, Gratch and Marsella [26], [27] used

threatened goals to recognize conflict and produce appropriate
emotional responses in affective virtual agents. Our model is
highly compatible with theirs for that reason, but can be dif-
ferentiated because it is explicitly focused on plot generation,
is evaluated by human subjects in a narrative context, and
provides a formal planning algorithm. Since the development
of our model, Battaglino and Damiano [28] have also modeled
conflict as threatened goals.

C. Analyzing Conflict With Metrics
Yannakakis [29] provided a survey of research that measures

human perceptions of story properties like fun and flow in the
context of video games. Peinado and Gervás [30] collected four
metrics from human readers evaluating the quality of stories
produced by their ProtoPropp system: linguistic quality, coher-
ence, interest, and originality. Our approach to the seven dimen-
sions of narrative conflict differs from these because wemeasure
story properties apart from their effects on the reader. Our di-
mensions of conflict answer who? what? when? and how? ques-
tions; they are designed so that readers can agree on their values
even when they disagree on how fun or interesting a conflict is.
At least five story systems have reasoned about conflict quan-

titatively. IDtension [16] assigned each action a “conflict value”
for the degree to which a character is forced to act against its
moral principles. MEXICA [20] measured the tension a reader
perceives at each world state, allowing the system to craft a pat-
tern of rising and falling action. Zambetta et al. [31] specified
the ideal amount of conflict in a story as a system of differen-
tial equations that simulate an arms race scenario. These ap-
proaches are helpful as high-level control for the pace of a story,
but cannot reason about the individual motivations of the partic-
ipants. Gratch andMarsella [26], [27] used the quantifiable met-
rics of character utility and the likelihood of plan success to dif-
ferentiate between conflicts. Our four continuous dimensions of
conflict—balance, directness, stakes, and resolution—are also
defined in terms of utility and likelihood of success, which fur-
ther demonstrates the compatability of our model of plot gener-
ation with their model of affect.
The AI Director of the game series Left 4 Dead [32] mod-

erated the intensity of conflicts by controlling the number and
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frequency of enemies, distribution of powerups, and geography
of levels. The director monitored metrics like the player’s health
and accuracy to measure stress level and create a series of peaks
and valleys in intensity that are similar to popular narratives in
its domain. We provide a model which can generalize to many
domains, but Left 4 Dead is an excellent example of how quan-
tifiable metrics can be used to guide the construction of a story
according to the author’s rhetorical purpose.

III. THE CPOCL MODEL OF CONFLICT

The definition of conflict we have chosen is inherently tied
to intentionality and planning. Our model and algorithm extend
the work of Riedl and Young’s intentional POCL (IPOCL [12]),
which in turn extended the POCL model and algorithm [33].
Weld [34] provides a detailed explanation of STRIPS-style plan-
ning and the POCL algorithm; we reproduce only those defini-
tions which are needed to explain our model.
Throughout this paper, we use a running example set in the

Wild West which includes four characters: Hank (the rancher),
Timmy (Hank’s son), Carl (the shopkeeper), and William (the
sheriff). While the names of the characters were not intended
to provide mnemonic cues for their roles in the story, they were
the names used in the experiments described in Sections VII and
VIII. Since they appear in the screenshots of the experimental
materials, they are preserved here for continuity.

A. POCL and IPOCL Plans

A classical planner solves this problem: given an initial world
state, a goal, and a set of action templates called operators which
have preconditions and effects, find a sequence of steps (con-
crete instances of operators) that can be applied from the initial
state to reach the goal. Fig. 1 gives a small example domain and
problem in which the elements of a classical planning problem
can be seen.
The POCL family of planners produces a partially ordered

sequence of steps and a set of causal links that describe how the
preconditions of every step are satisfied by earlier steps.
Definition 1: A causal link is denoted , where is a

step with some effect and is a step with some precondition
. Step ’s causal parents are all steps such that there exists
a causal link . A step’s causal ancestors are its causal
parents in the transitive closure of the parent relation.
A causal link explains how a precondition of a step is met. In

other words, is true for because made it so. The example
plan in Fig. 2 shows a causal link from step 3 (where Hank steals
the medicine) to step 8 (where Hank uses the medicine to heal
Timmy) that explains how Hank got the medicine.
During planning, it may be possible for a third step to undo

before it is needed.
Definition 2: A causal link is threatened by a step

iff has the effect can occur after (which establishes ),
and can occur before (which needs ).
This notion of threatened causal links is an explicit repre-

sentation of conflict, but it was originally devised for removing
conflict from plans in order to guarantee their success. Our
model works by strategically maintaining certain threatened
causal links while still guaranteeing a plan’s causal soundness

Fig. 1. Example CPOCL problem and domain. Each operator has preconditions
, effects , and consenting characters . Example functions for calculating

utility and are given. This domain uses conditions, disjunctions, and quanti-
fiers as described by Weld [34].

and success, but in order to describe it, we need a model of
intentionality.
Intentional planning further constrains classical planning. It

distinguishes between the author’s goal, which must be true by
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the end of the story, and the goals of individual characters which
can change during the plan. Intentional planning operators are
annotated to describe which characters must consent to a step
before it is taken. An intentional plan is only valid if every step
either achieves some character goal or is the causal ancestor of
such a step. In the example domain, the person taking an item,
?p, must consent to the take step, and it can only be part of a
plan if it achieves one of ?p’s goals or causally contributes to
achieving a goal later.
The IPOCL algorithm groups a plan’s steps into frames which

explain how they relate to character goals.
Definition 3: An intention frame is a five-tuple

where is a character, is some goal that intends to make true,
is the motivating step which has effect intends , is

the satisfying step which has effect , and is a set of steps
taken by to achieve . is called the character’s subplan to
achieve goal . The satisfying step is in , and all steps in
must occur after and be causal ancestors .
Some steps, called happenings, do not require the consent of

any characters. To simplify future definitions, each happening
in a plan is placed in its own intention frame that is intended by
a special character called Fate.
Intentional planning constrains classical planning to create

more believable stories, but these constraints may be too
narrow. For IPOCL, if a character forms a subplan for a goal
then that subplan must succeed. In order to model conflict, we
need to allow for thwarted and partially executed plans.

B. CPOCL Plans

In a conflict POCL (CPOCL) plan, every step has a boolean
flag that is true if the step is an executed step and false if it
is a nonexecuted step. An executed step is one which will be
executed at some point in the story, whereas a nonexecuted step
is one which will never be executed. A nonexecuted step which
is part of a character’s subplan is a step that character intended
to take but was not able to. In Fig. 2, Hank intended to heal
Timmy but that step never occurs.
The existence of nonexecuted steps implies a new constraint

on causal links: a causal link can never have a nonexecuted step
as its tail and an executed step as its head. In other words, a step
which never occurs cannot satisfy the preconditions of a step
which does occur.
Another problem arises when a character adopts a goal that

is already satisfied. If the character wishes the goal to remain
true, we use for the satisfying step a dummy persistence step,
which has one precondition and one effect . Persistence steps
are nonexecuted and ordered to occur at the end of the plan. The
need for persistence steps can be avoided in intentional plan-
ning, but they are essential to conflict planning because they
create causal links that represent how a character intends for a
goal to remain true.
We can now formally define CPOCL plans and conflict.
Definition 4: ACPOCL plan is a five-tuple ,

where is a set of executed and nonexecuted steps, is a set
of binding constraints on the free variables in is a partial
ordering of the steps in , is a set of causal links joining
the steps in , and is a set of intention frames describing the
subplans in .

The extensions of nonexecuted and persistence steps allows
a CPOCL plan to retain certain threatened causal links without
violating the causal soundness of the plan or preventing it from
reaching the author’s goal.
Definition 5: A conflict in a plan is a

four-tuple such that:
• and are characters, possibly the same;
• there exists a causal link threatened by
(henceforth, such a link is a conflict link);

• there exists an intention frame
such that ;

• there exists an intention frame
such that and ;

• either or (or both) is a nonexecuted step.
In other words, a character forms a subplan. Some causal link
in that subplan is threatened by step , and if succeeds, then
’s subplan will fail. If ’s subplan succeeds, then must have

failed. It is also possible that both the subplan and will fail.
This definition aligns with narratological descriptions [2], [3],
[13], [35]. Internal conflict occurs when and a character
thwarts its own plans. External conflict with other characters
occurs when . Conflict with the environment occurs
when or contains only a happening and is thus intended
by Fate.
In Fig. 2, the causal link from step 3 to step 8 that describes

how Hank has the medicine is threatened by step 7 where Carl
takes the stolenmedicine back fromHank. Since step 8 is nonex-
ecuted, this threat does not prevent the plan from reaching the
author’s goal. This example demonstrates how our model al-
lows for the representation of failed plans and conflict in the
intentional planning framework.

IV. DIMENSIONS OF CONFLICT

Our model is intentionally broad in order to cover the di-
verse phenomenon of conflict. In order to differentiate one con-
flict from another, we distilled seven dimensions from narrato-
logical sources which describe various important properties of
conflict. The first three dimensions—participants, reason, and
duration—have discrete values which can be observed directly
in a CPOCL plan. The last four—balance, directness, stakes,
and resolution—have continuous values which require some ad-
ditional context information. These four dimensions are mea-
sured from some character’s point of view; e.g.,
expresses how balanced a conflict involving character is from
’s point of view.
In this section, we assume the conflict as defined in Definition

5. That is, character intends step as part of subplan ,
and character intends step as part of subplan , and step
threatens some causal link in ’s subplan. Note that can be
Fate. We also rely on two additional functions with range
that are already provided by many kinds of narrative systems.
• measures how likely some sequence of actions is
to succeed. Many systems, especially role playing games,
involve statistical models of how likely an action is to suc-
ceed based on chance (e.g., a dice roll).

• measures how satisfied character is with the
state of the world after the sequence of actions occurs.

is the character’s utility before the conflict
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Fig. 2. Example CPOCL plan, which is a solution to the problem in Fig. 1. Numbers next to the steps indicate a valid total ordering. Persistence steps are named
for their persisting goals. Twenty eight causal links from the start step and six persistence steps which are not the tail of a conflict link have been omitted to avoid
clutter. In this story, Timmy gets bitten by a snake, which prompts Hank to travel to the general store and steal medicine from Carl. Hank plans to return to the
ranch and heal Timmy, but this plan is thwarted by sheriff William. In answer to the theft, William travels to the general store and starts a shootout that kills Hank.
Finally, Carl takes the medicine back. For a more complete analysis of conflicts involving Hank in this story, see Section IX.

begins. This function might correspond to a player’s score
or level.

The story in Fig. 2 contains a conflict between Hank and
William that culminates in a shootout. A running analysis of
that conflict will provide examples throughout this section.

A. Participants

The participants of a conflict are and , the two characters
associated with the conflicting intention frames. In the example
conflict, the participants are Hank and William.

B. Reason

The reason of a conflict is the condition which makes the two
subplans incompatible—the label of the conflict link. Textually,
it can be expressed as “ intends step , which requires , but
intends step , which would cause .” For example, Hank

intends to heal Timmy, which requires Hank to be alive, but
William intends to have a shootout with Hank, which would
cause Hank to die.

C. Duration

The duration of a conflict is the span of time during which
both participants intend their incompatible subplans. The steps
of a CPOCL plan are partially ordered, so to calculate duration,
some total ordering is chosen. Let be the index
of step such that the placeholder start step has index 0,
the first step has index 1, the second step has index 2, and so on
until the placeholder end step, which has index . By definition,
all persistence steps also have index .

A story can now be envisioned as a sequence of states.
is the initial state of the story, occurring after the place-

holder start step and before the first step (i.e., the step with index
1). is the state after the first step has occurred, is
the state after the first two steps have occurred, etc. We define
the duration of a conflict as the number of states during which
intends and intends . In order to determine this, we need
to know when intention frames begin and end. The beginning is
simply the state after the motivating step; however, detecting
the end is more complicated.
The end of an intention frame can be thought of as the state by

which a character has abandoned its plan. If all of the steps in an
intention frame are executed, the frame ends once the last step is
executed. If some of the steps in the frame are nonexecuted, the
frame ends after the last executed step. One important exception
to this rule exists: if the first nonexecuted step in a frame is
step of a conflict (the head step of a threatened casual link),
then the intention frame ends after step (the threatening step).
The reason for this exception lies in the nature of conflict: if a
character abandoned a plan because it was thwarted, it should
intend the plan up until the time when the plan gets thwarted.
Let the function return the index of the earliest state by

which intention frame has ended. Also recall that and
are the motivating steps of the two conflicting intention frames.
Now, we can define the duration of a conflict as
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An example will help to make this clearer. Using the total
ordering given in Fig. 2, we see that Hank forms his plan to
heal Timmy right after the snakebite, at . Everything goes
well until Hank steals the medicine from Carl at . This
prompts William to plot Hank’s death, so a conflict begins. It
continues until when William has a deadly shootout with
Hank. Thus, the conflict lasts for states.

D. Balance

Balance measures the relative likelihood of each side in the
conflict to succeed (regardless of the actual outcome). Before
discussing the formula for balance, we need to consider which
steps from the story are relevant.
Let be the steps in plus their causal ancestors, such that

the time index of all steps in is higher than the start time of
the conflict. is only those future steps which need to occur to
carry out the rest of ’s subplan. Let be the same to . These
sets are also used in the definitions for stakes and resolution.
When the head step of a conflict link is a persistence

step, then is simply and
. In other words, when wants some fact to remain true,

the balance of the conflict for is 1 minus the probability that
the opponent will succeed. A more general formula is needed
when not dealing with persistence steps. Assuming that one side
or the other will prevail

The range of is . If is likely to prevail, i.e.,
is close to 1, then balance is high for . If the opponent

is more likely to prevail, then balance is low for .
In the example conflict, is the remaining portion of Hank’s

subplan: to return to the ranch and heal Timmy. Based on the
example function provided in Fig. 1, . William’s
subplan is to travel to the general store and shoot Hank.

because the shootout has only a 50% probability of
succeeding, since Hank also has a gun. Thus,

, which is skewed in Hank’s favor. This makes sense when
we consider that Hank’s plan has no chance of failing as long as
no one interferes, whereas William’s plan might fail even if he
starts the shootout.
A value of 0.5 corresponds to a most balanced conflict from

the point of view of the author, because both participants are
equally likely to succeed.

E. Directness

Directness measures how close the participants are to one an-
other

For simplicity, only two types of closeness are measured in
this domain: physical closeness and family closeness. Other
types can be measured, such as interpersonal closeness [36],
which is high when characters carry out their own plans and
low when characters accomplish their plans vicariously through
other characters. This formula can also be made a weighted

average based on genre expectations. The range of directness
and each form of closeness is .
Hank and William are in the same physical space, but they

are not family. Hence, . STORY C in
Section IX demonstrates a conflict between Hank and his son
Timmy. Because the characters are in the same space and related
to one another, the conflict has the maximum closeness of 1 in
this domain.

F. Stakes

Stakes is the difference between how high a participant’s
utility will be if she prevails and how low it will be if she fails
(which can be estimated by how low it will be if her opponent
prevails)

The range of stakes is . Two factors influence this for-
mula: how much can be gained and how much can be lost. Situ-
ations which are high risk (failure results in a low utility) or high
reward (success results in a high utility) have medium stakes,
while situations which are both high risk and high reward have
high stakes. Like balance, stakes is measured regardless of the
actual outcome.
Hank’s conflict with William has the maximum stakes;

. If Hank succeeds, he and his son will
both live, which would yield . If he fails,
he will die and his son will be left to die of the snakebite, which
would yield .

G. Resolution

Resolution measures the change in utility a participant expe-
riences after a conflict ends. Let be the set of executed steps
from and . In other words, is how the conflict actually
plays out. It may contain some steps from both subplans, but it
cannot contain all steps from both subplans (because they con-
flict)

The range of resolution is .
Timmy was already dying when the conflict began, so

. Hank dies in the shootout, so
. Thus,

, indicating that the conflict ended poorly for Hank.

V. THE CPOCL ALGORITHM

The CPOCL planning algorithm is given in Algorithm 1. It
produces CPOCL plans as described in the previous sections.
This algorithm extends the classical POCL algorithm [33] and
incorporates intentional planning similarly to the IPOCL algo-
rithm described by Riedl and Young [12]. We assumed a func-
tion which returns a set of variable bindings to make

. Line numbers in the descriptions below correspond to
lines in Algorithm 1.
The POCL family of algorithms are a kind of refinement

search [37]. A partial plan is annotated with flaws to indicate
how it is incomplete. These flaws are iteratively fixed until a
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flawless (and thus, complete) plan is found or the algorithm
fails. The root of the search space is the null plan.
Definition 6: A start step has no preconditions, and effects

equivalent to the initial state of the planning problem. An end
step has no effects, and a precondition for each literal which
must be true in the goal state. Start and end steps must be ex-
ecuted steps. A planning problem’s null plan is the partial plan

.
A refinement planner defines a set of flaws and ways to repair

them.
Definition 7: An open precondition flaw indicates that some

precondition of a step has not yet been met by a causal link. It
is a 2-tuple , where is some step in and is a
precondition of such that no causal link in has as its
head and as its label.
Open precondition flaws are repaired by adding a new causal

link to which has as the head (lines 3–10). The tail of
the new link can be either a step already in (line 5) or a new
step created from an operator and added to (lines 6–8). Adding

new steps to may require adding new open precondition flaws
(line 7).
When a new step is added to the plan, it is initially marked as

nonexecuted (line 8). If a causal link is created from a nonex-
ecuted step to an executed step, the tail step and all its causal
ancestors must then be marked as executed (line 10).1 This en-
sures that nonexecuted steps are never used to satisfy the pre-
conditions of executed steps.
When a happening is added to the plan, it is placed in its own

intention frame whose actor is Fate (line 11).
When a step with an effect like intends is added

to the plan, a new intention frame is created with that step as
the motivating step (lines 12–14). CPOCL must later choose a
satisfying step to explain how character goal gets fulfilled.
This need translates into a flaw.

1A complete plan will have only those steps marked as executed that must
occur to achieve the goal. This follows the least commitment paradigm of POCL
planners. It may be possible tomark additional steps as executedwithoutmaking
the plan unsound, and any system using CPOCL is free to do so.
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Definition 8: An unsatisfied intention frame flaw indicates
that a satisfying step has not yet been chosen for an intention
frame. It is a 1-tuple , where is some intention frame.
After a satisfying step is chosen (lines 21–24), the frame must

be populated with all the steps that the character takes in pursuit
of the goal.
When a new causal link is created, it may link a step outside

an intention frame to a step inside an intention frame
. This might indicate that the outside step was taken in

pursuit of the frame’s goal. If so, the outside step needs to be
included in the frame. This need is represented as a flaw.
Definition 9: An intent flaw occurs when a causal link

exists such that, for some intention frame ,
, and is a character who must consent to . It

is a 2-tuple , where is the step which may need to be
included in frame .
Intent flaws can be solved by adding the step to the frame

(lines 26–27) or by ignoring the flaw (line 28). It is necessary
to consider ignoring the flaw to ensure that valid plans are not
missed in the search process, however this decision creates an
orphan. Riedl and Young give a full account of dealing with
orphans [12].
Definition 10: A threatened causal link flaw indicates that the

condition established by a casual link may be undone before it
is needed. It is a 2-tuple , where is a causal
link in , and is a step in which threatens it.
Threatened causal links are fixed by preventing the ordering

(lines 18–19) or by adding bindings to which
prevents the threatening effect of from logically unifying with
(line 20). Note that threatened causal link flaws are not added

for conflict links because they do not need to be repaired (line
29). In fact, since conflict is a desirable property of stories, they
probably should not be repaired.

VI. CHARACTERIZING THE CPOCL SOLUTION SPACE

In order to distinguish CPOCL, we must consider a classical
POCL planner and an intentional (I)POCL planner that does not
support conflict. All define a search through the space of partial
plans, but their solutions contain different data structures (i.e.,
intention frames and nonexecuted steps). In order to compare
the solutions across planners, we consider a plan as only a par-
tially ordered set of executed steps.
POCL planners find all plans which are guaranteed to reach

the goal from the initial state. Intentional planning restricts this
search space to plans in which every nonhappening is taken in
service of some character goal. In an IPOCL solution, either
a character never attempts to achieve a goal or it succeeds in
achieving it.
CPOCL imposes an additional restriction on intentional plan-

ning: every motivating step must have an associated intention
frame. In other words, if a character adopts a goal, it must at-
tempt to achieve it. However, unlike in IPOCL, a character can
fail to achieve that goal. The CPOCL search space is narrower
than POCL’s but broader than IPOCL’s. In short, a CPOCL plan
is guaranteed to achieve the planning problem’s goal, contains
only steps which are taken in service of some character goal

(plus happenings), and contains a subplan to achieve every char-
acter goal, some of which may fail. Plans like the one in Fig. 2
cannot be produced by IPOCL, even when we consider only the
executed steps. Our extensions to planning are valuable not only
because they explicitly represent conflict but also because they
expand the space of stories which can be represented.
Note that CPOCL’s solution space may include plans with no

conflict. If the goal can be achieved without creating any con-
flict—that is, if a solution can be foundwith intentional planning
alone—these plans can appear in CPOCL’s solution space. To
avoid this, the termination condition can specify that a plan must
contain at least one conflict link. However, this may produce sto-
ries in which characters go out of their way to create needless
conflict (from the audience’s perspective). When a problem can
be solved without conflict, it may indicate that the initial state
and goal of the story need to be revised rather than the planner.

VII. VALIDATING THE PLANNING STRUCTURES

Having described the CPOCL model (which encompasses
both the planning structures and the seven dimensions), we wish
to demonstrate that it correctly operationalizes our chosen nar-
ratological definitions. Sections VII and VIII present the results
of two experiments which compare human story analysis to that
provided by our model.

A. Notes on Experimental Design

It is essential to point out that these experiments were not
designed to prove that our definitions of conflict and the seven
dimensions are the only “correct” ones; the correctness of our
definitions lies with the authority of the narratological sources
from which they were derived [2], [13], [14], [35], [38]. We are
only attempting to demonstrate that, given our definitions, we
have created a computational model that represents them accu-
rately at the fabula level. For this reason, subjects were given
short natural language descriptions of conflict and the dimen-
sions. This was purposely done to minimize any disagreement
that might arise because subjects assumed different narratolog-
ical definitions of conflict.
We created the stories for both experiments, rather than using

naturally occurring stories, for several reasons. Creating stories
allowed us to control for content in the fabula (number of char-
acters, length of story, etc.). This was especially important in the
second experiment, which had to reuse characters, places, items,
and actions as much as possible to ensure that subjects did not
prefer one story over another because, e.g., they prefer dragons
over aliens. Creating stories also allowed us to control the dis-
course, which is especially important given that our model is
currently only one of fabula. We intentionally employed a min-
imal translation from fabula to discourse which avoided dis-
course-level techniques such as telling the story out of chrono-
logical order, deceiving the reader, creating suspense, etc. Cre-
ating stories allowed us to control for content in the text as well.
Stories were translated from plans into natural language using
simple text templates to minimize the effect of stylistic writing
and word choice. We were unable to find a set of naturally oc-
curring stories which met all these control requirements, how-
ever when creating these stories we did attempt to use people,
places, things, and plot devices consistent with the genre of each
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story. Leaving aside the need for control, avoiding naturally oc-
curring stories was also important to ensure that subjects were
not already familiar with the stories before the experiments.
We intend to extend this model in many ways in our future

work, including reasoning about conflict at the discourse and
text levels. Once the model has been so extended, we intend to
demonstrate its applicability as an analysis tool for naturally oc-
curring stories, but in its current form we seek only to establish
that it can represent conflict at the most basic level of the fabula
and to establish a clear connection between the independent and
dependent variables via strictly controlled experiments.

B. Design of the First Experiment

The first experiment evaluates the plan-based structure of
CPOCL, along with the three dimensions that can be directly
observed in a CPOCL plan: participants, reason, and duration
[39]. Human subjects were given three short stories and asked to
list all the conflicts they observed. They also answered “who?”
“why?” and “when?” questions for each conflict. The definition
of conflict they were given was: “A conflict occurs when a par-
ticipant plans to do something which might get thwarted later.”
We felt this was a succinct, easy to understand summary of the
action-based definitions of conflict given by Egri [13], Dibell
[14], Herman [35], Herman et al. [2], and others.
We used the data collected to evaluate two hypotheses:
1) subjects will report conflicts similarly to one another;
2) subjects will report conflicts that are similar to those de-
fined by CPOCL when the stories are modeled as CPOCL
plans.

The experiment was conducted online, and subjects were re-
cruited via e-mail and social networking websites. No compen-
sation or incentives were offered. Subjects completed a tutorial
to familiarize themselves with the interface, and then each sub-
ject reported conflicts for all three stories, which were presented
in a random order. The stories took place in three different do-
mains: the American west, a medieval fantasy kingdom, and
futuristic outer space. Twenty seven people responded to the
survey by finishing one or more stories. Of those, 23 subjects
finished all three stories. There were 16 male and 11 female sub-
jects. The most common age range was 26–35. In total, 486 con-
flicts were reported across the three stories. If a subject reported
no conflicts for a story, that subject’s data were not included in
our analysis for that story.
The interface (shown in Fig. 3) allowed subjects to move

backward and forward through time at will. At each moment,
they were shown the story up to that point along with thought
bubbles for each character (including Fate) that describe the
character’s current plan. Because CPOCL is a model of story
fabula, subjects were intentionally given this god’s-eye-view of
the story. This avoided the need for clever discourse techniques
to inform readers of what each character was planning (such as
flashforwards, villain monologs, etc.).
Subjects were asked to list all the conflicts they noticed. A

conflict was reported via a point-and-click interface as a 6-tuple
, which was composed of:

• , the first character;
• , the second character;
• , an action from ’s thought bubble;

Fig. 3. Interface used to report conflicts in the first experiment. The story do-
main is a more robust version of Fig. 1. The top box shows the story up to the
current moment. The bottom box shows the current plans of all characters (with
changes from the previous moment highlighted). The right box allows users
to report conflicts. The user above is reporting a conflict between Hank and
William. Subjects moved conflicts between the start now, started earlier, and
end now groups to report duration.

• , an action from ’s thought bubble that thwarts ’s
plan;

• , the time when the conflict begins;
• , the time when the conflict ends.

This information describes the participants, reason, and duration
of each conflict. The order of participants was ignored; in other
words .

C. Intersubject Agreement

Before evaluating CPOCL, we must establish that subjects
agree among themselves. For this, we used Fleiss’ coefficient.
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TABLE I
FLEISS’ (SUBJECT AGREEMENT) FOR THREE STORIES

Fleiss’ has the property that if subjects agree (with
values closer to 1 representing better agreement), and if
subjects disagree. Fleiss’ assumes three or more subjects are
answering multiple-choice questions, so we must interpret our
data in this fashion. We can define every possible conflict that
could have been reported using the interface as a question that
was implicitly answered as “yes” if the subject reported it, or
“no” if the subject did not report it. However, this will inflate the
accuracy of our results with a preponderance of true negatives
and skew the calculations. Therefore, we define “all possible
conflicts” to mean any conflict that was reported by at least one
subject, which was less than 1% of all conflicts that could have
been reported using the interface. This will reduce the accuracy
of our results but provides a fairer evaluation of the model.
The first column of Table I, labeled “exact,” shows the

values achieved for each story. In all cases, . “Sub-
jects” is the number of subjects who finished that story. “# of ? ”
is the number of possible conflicts (i.e., number of questions) to
which subjects implicitly answered “yes” or “no.”
Many of the conflicts reported by subjects had the same par-

ticipants, same reason, and overlapping (but not exactly the
same) duration. To account for this, we calculated a second set
of values such that these conflicts were considered the same.
The results are shown in the second column of Table I, labeled
“overlap.” In all cases, . Allowing for overlapping
duration reduced the range of reported conflicts by about half
for each story and significantly increased the values.
Based on these results and the interpretations given by

Landis and Koch [40], we conclude that users demonstrated
moderate agreement about which conflicts exist in the three sto-
ries, especially when allowing for overlapping durations. How-
ever, given the subjective nature of Landis and Koch’s inter-
pretations and the vulnerabilities of , Section VII-D presents
additional and perhaps more convincing evidence of agreement.

D. Subject Agreement With CPOCL

In order to evaluate CPOCL’s performance relative to human
subjects, we need to establish which conflicts are considered
correct out of all the ones reported. For each story, we must
choose some threshold such that if or more subjects re-
ported a conflict, that conflict is defined as correct for that story.
Choosing a value allows us to evaluate the accuracy of an
individual subject. Keeping in mind that our data can be inter-
preted as a number of questions implicitly answered as “yes” if
the subject sees a conflict and “no” if the subject does not see it,
we define accuracy to be the number of questions answered cor-
rectly divided by the total number of questions answered (con-
flicts with the same participants, the same topic, and overlapping
durations are considered the same).

TABLE II
THRESHOLD VALUES FOR EACH STORY

TABLE III
CONFUSION MATRICES FOR CPOCL’S PERFORMANCE ON TASK 1

TABLE IV
CPOCL’S ACCURACY (ACC.), PRECISION (PRE.)

AND RECALL (REC.) FOR BOTH TASKS

For each story, we chose the lowest value of that maximized
the average accuracy of subjects. These values are given in
Table II in the “ ” column. Consider the Western story as
an example. If we define a correct conflict as one reported by 12
or more subjects (that is, or 48% of subjects), then the
average subject’s accuracy in reporting conflicts is 80%.
is the lowest value of that achieves the highest possible

average accuracy of 80%. We could have chosen as high as
19 and observed the same average accuracy (given in Table II as
“ ”), but since many subjects reported exhaustion during
the experiment, we chose the lowest in order to utilize as much
data from subjects as possible.
As Table II shows, there exists a value for each story such

that the average subject achieves 80% or 81% accuracy. This is
further evidence that subjects agree about which conflicts exist.
To our knowledge, there are no other formal models of nar-

rative conflict which can be directly applied to this sort of data.
Therefore, we compare CPOCL against both a naive baseline
and the performance of the average human subject.
Task 1: For Task 1 we treated CPOCL as a subject and

compared the set of conflicts that it defines to those reported
by humans. The resulting confusion matrices are shown in
Table III. A true positive is a conflict defined by CPOCL that
or more subjects reported. A false positive is a conflict defined
by CPOCL that fewer than subjects reported. A false negative
is a conflict reported by or more subjects that CPOCL does
not define. A true negative is a conflict which was neither de-
fined by CPOCL nor reported by or more subjects. Summary
statistics for Task 1 are presented in Table IV.
CPOCL performs relatively well on this task considering the

extremely low probability of guessing correctly. We define a
random guess as follows: Choose two characters from the story
at random; choose a start and end time at random such that the
start time is less than or equal to the end time; choose two ac-
tions at random such that the first action is from one of the first
character’s intention frames, the second action is from one of the
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Fig. 4. CPOCL’s accuracy versus a naive baseline and the average human sub-
ject. The gray region represents the range of accuracy values for individual sub-
jects. The higher solid black bar represents the average subject accuracy ( one
standard deviation). The lower solid black bar represents the accuracy of the
baseline. The dotted line represents CPOCL’s accuracy.

second character’s intention frames, and both actions occur after
the start time. For all three stories, the chances that a random
guess was correct according to or more subjects was less than
0.02% (about 1 in 5000), even allowing for overlapping dura-
tions.
We can also compare the model’s performance to that of the

average human subject. These results are visualized in Fig. 4.
CPOCL does significantly better than random guessing (a very
naive baseline). For the Western and Space stories, CPOCL’s
accuracy is within one standard deviation of the average subject.
Task 2: We can also evaluate the model by testing how well

it predicts when a given pair of characters is in conflict. For this
task we ask the following question both of human subjects and
of CPOCL: for every state, and for every pair of characters, are
those characters in conflict in that state?
Fig. 5 visualizes the results. True positives indicate that sub-

jects and CPOCL both answered “yes”; true negatives indicate
that both answered “no”; false positives indicate that CPOCL
answers “yes,” but subjects answered “no”; and false negatives
indicate that subjects answered “yes,” but CPOCL answered
“no.” Summary statistics for Task 2 are presented in Table IV.
A naive baseline for this task is to always answer “yes” or

“no” to every question. Of those two, answering “no” yields the
highest accuracy, and answering “yes” yields the highest pre-
cision. We compared CPOCL’s performance to these two base-
line models, and the results are presented in Table V along with
CPOCL’s percent improvement over the baseline.
CPOCL did better on Task 2. It always outperformed the

baseline, was always within one standard deviation of the av-
erage user, and even outperformed the average subject for the
Western and Space stories.

E. Discussion

Some conflicts defined by the model were understandably
counterintuitive to subjects due to a mismatch between how
people think about actions and the knowledge representation of

Fig. 5. Visualization of CPOCL’s performance on Task 2. For each story, the
vertical axis is labeled with the time index of the state. The horizontal axis is
every pair of characters.

TABLE V
PERFORMANCE ON TASK 2 RELATIVE TO NAIVE BASELINES:

ALWAYS “NO” AND ALWAYS “YES”

a STRIPS-style story domain. An example from the Western
story can illustrate this: William intends to take the antivenom
from Hank, but Hank intends to travel back to his ranch. This
conflict arises because the take action requires that both char-
acters be at the same location (in this case, the general store).
If Hank travels to his ranch, he will no longer be at the gen-
eral store and William’s take action will fail. William can still
take the antivenom from Hank, but he can no longer take the
antivenom from Hank at the general store. This suggests that
readers do not think about steps in terms of their exact me-
chanics; rather, they think at a more abstract level where going
to the general store is the same action no matter where the char-
acter is coming from.
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Another potential source of confusion is that the classical
planning model on which CPOCL is built does not support du-
rative actions—that is, all steps are assumed to happen immedi-
ately. A durative action must be represented as multiple actions;
e.g., Timmy is bitten by a snake and then later dies from the
snakebite. In the Space story, two characters intend to stay safe
from natural disasters, but a volcano erupts which is unsafe for
everyone in that area. According to CPOCL, this is the end of
a conflict; Fate won because both characters failed to stay safe
(which caused them to form new plans to go to safe locations).
Subjects recognized these conflicts, but they reported the end as
the time when each character had reached a new safe location.
This seems like the most natural interpretation of the story, so
one future improvement to CPOCL may be the inclusion of du-
rative actions.
Interestingly, no false negatives were reported for any story

in Task 1. Even for Task 2, the only false negatives were due to
the above disagreement about how long the conflict with the vol-
cano should last, not about who was involved or why. In other
words, the conflicts defined by CPOCL are a strict superset of
the correct conflicts reported by subjects. This seems reason-
able given that CPOCL is a model of fabula and does not yet
account for the presentation of conflict at the discourse level.
One important direction of future work will be to discover why
readers notice some conflicts but not others. Certain threatened
causal links are very obvious to subjects, while others (that are
not formally or structurally different) seem not to be obvious
at all. This may have been due to subject exhaustion—the an-
notation process was very taxing—or it might be explained by
discourse phenomena such as how subjects direct their atten-
tion while reading. Some work investigating this is already un-
derway [11].

VIII. VALIDATION OF THE DIMENSIONS

We designed a second experiment to validate the four contin-
uous dimensions of conflict—balance, directness, stakes, and
resolution [36]. Predicting the exact value a subject will report
is difficult considering how sensitive these concepts are to sub-
tleties of interpretation. Simply predicting high or low is easier,
but success would provide less support for our model. We at-
tempted to reach a middle ground by demonstrating that our for-
mulas can rank four stories in the same order as human subjects.
If subjects agree on an ordering, and if that ordering agrees with
our predictions, we assume that our formulas can approximate
these four dimensions of conflict.
The study was conducted via a web interface in which sub-

jects could drag and drop stories from an initial random order
into a sorted order of their choosing. Each subject ranked the
same four stories for all four dimensions. Dimensions were pre-
sented to each subject in a random order. Subjects were re-
cruited via e-mail, social networking websites, and online mes-
sage boards. No compensation was offered. Thirty people re-
sponded: 19 males and 11 females with the most common age
range being 26–35.
An example story is given in Fig. 6. Each story has the same

beginning, takes place in the same domain, involves the same
characters, and centers around a conflict between the reader and
an evil sorcerer. The stories were designed to exhibit a wide

Fig. 6. Sample story for which subjects reported balance, directness, stakes,
and resolution. Each story had the same beginning, but a different middle and
end.

range of values for each dimension. For example, if you fight
the sorcerer yourself, the conflict is more direct than if you ask
the knight to fight for you.When the sorcerer threatens to kill the
prince, the conflict has higher stakes than if he makes no threats.
This experiment does not require a commitment to specific for-
mulas for and as long as those formulas pro-
duce the predicted orderings. For example, we assume that the
knight is more likely to succeed when he has a sword and armor
than when he has just a sword and no armor. It is not necessary
to measure the exact difference in between the two stories.
The content of the stories was structured so that, given the

orderings for each dimension predicted by our formulas, no two
stories would appear at the same index for the same dimension.
That is, the second most direct story was never ranked second
for any other dimension. Subjects were not told of this con-
straint. It was imposed in an attempt to avoid conflating dimen-
sions. For example, if our formulas assigned the same ordering
to balance and stakes and subjects ranked stories in that order for
both dimensions, it would be impossible for us to know whether
they perceived balance and stakes as two different phenomena
or if they were conflating the two.
In order to avoid confusion from vocabulary, the dimensions

were not given names in the study. Subjects were simply given
short natural language descriptions of each dimension (given in
Fig. 7) and asked to sort the stories.
We evaluated two hypotheses:
1) subjects will rank stories similarly to one another;
2) subjects will rank stories similarly to our metrics.

A. Analysis

The data collected from each subject was an ordering of four
stories for each dimension. The task of choosing an ordering is
similar to classification, but two orderings can still be substan-
tially similar even if they are not exactly identical. This pre-
cludes the straightforward application of standard agreement
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Fig. 7. Definitions of the four dimensions given to subjects for the second ex-
periment. Subjects were not given the names of the dimensions, only the de-
scriptions.

measures like Fleiss’ . To account for similarity between re-
sponses, we used Kendall’s distance [41] to compare order-
ings. counts the number of pairwise differences between two
lists. In the study of sorting algorithms, distance is sometimes
called “inversion count” and is a standard measure of sorted-
ness.
Formally, let just when is the first ele-

ment in ordered set just when is the
second element in ordered set , etc. Given two ordered sets
and , an inversion is an ordered pair of elements

such that and
. This means that is ordered before in , but

is ordered after in . The distance between two ordered
sets can be expressed as and is equal to the number of
inversions that exist between and . Kendall’s distance is
symmetric, meaning . When comparing
two orderings of length 4, the minimum distance is 0 (which
means both orderings are the same), and the maximum dis-
tance is 6 (which means that one is the reverse of the other). If
we fix and choose at random, assuming that all 24 per-
mutations of the four stories are equally likely, then on average
there will be a distance of 3 between the two orderings.
To determine the most popular ordering for each dimension

based on the data submitted by subjects, we measured the
average distance for each of the 24 possible permutations
of the four stories. For a given dimension of conflict, let

be the orderings chosen by the subjects for

TABLE VI
BHATTACHARYYA DISTANCE BETWEEN OBSERVED DISTRIBUTIONS COMPARED

TO PERFECT AGREEMENT (PERFECT), RELATIVE AGREEMENT
(REL. AGREE), AND DISAGREEMENT (DISAGREE)

that dimension (here, ). Let be all 24 possible order-
ings of the four stories. For each possible ordering, , its
average distance is

Consider four stories, A, B, C, and D, and let
A B C D , the first of the 24 permutations in . To cal-
culate for for the dimension of balance, we calculate
A B C D for all 30 orderings that were reported by

the 30 subjects for balance; then we average those 30 values.
An ordering’s can be thought of as its average distance
from all the reported orderings. When an ordering’s is
low, that ordering is more popular—it agrees more with the
orderings reported by subjects. If all 30 subjects had reported
the same ordering, its would be 0.
The most popular orderings according to subjects for each

dimension are

B. Intersubject Agreement

Before evaluating our metrics, we must demonstrate that sub-
jects agree among themselves. Since there is no clear application
of Fleiss’ coefficient to measure agreement for these data, we
express agreement by comparing our data to distributions rep-
resenting agreement and disagreement, shown in Fig. 8.
• Perfect agreement: If subjects agreed completely with one
another, they would all report the same ordering for a di-
mension. The average number of inversions across all sub-
jects is 0 for this distribution. We can think of the average
number of inversions as the amount of disorder in this dis-
tribution; in this case, there is no disorder because every
subject agrees exactly with every other subject.

• Relative agreement: Given the subjective nature of how
people perceive stories, we feel it may be impossible to
achieve perfect agreement for a large group of subjects. It is
more realistic to compare against a distribution which indi-
cates high (but not perfect) agreement. We chose one such
distribution (given in Fig. 8) which assumes that two thirds
of the subjects will choose the most popular ordering, and
then the function will decay exponentially by 3 from there.
The average number of inversions across all subjects (i.e.,
the disorder) is 0.47 for this distribution.
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Fig. 8. Observed distributions for each dimension. These histograms show how
many subjects ( -axis) chose an ordering that was some distance ( -axis)
away from the most popular ordering for each dimension.

• Disagreement: If there is complete disagreement on the
best ordering, we would expect answers to appear as if they
were given at random. This would result in a uniform dis-
tribution across the 24 possible permutations for the four
stories. That uniform distribution, when plotted as dis-
tance from the most popular ordering, is a roughly normal
distribution (as seen in Fig. 8). The average number of in-
versions across all subjects (i.e., the disorder) is 3 for this
distribution.

As a null hypothesis, we assume our observed distributions for
each dimension will fit the disagreement distribution. We tested
this using Fisher’s exact test, which is similar to the test
but performs better for distributions with small expected values
[42]. The -values for these tests are

For all dimensions, , which means there is a statis-
tically significant difference between our data and the disagree-
ment distribution. The null hypothesis is rejected, that is, sub-
jects do not disagree. Now we can evaluate the alternative hy-
pothesis, that subjects agree on the most popular ordering. For
this we employ the Bhattacharyya distance [43], which mea-
sures the distance between two discrete probability distribu-
tions. The Bhattacharyya distance is 0 when two distributions
are the same, and approaches 1 as the distributions become less
similar. Table VI gives the Bhattacharyya distances between our
observed distributions and the perfect agreement, relative agree-
ment, and disagreement distributions.
The dimensions for directness and resolution are more similar

to the perfect agreement distribution than to the disagreement
distribution; however, the dimensions of balance and stakes are
more similar to disagreement than to perfect agreement. All four
dimensions are most similar to relative agreement. These results
support our hypothesis that subjects agree among themselves on
a correct ordering for the four dimensions, especially for direct-
ness and resolution.

C. Subject Agreement With Our Metrics

For each dimension of conflict, Table VII presents the six
orderings with the lowest (the top six best orderings for
that dimension according to subjects). Table VII also shows the
ordering with the highest (the worst ordering according to
subjects) for each dimension. The orderings predicted by our
formulas are highlighted in gray. For the dimensions of balance,
directness, and resolution, the ordering predicted by our formula
has the lowest . For the dimension of stakes, the ordering
predicated by our formula has the fifth lowest , but this is
only 0.6 inversions away from the most popular ordering. These
data support our hypothesis that subjects will rank stories in the
same order as our metrics.

D. Discussion

These results are promising, especially for balance, direct-
ness, and resolution. Several factors may account for what dis-
agreement we did observe.
First, subjects may have misunderstood the dimension de-

scriptions, which were intentionally brief and targeted at a high
school reading level. We performed a pilot study before the ex-
periment which indicated some confusion about these descrip-
tions, especially stakes. We improved the descriptions with pilot
study feedback. Subjects may also have misunderstood the sto-
ries themselves. At least one indicated a misunderstanding of
the outcome of STORY D.
We assumed that each dimension could be measured indepen-

dently of the others, but subjects may have perceived synergies
between them. For example, if there was a lot on the line (high
stakes) but there was little chance that the sorcerer would pre-
vail (low balance), subjects might have given the story a low
ranking for stakes. We hope to investigate how dimensions in-
fluence one another in future work.
Last, the two dimensions that showed the least subject agree-

ment—balance and stakes—require the subject to measure them
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TABLE VII
TOP SIX AND BOTTOM ONE ORDERINGS FOR DIMENSIONS BASED ON (PREDICTED ORDERINGS IN GRAY)

independently of the actual outcome of the story. If the protago-
nist appears likely to prevail, balance should be high regardless
of whether he or she actually does succeed. At least two subjects
had difficulty ignoring their knowledge of the actual outcome of
the story. In future versions of this study, rather than ask sub-
jects to ignore the ending, we intend to leave the ending out to
avoid any bias introduced by their foreknowledge.

IX. STORY GENERATION WITH CPOCL

Having described a model of conflict and demonstrated that
it operationalizes our definition, we now explore the expressive
capabilities of the algorithm.
The CPOCL algorithm defines a space of solution plans con-

taining conflict, and the seven dimensions of conflict provide
a means of guiding the search toward different kinds of stories.
Recall the simple problem and domain introduced in Fig. 1 from
Section III. Three different solutions2 are given in Fig. 9. Each
onemeets different authorial constraints. For brevity, we present
only those conflict links involving Hank and measure the di-
mensions from Hank’s point of view. All three stories begin the
same way: Timmy is bitten by a snake, which prompts Hank to
steal medicine from the general store.
STORY A is the shortest plan which also contains a conflict

with a balance of 0.5 (recall that 0.5 is the “most balanced” from
the author’s point of view). This is due to the shootout between
Hank and William, which is balanced because both parties are
armed.
STORY B is the shortest plan which also contains a conflict

with the highest possible stakes of 1. It is nearly identical to
STORYA, but steps are ordered differently and different steps are
marked as executed. These changes result in different kinds of
conflict. When the shootout occurs before Hank makes it home,
the stakes of the conflict with William increase because more is
on the line, namely that Hank will not be able to heal Timmy.
STORY C is the shortest plan which also contains a conflict

with the highest possible directness of 1. Hankmanages to elude
William only to get bitten by a snake himself. Now he is faced
with an internal conflict: use the medicine to heal himself or
to heal his son. A corresponding highly direct external conflict
exists with Timmy for the same reason.

2After the story is planned, we assume that any nonexecuted steps which can
be marked as executed are marked as such.

For this problem and domain, it is impossible for any conflict
to have a resolution of 1 from Hank’s point of view because a
character cannot return to life after dying. Likewise, no conflict
can have a resolution of . Even if both Hank and Timmywere
bitten by snakes at the beginning, this would be two conflicts
with resolutions of and for Hank, respectively.

X. FUTURE WORK

The larger context of this work is that of extending planning
models to represent and reason about essential narrative phe-
nomena. IPOCL extends POCL by modeling character inten-
tionality, which enabled CPOCL to further extend that model
to represent conflict. CPOCL is not necessarily intended as a
finished story generation system in and of itself, but rather an
important step forward for the larger project of plan-based story
reasoning. This model does not yet address many other impor-
tant narrative phenomena, so, in this section, we discuss some
of the more important directions for future work.

A. Limitations of the Fabula Model

The example stories in Section IX make the limitations dis-
cussed in Sections VII-E and VIII-D clearer. The 11th and 12th
conflict links in STORY C appear the same, but they are not.
Hank’s plan to heal Timmy threatens his plan to heal himself
and his plan to heal himself threatens his plan to heal Timmy.
The subplans mutually thwart each other, so it seems intuitive
to group these conflicts together into one entity. But grouping
conflict links is not always a straightforward process.
The fourth and fifth conflict links in STORY B also appear

the same, but William’s shootout threatens Hank’s plan in two
ways: he cannot travel back to the ranch if he is dead, and he also
cannot heal Timmy if he is dead. The first experiment tells us
that human readers are likely to report the latter conflict but not
the former. We do not, however, expect readers to believe it is
possible to travel home after being killed. A likely explanation
for this disparity is that readers have grouped these conflict links
conceptually.
Rather than consider conflicts at the fine-grained level of

threatened causal links, it may be intuitive to reason only at the
level of subplan pairs or character pairs. The difficulty here is
deciding how to describe a group of conflict links which may
all have different dimension values. A human with semantic
knowledge about American Westerns may recognize which
conflict links are the most important in a group, but there is
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Fig. 9. Three Western stories generated by CPOCL for the problem and domain in Fig. 1. Bold steps are executed; nonbold steps are nonexecuted. Next to
each story is a table showing all conflicts involving Hank along with the participants, reason, duration (Dur.), balance (Bal.), directness (Dir.), stakes (Stk.), and
resolution (Res.) from Hank’s point of view.

nothing inherent in the structure of a CPOCL plan to signify
this.

B. Reasoning About Discourse

Currently the CPOCL model is concerned only with fabula,
so the most important direction for future work will be the
ability to reason about conflict at the discourse level. Discourse
techniques (such as telling a story out of order, deceiving the
audience, etc.) can have a significant impact on which conflicts
are salient to the audience and on perceived dimension values.
The first experiment demonstrates that the structure of a story

can indicate a superset of conflicts that readers actually perceive.
We suspect that psychological research on how an audience at-
tends narrative content during the reading process [44] will pro-
vide a foundation for modeling which conflicts, of the many de-
fined by CPOCL, are most apparent to the reader. Initial work
on this is already underway [11].
It will also be interesting to investigate how imperfect infor-

mation affects the perception of the dimensions. In Star Wars:
The Empire Strikes Back, the audience learns that Darth Vader

is Luke Skywalker’s father, and this new information changes
their perception of the directness of the conflict between Luke
and Vader. This fact was always true at the fabula level, but
withholding this information until later in the discourse allows
the filmmaker to achieve a different effect on the audience.

C. Planning Heuristics

Regarding the algorithm, the most significant limitation is the
difficulty inherent in providing effective heuristic guidance to
the planner during search. All planners work by building partial
plans into complete plans (though what constitutes a “partial
plan” differs between algorithms). Conflict as we have defined
it is a property of sequences of actions, and only until both se-
quences are fully constructed can the dimensions of that con-
flict be measured. Thus, it is difficult to evaluate the dimension
values of conflicts in a partial plan. This is true both of POCL-
style planners and of state–space planners, which have a dif-
ferent but equally problematic set of unknowns when building
a partial plan [45].
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XI. CONCLUSION

Conflict is an essential phenomenon in narrative. Previous
work in plan-based models of narrative have focused on pro-
ducing coherent stories in which characters act intentionally.
The CPOCL model and algorithm extend this work based on
narratology research to allow for conflict by reasoning about
threatened causal links that arise between subplans. CPOCL
also defines seven dimensions of conflict which aid in story
analysis and can be used by authors to guide the output of a
story generator.
The CPOCL model and dimensions have been empirically

evaluated to demonstrate that they correctly operationalize our
chosen narratological definition. These experiments also reveal
the limitations of CPOCL and the need for further work, espe-
cially in the area of semantic understanding and discourse rea-
soning. In conclusion, we believe this work represents progress
toward the goal of empowering computer systems to automat-
ically create and adapt plots based on the appealing structural
properties that conflict provides.
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