
CPOCL: A Narrative Planner Supporting Conflict

Stephen G. Ware and R. Michael Young
sgware@ncsu.edu, young@csc.ncsu.edu

Liquid Narrative Group
Department of Computer Science
North Carolina State University

Raleigh, NC 27695

Abstract

Conflict is an essential element of interesting stories,
but little research in computer narrative has addressed
it directly. We present a model of narrative conflict in-
spired by narratology research and based on Partial Or-
der Causal Link (POCL) planning. This model informs
an algorithm called CPOCL which extends previous re-
search in story generation. Rather than eliminate all
threatened causal links, CPOCL marks certain steps in a
plan as non-executed in order to preserve the conflicting
subplans of all characters without damaging the causal
soundness of the overall story.

Introduction
Narratologists (Brooks and Warren 1979; Egri 1988; Ryan
1991; Abbott 2008) and researchers in computer story gen-
eration (Meehan 1977; Szilas 1999; Barber and Kudenko
2007) agree that conflict is an essential property of interest-
ing stories. Abbott claims that “conflict structures narrative”
(2008, p. 55), while Brooks and Warren state that “story
means conflict” (1979, p. 65). Despite this universal agree-
ment, little research has been devoted to modeling conflict
in either field.

In this paper, we present a formal model of narrative con-
flict along with a story generation algorithm based on Partial
Order Causal Link (POCL) planning. A precise understand-
ing of this phenomenon will further empower narrative sys-
tems to generate engaging plots and adapt interactive stories.

Related Work
Historically, most conflict that occurs in commercial story-
based games has been crafted by hand at design time rather
than procedurally created at run-time. Most research on nar-
rative generation that has included conflict as a component
(ranging from early work by Meehan (1977) to more re-
cent work by Thue et al. (2008)), relies on human authors
to supply the conflict that drives the story. Systems like
Universe (Lebowitz 1985) and Mexica (Perez ỳ Perez and
Sharples 2001), for example, combine pre-scripted plot frag-
ments (or plot grammars) to produce whole stories. How-
ever, systems which rely on pre-scripted plots or plot frag-
ments model conflict implicitly. As a result, these systems

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

may be challenged to reason about conflict at a the level of
detail needed to ensure causal and intentional consistency.

One approach for reasoning about conflict would be to
generate stories via adversarial planning or a zero sum
game-playing algorithm as suggested by Smith et al (1987).
This approach views antagonists as malevolent forces de-
signed only to make trouble for the protagonist. Ideally, they
would operate intentionally in pursuit of their own goals and
thwart the protagonist only when required to do so.

Zambetta, Nash, and Smith (2007) model conflict in sto-
ries as a system of differential equations that simulate an
arms race scenario. While this may be helpful as high-level
control for the pace of a story, it cannot explain the individ-
ual motivations of the participants.

Barber and Kudenko (2007) create dramatic tension in
their GADIN system with dilemmas — decisions the user
must make which will negatively affect at least one charac-
ter. GADIN detects when these dilemmas are applicable en-
gages the user by forcing them to make difficult decisions.
Similarly, Szilas (2003) annotates actions in his IDtension
system with a “conflict value” that measures the extent to
which a character is acting against its morals.

These methods represent progress toward encoding an un-
derstanding of conflict into the story generation process.
However, dilemmas are a small subset of the conflicts avail-
able to story writers. They arise and get resolved immedi-
ately, making it is difficult to model the thematic and ex-
tended conflicts which provide important macro-structural
features of the story.

POCL Planning and Intentionality

In this paper, we present definitions and descriptions that
span 3 algorithms: a conventional POCL-style planner, an
intentional planner, and a conflict planer. The later two plan-
ning systems build upon the definitions provided by their
predecessors in this discussion. Due to space limitations,
only the conflict planner is presented in pseudo code, but
all the elements of its predecessors are clearly marked.

POCL plans have proven to be effective data structures
for representing stories because they explicitly model the
events of a story along with the casual and temporal re-
lationships between them (Young 1999). These plan data
structures can also effectively serve as proxies for the men-
tal models formed by people reading a narrative or watch-

97

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



Algorithm 1 The CPOCL (Conflict Partial Order Causal Link) Algorithm
CPOCL (P = 〈S,B,O,L, I〉, Λ, F )
P is a plan, initially the null plan; Λ a set of intentional operators; F a set of flaws, initially open precondition flaws for each
end step precondition and unsatisfied intention frame flaws for each start step effect like (intends a g).

1: Termination: If B or O is inconsistent, fail. If F = ∅ and P has no orphans, return P . Else, fail.
2: Plan Refinement: Choose a flaw f ∈ F . Let F ′ = F − {f}.
3: Goal Planning: If f is open precondition flaw f = 〈sneed, p〉, let sadd be a step with an effect p.
4: Choose sadd in one of two ways:
5: Reuse: Choose sadd from S.
6: New Step: Create sadd from an operator in Λ with effect p. Let S′ = S + {sadd}.
7: For each precondition c of sadd, add new open precondition flaw 〈s, c〉 to F ′.
8: Mark sadd as non-executed.
9: Link: Create causal link l = sadd

p−→ sneed. Let L′ = L+{l}, B′ = B∪MGU1(e,p), O′ = O+{sadd < sneed}.
10: Execution Marking: If sneed is executed, mark sadd and all its causal ancestors as executed.
11: New Frames: For each effect of sadd like (intends a g):
12: Create new intention frame r = 〈a, g, sadd, ∅, ∅〉. Let I ′ = I + {r}.
13: Add new unsatisfied intention frame flaw 〈r〉 to F ′.
14: Intent Flaws: For each intention frame r = 〈a, g, σ,m, T 〉 ∈ I ′:
15: If sadd �∈ T and sneed ∈ T and a ∈ A for sadd, add new intent flaw 〈sadd, r〉 to F ′.
16: Threat Resolution: If f is threatened causal link flaw f =

〈
s

p−→ u, t
〉

, choose how to prevent the threat:
17: Promotion: Let O′ = O′ + {t < s}.
18: Demotion: Let O′ = O′ + {u < t}.
19: Restriction: Add bindings to B′ which cause the threatening effect of t not to unify with p.
20: Satisfaction: If f is unsatisfied intention frame flaw f = 〈r = 〈a, g,m, ∅, T 〉〉, let ssat be a step with effect g.
21: Choose ssat the way sadd is chosen (Reuse or New Step).
22: Let T ′ = T + {ssat}. Let r′ = 〈a, g,m, ssat, T

′〉. Let I ′ = I − {r}+ {r′}.
23: Intent Planning: If f is an intent flaw f = 〈sorphan, r = 〈a, g,m, σ, T 〉〉, choose how to handle sorphan:
24: Inclusion: Let T ′ = T + {sorphan}. Let r′ = 〈a, g,m, σ, T ′〉, I ′ = I − {r}+ {r′}, O′ = O + {m < sorphan}.
25: For each causal link s

p−→ sorphan ∈ L, if a ∈ A for s, add new intent flaw 〈s, r′〉 to F ′.
26: Exclusion: Do nothing.
27: Threat Detection: If any casual link l ∈ L′ is threatened by step θ ∈ S′, add new threatened causal link flaw 〈l, θ〉 to F ′.
28: Recursive Invocation: Call CPOCL (P ′ = 〈S′, B′, O′, L′, I ′〉, F ′, Λ).

ing a story unfold (Christian and Young 2004). In our work,
POCL plans and the algorithms that generate them also pro-
vide us with a precise semantics for conflict in stories and a
well-founded method for creating it.

Plans and Their Parts Essential concepts from least com-
mitment, partial order causal link planning are duplicated
here for reference. For full details, readers are referred to
Weld’s overview (1994).

In our work, a plan is a sequence of steps that describes
how a world transitions from its beginning, or initial state,
to its end, or goal state.

Definition 1. A state is a single function-free ground predi-
cate literal or a conjunction of literals describing what is true
and false in a story world. The initial state completely de-
scribes the world before the start of a plan. The goal state is
a literal or conjunction of literals which must be true at the
end of the plan. The initial and goal states together make up
the planning problem.

Characters, items, and places in the story are represented
as logical constants. The actions which materialize between

1Most General Unifier of logical expressions e and p.

the initial and goal states in a plan are called the plan’s steps.
Actions are created from a library of action operators called
a planning domain.

Definition 2. An operator is a template for an action which
can occur in the world. It is a two-tuple 〈P,E〉 where P is a
set of preconditions—literals which must be true before the
action can be executed—and E is a set of effects—literals
which are made true by the execution of the action (Fikes
and Nilsson 1971). For generality, the literals in an opera-
tor’s preconditions and effects can have variable terms.

Definition 3. An instance of an operator, called a step, rep-
resents an actual action that will take place in a story. Vari-
able terms in a step’s preconditions or effects must each be
bound to a single constant.

Steps in a plan are partially ordered with respect to time.

Definition 4. An ordering over two steps is denoted s < u,
where s and u are steps in the plan and s must be executed
before u.

In order for a plan to be successful, each precondition of
each step in the plan must be true immediately prior to the
step’s execution. A causal link in a plan indicates when one

98



step establishes a condition that is needed by a later step’s
preconditions.

Definition 5. A causal link is denoted s
p−→ u, where s is a

step with some effect p and u is a step with some precondi-
tion p. A casual link explains how a precondition of a step
is met. In other words, p is true for u because s made it so.
Step u’s causal parents are all steps s such that there exists
a causal link s

p−→ u. A step’s causal ancestors are its causal
parents in the transitive closure of the parent relation.
Formally, a plan is a collection of steps and the binding, tem-
poral, and causal constraints over those steps.
Definition 6. A plan is a four-tuple 〈S,B,O,L〉 where S
is a set of steps, B a set of variable bindings, O a set of
orderings, and L a set of causal links. A complete plan is
guaranteed to transform the world from initial state to goal.
Any plan which is not complete is a partial plan.

The POCL Algorithm All of POCL and IPOCL* appear
as parts of CPOCL. Line numbers in parenthesis refer to line
numbers in the CPOCL algorithm (see Algorithm 1).

POCL planning can be viewed as refinement
search (Kambhampati, Knoblock, and Yang 1995), in
which a partial plan is incrementally repaired or refined
until the plan is either complete (and executable) or incon-
sistent (and unrepairable). In this process, a partial plan is
annotated with flaws; each flaw indicates a specific problem
with the partial plan that is in need of repair.

The planning process begins by encoding the start state of
the problem as a placeholder starting step and encoding the
end state of the problem as a placeholder end step.
Definition 7. A start step has no preconditions, and effects
equivalent to the initial state of the planning problem. An
end step has no effects, and a precondition for each literal
which must be true in the goal state. A null plan is the partial
plan P = 〈{s, e}, ∅, ∅, ∅〉.

Typical POCL planning has two kinds of flaws:
Definition 8. An open precondition flaw indicates that
some precondition of a step has not yet been satisfied by
a causal link. It is a 2-tuple 〈sneed, p〉, where sneed is some
step in S and p is a precondition of sneed such that no causal
link in L has sneed as its head and p as its label.

Open precondition flaws are repaired by adding a new
causal link to L which has sneed as the head (lines 3-9). The
tail of the new link can be either a step already in S (line 5)
or a new step created from an operator and added to S (lines
6-8). Adding new steps to S often requires adding new open
precondition flaws (line 7).
Definition 9. A threatened causal link flaw indicates that
the condition established by a casual link may be undone
before it is needed. It is a 2-tuple

〈
s

p−→ u, t
〉

, where s
p−→ u

is a causal link in L, and t is a step in S with effect ¬p, and
s < t < u is a consistent ordering given O.

Threatened causal links are fixed by preventing the or-
dering s < t < u (lines 17-18) or by adding bindings to B
which prevents the threatening effect of t from unifying with
¬p (line 19).

As we will see below, certain threatened causal links en-
code valuable information about conflict.

Intentional Planning

Intentions and Intention Frames One limitation of typ-
ical planning approaches applied to story generation is that
they produce plans in which characters fail to act on their
own intentions. General purpose planning systems may con-
struct plans in which protagonists and antagonists work to-
gether to reach the author’s desired goal state regardless of
personal motivation. This problem was first addressed by
Riedl and Young (2010), who developed a planning system
named IPOCL that creates plans in which every character’s
actions are clearly linked to one or more of the character’s
intentions. We adopt some of Riedl and Young’s definitions
here.

Definition 10. An intention is a modal predicate of the form
intends(a,g) where a is an actor and g is a literal that actor
a wishes to be true.

Operators in an intentional planning domain are annotated
with a list of actors who must agree to carry out that action.

Definition 11. An intentional operator is a three-tuple
〈P,E,A〉 where P is a set of preconditions, E is a set of
effects, and A is a set of actors, or logical terms which rep-
resent characters in the story world. The actors in A must
all consent to the execution of any intentional step, which
is an instance of an intentional operator. Any step for which
A = ∅ is called a happening.

Happenings represent accidents or the forces of nature,
which have no attributable actors. Actions with one actor in
A can be done by an individual (e.g. proposing marriage),
but actions with multiple actors in A require mutual consent
(e.g. getting married).

Intentional planning seeks to answer why and how each
actor works to achieve its goals.

Definition 12. A motivating step is an intentional step
which causes an actor to adopt a goal. It has as one of
its effects an intention—a modal predicate of the form
intends(a,g). A satisfying step is an intentional step
which achieves some actor goal. It must have g as one of
its effects.

The steps which materialize between a motivating and satis-
fying step make up an intention frame.

Definition 13. An intention frame is a five-tuple
〈a, g,m, σ, T 〉 where a is an actor, g is some literal that
a wishes to make true, m is the motivating step with ef-
fect intends(a,g), σ is the satisfying step with effect g,
and T is a set of intentional steps such that σ ∈ T , and
∀si = 〈Pi, Ei, Ai〉 ∈ S, a ∈ Ai (in other words, a must be
one of the consenting actors for every step in T ).

Simply put, an intention frame describes what step caused
an actor to adopt a goal, the steps which that actor took
to achieve the goal, and the step which finally achieved the
goal. We refer to T as an actor’s subplan to achieve a goal.

All happenings are considered to be part of a special in-
tention frame fenv which has the environment as its actor.

99



Definition 14. An intentional plan is a five-tuple P =
〈S,B,O,L, I〉 where S is a set of intentional steps, B, O,
and L are defined as for a POCL plan, and I is a set of in-
tention frames.

The IPOCL* Algorithm IPOCL*, which differs slightly
from Young and Riedl’s IPOCL, extends POCL by manag-
ing a set of intention frames.

When a step with an effect like intends(a,g) is added
to the plan, a new intention frame is created with that step as
the motivating step (lines 11-13). IPOCL* must later choose
a satisfying step to explain how the character goal gets ful-
filled. This need translates into a new kind of flaw:
Definition 15. An unsatisfied intention frame flaw indi-
cates that a satisfying step has not yet been chosen for an
intention frame. It is a 1-tuple 〈f〉, where f is some inten-
tion frame.

After a satisfying step is chosen (lines 20-22), the frame
must be populated with all the steps that the actor takes in
pursuit of the goal.

When a new causal link is created, it may link a step out-
side an intention frame (�∈ T ) to a step inside an intention
frame (∈ T ). This might indicate that the outside step was
taken in pursuit of the frame’s goal. If so, the outside step
needs to be included in the frame.
Definition 16. An intent flaw occurs when a causal link
s

p−→ u exists such that, for some intention frame r =
〈a, g,m, σ, T 〉, s �∈ T , u ∈ T , and a is an actor who must
consent to s. It is a 2-tuple 〈s, f〉, where s is the step which
may need to be included in frame f .

Intent flaws can be solved by either adding the step to the
frame (lines 24-25) or ignoring the flaw (line 26).

It is necessary to consider ignoring the flaw to ensure that
valid plans are not missed in the search process (Ridel and
Young 2010), however this decision creates an orphan.
Definition 17. When, for a step s = 〈P,E,A〉, there exists
and actor a ∈ A, but s is not yet a member of any intention
frames for a, then a is said to be an orphan.

The presence of orphans makes a plan incomplete. Or-
phans cannot be repaired directly, only indirectly while fix-
ing other intent flaws. As such, the presence of an orphan is
not a flaw.

Conflict as Threatened Causal Links
IPOCL* forms plans in which multiple agents act intention-
ally to reach the story’s goal state. CPOCL is an extension of
IPOCL* that explicitly captures how characters can thwart
one another in pursuit of their goals, which is the essence of
narrative conflict (Herman 2002). CPOCL allows thwarted
subplans to fail or partially fail, which addresses a key limi-
tation of IPOCL as identified by Riedl and Young (2010).

Fortunately, POCL algorithms already contain a first-class
representation of conflict: the threatened causal link flaw.
In classical planning, these must be removed to ensure that
a plan is causally sound. CPOCL preserves certain threats,
leveraging the information they provide, without damaging
the causal soundness of the plan. This is possible when cer-
tain steps in the plan are marked as non-executed.

Definition 18. An executable step is defined as a four-tuple
〈P,E,A, x〉, where P is a set of preconditions, E is a set of
effects, A is a set of consenting actors, and x is a boolean
flag. When x = true, the step is an executed step which
will occur during the story. When x = false, the step is
a non-executed step which will not occur during the story.
A happening must be executed—that is, A = ∅ just when
x = true.

This notion of executed and non-executed steps is not
temporal; it is not related to mixed planning and acting.
Executed means “will eventually happen during the story,”
whereas non-executed means “will never happen.” A non-
executed step inside a frame of intention is a step which
some actor intended to take but was unable to take due to
a conflict.

Because non-executed steps never actually occur, their ef-
fects cannot be used to satisfy the preconditions of executed
steps. If a causal link s

p−→ u exists and s is non-executed, u
must also be non-executed.

The presence of non-executed steps means that some
threatened causal links are no longer problematic to the plan.
Definition 19. A conflict in a plan P = 〈S,B,O,L, I〉 is a
four-tuple

〈
a1, a2, s

p−→ u, t
〉

such that:

• a1 and a2 are actors, possibly the same

• there exists a causal link s
p−→ u ∈ L threatened by step t

• there exists an intention frame f1 = 〈a1, g1,m1, σ1, T1〉
such that u ∈ T1

• there exists an intention frame f2 = 〈a2, g2,m2, σ2, T2〉
such that t ∈ T2 and f1 �= f2

• either t or u (or both) are non-executed steps

In other words, one actor forms a subplan that threatens a
causal link in another actor’s subplan, and one of the two
subplans fails (or both fail). Conflicts are a subset of threat-
ened causal links which are not flaws because there is no
chance that they will prevent the plan from proceeding from
initial state to goal.

Internal conflict occurs when a1 = a2 and a character
thwarts its own plans. External conflict with other characters
occurs when a1 �= a2. Conflict with the environment occurs
when f1 = fenv or f2 = fenv .

The CPOCL Algorithm

No additional flaw types are required in addition to those
defined by POCL and IPOCL*.

The start and end steps of the null plan are marked as
executed. When a new step is added to a plan, it is initially
marked as non-executed (line 8). If a causal link forms from
a non-executed step to an executed step, the tail step and its
causal ancestors must then be marked as executed (line 10).

Note that this means the complete plan will have only
those steps marked as executed that must occur to achieve
the goal. This follows the least commitment paradigm of
POCL planners. It may be possible to mark additional steps
as executed without making the plan unsound, and any sys-
tem using CPOCL is free to do so.

100



Figure 1: Example CPOCL Problem and Domain
Initial: single(A)∧single(B)∧single(C)∧

loves(A,C)∧intends(A,married(A,C))∧
loves(B,C)∧intends(B,married(B,C))∧has(B,R)

Goal: married(A,C)

lose(?p,?i)
A: ∅
P: has(?p,?i)
E: lost(?i)∧¬has(?p,?i)

find(?p,?i)
A: ∅
P: lost(?i)
E: has(?p,?i)∧¬lost(?i)

give(?p1,?p2,?i)
A: ?p1 ?p2
P: has(?p1,?i)
E: has(?p2,?i)∧¬has(?p1,?i)

marry(?b,?g)
A: ?b ?g
P: loves(?b,?g)∧loves(?g,?b)
∧single(?b)∧single(?g)
E: married(?b,?g)∧
¬single(?b)∧¬single(?g)

propose(?b,?g)
A: ?b
P: loves(?b,?g)∧has(?b,R)
E: loves(?g,?b)∧intends(?g,married(?b,?g))

Example: A Broken Heart

A brief example of unrequited love will help to illustrate
the CPOCL process and demonstrate the kinds of plans it
produces.

Two men, Abe (A) and Bob (B), both wish to marry
the same girl, Cat (C). Bob has already bought an engage-
ment ring (R), but the author has decided that Abe and Cat
should end up married. Figure 1 expresses these constraints
as a CPOCL problem. The given domain includes 5 actions.
Items can be lost, found, and given away. Note that lose
and find are happenings since they do not require consent
from any agents. Two people can marry, which requires mu-
tual consent. Lastly, a person can propose, causing the other
person to fall in love and intend marriage.

An example of one complete CPOCL solution to this
problem is shown in Figure 2. Most causal links originating
from the start step are not shown to avoid clutter.

Space limitations prevent us from including figures to
demonstrate the construction of this solution, however, we
review the process of constructing the plan here. To start,
CPOCL is called with the initial plan containing just the ini-
tial step, end step, and two empty intention frames motivated
by the start step which must explain how Abe and Bob will
each achieve a marriage to Cat. The initial plan has three
flaws: the open precondition married(A,C) and unsatis-
fied intention frame flaws for the two frames.

The open precondition is repaired by adding a causal
link from a new step: marry(A,C). Since the goal step
is marked as executed, this step must be marked executed
as well. The marry action requires consent from two ac-
tors, so adding this step creates two orphans. It also cre-
ates four new open precondition flaws for its preconditions.
All but one are achieved by causal links from the start step.
loves(C,A) is established by a causal link from a new
step propose(A,C). Adding propose(A,C) also mo-
tivates a new intention frame for Cat which must describe
how she will achieve married(A,C).

Abe cannot propose without a ring. The precondi-
tion has(A,R) is met by a causal link from new step
find(A,R), whose precondition is in turn met by a causal
link from new step lose(B,R).

Figure 2: Example CPOCL Plan

Three intention frames remain unsatisfied. Both Abe and
Cat intend married(A,C), and both of these frames
are satisfied by the existing step marry(A,C). This re-
moves two orphans from the plan. It also creates an in-
tent flaw because a causal link joins propose(A,C) and
marry(A,C). In other words, it may be that Abe proposed
in order to marry Cat. The intent flaw is satisfied by includ-
ing propose(A,C) in Abe’s intention frame, which re-
moves another orphan.

Bob’s intention frame is satisfied by a new step
marry(B,C), which remains non-executed. Its precon-
dition loves(C,B) is satisfied by a new non-executed
step propose(B,C), which creates a new intention frame
for Cat that is subsequently satisfied by marry(B,C).
The step marry(B,C) has effect ¬single(C) which
threatens the causal link that achieves the precondition
single(C) for the step marry(A,C). This threat is
a narrative conflict, not a flaw, because marry(B,C) is
marked as non-executed.

The rest of the plan is constructed according to the
CPOCL algorithm. In the end, only Abe succeeds (thanks
to Bob’s losing the ring).

Comparing CPOCL to POCL and IPOCL*

POCL’s shortest solution to this problem would begin with
Bob giving the ring to Abe. While this plan is causally
sound, it does not make sense for Bob to help his rival.
IPOCL* would fail to solve this problem because the goals
of Abe and Bob cannot both be met. CPOCL is able to
achieve a solution which guarantees causal soundness and
proper character motivation.

When we consider only executed steps, the search space
of plans described by CPOCL is a subset of POCL (con-

101



taining only plans in which characters pursue their indi-
vidual goals) but a superset of IPOCL* (containing plans
in which some character subplans fail). In other words,
CPOCL identifies stories that IPOCL* would ignore that
may be interesting—even essential, given the importance of
conflict. CPOCL accomplishes this by reasoning about how
and when conflict arises at the level of atomic story actions.

Although the non-executed steps are not realized in the
story, they contain valuable information about the inner
worlds of the characters and explain their motivations. They
also represent alternate story paths, which can be helpful in
story analysis or in adapting interactive plots.

Limitations and Future Work

CPOCL allows conflict to arise, but if all characters can
achieve their goals without thwarting one another, these
conflict-free plans will appear as part of the CPOCL search
space. Since conflict is essential to stories, we may with to
disregard these plans. However, doing so can violate expec-
tations about intentionality—agents will be seen to go out
of their way to create conflict where none need exist. One
solution to this problem is to tailor the initial state and goal
state to ensure conflict. Some work on revising story plan-
ning problems to fit more interesting plans is already under-
way (Ware and Young 2010b).

Another major limitation is CPOCL’s inability to search
for conflicts with specific properties. Our definition of con-
flict is broad to cover a broad narrative phenomenon, but
many genres have specific requirements. We have produced
initial work on classifying conflict based on 7 dimensions
(participants, subject, duration, directness, intensity, bal-
ance, and resolution), and intend to use these values to guide
the search process (Ware and Young 2010a).

Lastly, CPOCL does not reason about when an actor
should replan. If a character’s subplan fails, it may need to
form a new plan for the same goal or change its goals. If it
replans every time, the story may never end. If it forms the
same plan over and over the story many seem less believable.
Ongoing work by Fendt (2010) may address this limitation.

Conclusion

In this paper, we described a model of conflict inspired by
narratology research and threatened causal links in AI plan-
ning. The model informs CPOCL, an algorithm which ex-
tends an intentional planner by strategically marking certain
actions as non-executed. CPOCL represents progress toward
automatically producing stories which are causally sound,
reflect believable character actions, and leverage the narra-
tive structure provided by conflict.

Acknowledgments

We wish to thank the National Science Foundation for its
support of this research (award IIS-0915598).

References

Abbott, H. 2008. The Cambridge introduction to narrative.
Cambridge U.

Barber, H., and Kudenko, D. 2007. Dynamic generation of
dilemma-based interactive narratives. In Proc. of AIIDE.
Brooks, C., and Warren, R. 1979. Understanding fiction.
Prentice Hall.
Christian, D., and Young, R. M. 2004. Comparing cognitive
and computational models of narrative structure. In AAAI-
04, 385–390.
Egri, L. 1988. The art of dramatic writing. Wildside.
Fendt, M. 2010. Dynamic social planning and intention
revision in generative story planning. In Proc. of FDG.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
AIJ 2(3/4):189–208.
Herman, D. 2002. Story logic. U. of Nebraska.
Kambhampati, S.; Knoblock, C.; and Yang, Q. 1995. Plan-
ning as refinement search: A unified framework for evalu-
ating design tradeoffs in partial-order planning. AIJ 76(1-
2):167–238.
Lebowitz, M. 1985. Story-telling as planning and learning.
Poetics 14(6).
Meehan, J. 1977. Tale-spin, an interactive program that
writes stories. In Proc. IJCAI.
Perez ỳ Perez, R., and Sharples, M. 2001. Mexica: A com-
puter model of a cognitive account of creative writing. J. of
Experimental & Theoretical AI 13(2):119–139.
Ridel, M., and Young, R. 2010. Narrative planning: balanc-
ing plot and character. JAIR 39:217–268.
Ryan, M. 1991. Possible worlds, artificial intelligence, and
narrative theory. Indiana U.
Smith, T., and Witten, I. 1987. A planning mechanism for
generating story text. Literary and Linguistic Computing
2(2):119–126.
Szilas, N. 1999. Interactive drama on computer: beyond lin-
ear narrative. In AAAI Fall Symp. on Narrative Intelligence,
volume 144.
Szilas, N. 2003. IDtension: a narrative engine for Interactive
Drama. In TIDSE.
Thue, D.; Bulitko, V.; and Spetch, M. 2008. Making sto-
ries player-specific: Delayed authoring in interactive story-
telling. In ICIDS, 230–241.
Ware, S., and Young, R. 2010a. Modeling Narrative Conflict
to Generate Interesting Stories. In Proc. AIIDE.
Ware, S., and Young, R. 2010b. Rethinking Traditional
Planning Assumptions to Facilitate Narrative Generation. In
Proc. of AAAI Fall Symp. on Comp. Models of Narrative.
Weld, D. 1994. An introduction to least commitment plan-
ning. AI magazine 15(4):27–61.
Young, R. 1999. Notes on the use of plan structures in the
creation of interactive plot. In AAAI Fall Symp. on Narrative
Intelligence, 164–167.
Zambetta, F.; Nash, A.; and Smith, P. 2007. Two families:
dynamical policy models in interactive storytelling. In Proc.
of ACIE, 1–8. RMIT U.

102




