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Abstract—This paper describes some of the difficulties inherent in building intelligent educational games, specifically the challenge of

integrating pedagogy with core game play. We introduce a plan-based knowledge representation that provides a novel framework for

infusing the core mechanics of a game with pedagogical content. We describe, in detail, a system that leverages this framework to

dynamically adapt a game to individual learners at runtime.
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1 INTRODUCTION

INTELLIGENT Tutoring Systems (ITS) have advanced to the
point, where many research-based systems exceed the

teaching effectiveness of traditional classroom-based in-
struction [1]. Meanwhile, commercial digital games have
made enormous progress in graphics, human-computer
interaction, and economic impact. Both fields include a
broad diversity of applications and genres, with intriguing
confluences of goals and challenges. Of particular interest to
learning technologists is how learners can be guided in
systems that seek to maximize user autonomy within
bounded structures of pedagogy, simulation, or narrative.
Although detailed studies [2], [3] have been made of
learning techniques exemplified in digital games, there is
little agreement about the rules or best practices that lead to
effective game-based learning.

Cynics of digital game-based learning, or serious games,

have noted that too much emphasis on learning tends to

“suck the fun out” of games, to which the rejoinder is offered

that too much focus on game play “sucks out the learning”

[4]. Simplistic juxtapositions of teaching and game elements

are notoriously disappointing. An understanding of the

fundamental constructs of games, and learning within

games, is needed to build systems that are intelligent, foster

learning, and function as games. We believe that the key

challenge is to integrate learning content with what game

designers describe as the “core mechanics” of each game.
This paper introduces a system, we have named “Annie,”

that uses a novel knowledge representation to integrate

arbitrary sets of learning goals within the core mechanics of

games. Our goal is for Annie to facilitate building games,

where the learning and the fun are so deeply intertwined that

neither can be “sucked out.” The inspiration for Annie is

Anne Sullivan, who taught the blind and deaf Helen Keller

how to communicate with words. Annie will need to cope
with a highly uncertain model of the student’s under-
standing while continuing to gently guide the student
through trial-and-error learning, typical in exploratory
environments, just as Anne Sullivan coped with Helen’s
highly restricted communicative bandwidth and unrest-
rained autonomy.

2 BACKGROUND

2.1 Shared Models of Guided Exploration in Games
and ITS

The goals for guiding players through digital games, as
articulated by game designers, are remarkably similar to the
goals articulated for the guidance of ITS users. Game
designers guide the player along a “golden path” [5] or
“optimal game play corridor” [6] as depicted in Fig. 1.
Increasing challenge at any point in the game increases the
risk of player frustration. If the challenge is too low, the player
may become bored. Some designers stress that the sinuous
shape of the player’s path is as important as its position
relative to the “walls” of the corridor. This serpentine route
produces psychologically desirable rhythms of arousal and
reflection. Game industry insiders generally credit psychol-
ogist Mihály Csı́kszentmihályi’s work on “Flow” [7] as
inspiration for the game industry’s conceptualization of
guided learning. Replicas of the chart shown in Fig. 1
frequently accompany discussions of learning in context of
games [8], [6]. Readers, familiar with learning theory, may
recognize the similarity between the “optimal game play
corridor” and Vygotsky’s “Zone of Proximal Development”
or ZPD [9], [10]. Intelligent tutoring systems adapt to the
individual needs of the learner to maximize the student’s
time in the ZPD.

2.2 Significant Results in Guided Exploration

This encouraging confluence between the corridor that
drives optimal game design, and the ZPD that guides ITS, is
mirrored in an extensive research record. Following the
early 1980’s boom in commercial gaming, Smithtown [11]
and subsequent systems [12], [13], [14] have demonstrated
successful guidance techniques for students in game-based
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learning environments. However, success has been more
limited in exploratory, inquiry-based [15] environments. As
de Jong noted [16], the research community has not yet
settled on a general approach to balance guidance with
student exploration “in such a way that learning is
supported effectively, but the inquiry process is not
reduced to following cookbook instructions.”

Gee describes [2] a fairly cohesive set of learning
principles, used to guide players in commercial games.
Game learning has advanced to the point that most players
ignore game instruction manuals, expecting that the game
itself will provide instruction as necessary. This expectation
is the culmination of an evolutionary process, fueled by the
enormous market pressure within the games industry.
Games that do a good job of guiding new players, sell better
than those that do not.

One of the guidance techniques found in nearly all
games is staggered instruction. Modern games have become
too complex for the game to try to tell players everything
they need to know before play begins. Instead, a boot-
strapping approach is followed. The player is given just
enough overt information and training to get started. As
new challenges are encountered, the player is given
additional information just-in-time to confront those chal-
lenges. “In essence, a game manual has been spread
throughout the early episodes of the game, giving informa-
tion when it can be best understood and practices through
situated experience” [2]. Games often employ ITS-like hints
on demand, and some games present spontaneous hints to
the player. However, in contrast to the help provided by ITS
systems, these hints are often not tightly linked with what
the player is doing at that instant.

A key element of game architecture that enables
staggered instruction is that games are designed as a
hierarchy of circumscribed domains and subdomains. In
exploratory games, the subdomains often conform to
geographic boundaries. For example, the player begins the
game in a safe area of the landscape, devoid of any hostile
entities and cut off from the rest of the game. Usually,
the door or bridge that separates this training ground from
the rest of the game will remain closed until the player has
demonstrated proficiency in the basic survival skills to
move on to the next more challenging area. But modern
games are often clever enough to disguise this training, so
that the players do not feel they are in a “boring” tutorial
mode but feel situated within the game. Thus, there is
synergy between staggered instruction and subdomains.

Another feature of game design that exploits the sub-
domain principle, is check-pointing and saving. Often, a
subdomain is an episode in a game that requires difficult
actions to be performed accurately in a partially ordered
sequence. If the player fails at some point in the episode, the
world is reset to the state it was in when the episode began.
Another way to describe this is that the world state is
automatically saved as the player begins the episode, and
restored as many times as necessary until the player
successfully completes the assigned task. Often, an episode
is divided into multiple “checkpoints,” so that partial
progress to the goal is also saved automatically. Games have
deployed many variations on scaffolding supports for trial-
and-error learning that could prove useful in an ITS context.

What games lack are deep models of the user’s knowl-
edge of the domain. The closest analogue to a student
model is often the user’s inventory of objects and skills, and
the performance history of cleared checkpoints. These are
usually directly tied to particular subdomains, so that once
a user enters a particular portion of the game, the system
knows the user will have certain items in their inventory
and can require those items to be used to make further
progress. The extreme shallowness of these tools for
modeling student knowledge belies the lack of individual
adaptation in games. Instead, the game producers rely on
extensive and expensive play testing to statically calibrate
the potential challenges in the game to reach the widest
possible audience of players.

2.3 Background Summary

Although ITS and games seem to want to do the same
things, their methods are not easily reconciled. Digital
games tend to favor user initiative and autonomy at the
expense of fine-grained adaptation. Games are engineered
to accommodate a broad range of users with the
challenges and help strategies, statically fixed at design
time. ITS researchers try to optimize learning effectiveness
and efficiency through deep user models that dynamically
adjust scaffolds at runtime, based on individual differ-
ences in user performance. ITS systems adapt to subtle
details of learning concepts, but tend to constrain student
initiative and autonomy much more than digital games do.
A prime motivation in our work is to define a framework
that integrates these divergent strategies in such a way as
to maximize the benefits and avoid the disadvantages of
each approach.

3 FOUNDATIONAL PERSPECTIVES ON GAME PLAY

DESIGN: A SCIENCE OF FUN

Even though play is a ubiquitous feature of human culture, it
is difficult to construct a precise, yet universal definition for
“game.” Even more difficult is pinpointing exactly what
makes a game a fun. When college students are taught how
to build digital games, it is common to incorporate portions
of the small but vibrant literature on game and play.
Although these sources do not provide a codified set of
rules that could easily translate into the automated genera-
tion of “fun,” they describe concepts that can be emulated.

In the promisingly titled Rules of Play, Salen and
Zimmerman partition their extensive exploration of games
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into three schemas: rules, play, and culture. In their view,
rules focus on the logical or mathematical structure of the
designed game system, while play describes the human
experience of that system, and culture defines the larger
social contexts in which the game is situated. Play is
predicated by an implicit contract that if the prospective
player adopts a playful or lusory attitude toward the game,
there will be a pleasurable reward. Why is it necessary for
the player to agree to adopt a particular mental attitude to
play a game? Salen and Zimmerman refer to an insightful
description of the game of golf:

Suppose I make it my purpose to get a small round object
into a hole in the ground as efficiently as possible. Placing it
in the hole with my hand would be a natural means to
adopt. But surely I would not take a stick with a piece of
metal on one end of it, walk three or four hundred yards
away from the hole, and then attempt to propel the ball into
the hole with the stick. [17]

Thus, a successful game demands the player acquiesce, to
some extent, to endure arbitrary impediments to the goal.
“In anything but a game the gratuitous introduction of
unnecessary obstacles to the achievement of an end is
regarded as a decidedly irrational thing to do, whereas in
games it appears to be an absolutely essential thing to do”
[17]. The player’s tenuous acceptance of the rules of the
game is why game designers place such high value on
“immersion,” and maintain vigilant focus on the pacing and
delivery of their part of the bargain—fun.

Salen and Zimmerman state that goal of successful game
design is to create what they describe as “meaningful play,”
which, they claim, “emerges from the relationship between
player action and system outcome; it is the process by
which a player takes action within the designed system of a
game and the system responds to the action. The meaning
of an action resides in the relationship between action and
outcome” [18]. Koster echoes this, saying that a key
component of successful games is a solid core mechanics,
which he defines as “an intrinsically interesting rule set into
which content can be poured” [19]. Adams and Rollings
describe the core mechanics of games as “one or more
causally linked series of challenges in a simulated environ-
ment” [20]. The common thread in each of these academic
characterizations is that the core of good games is
embedded in the rules of action, cause, and effect.

Our work extends a well-understood computational
model of action, cause, and effect, both, to drive the
generation of game play elements and to represent the
state of the student’s knowledge of the game world. This
model is built using the language of automated planning,
specifically the STRIPS-style [21] descriptions of actions,
effects, and objects in a planning domain. By using the same
model for both, the game play elements in the world and
our model of the student’s understanding of that world,
Annie is centered on what Salen and Zimmerman describe
as “meaningful play,” which, they claim, arises from a tight
coupling of action and outcome.

4 A PLAN-BASED REPRESENTATION OF THE CORE

MECHANICS OF DIGITAL GAME PLAY

The style of action descriptions, invented for the STRIPS [21]
system in the early 1970s, have continued to form the basis of

much subsequent research in automated planning. Building
on several distinct approaches to integrating automated
planning with game domains [13], [22], [23], [24], we
introduce a general plan-based knowledge representation
that is intended to be applicable to any game domain.

4.1 Operator Descriptions

Fig. 2 depicts a STRIPS-style operator, a schematic descrip-
tion of a family of operators (or tasks) in a standard
planning representation. The name of this operator is
deleteFile. It has two parameters: the initiator of the task
and a fileDescriptor, naming the file to be deleted. Planning
researchers use the convention of reserving the word
“action” to describe a task or operator that has instantiated
with particular set values for the initiator and the
fileDescriptor. Thus, a task description is a schematic
representation of possible varieties of deleteFile actions
that could arise from different variable bindings.

To the left side of the rectangle in Fig. 2 are shown the
two preconditions that must be satisfied before deleteFile

can execute, and shown to the right is its postcondition or
“effect.” Together, these conditions say a file will no longer
exist following the execution of deleteFile, but the file must
first exist and not be inUse before the deleteFile action can
execute. The final condition associated with deleteFile is the
constraint shown above the rectangle that says the object
bound to ?initiator must be the student or player of the
game. Constraints are special cases of preconditions that
can be evaluated at initialization time, because their truth
valuations will remain invariant over the course of
execution of the plan (e.g., variable types like “isStudent”).
Although, space restrictions prevent us from depicting a
more complex example, this representation also supports
hierarchical tasks, that is, tasks composed of subtasks. To
build the model for what the student knows about deleting
files, Annie begins by automatically deriving a set of
metaconditions from the known features of the deleteFile
operator. For example, Annie can generate the following set
of conditions to capture the state of the student’s knowledge
of the deleteFile operator at any point of time:

. hasConstraint(deleteFile, isStudent(?initiator))

. hasPrecondition(deleteFile, exists(?fileDescriptor))

. hasPrecondition(deleteFile,: inUse(?fileDescriptor))

. hasEffect(deleteFile, : exists(?fileDescriptor))

This is precisely the basis for Annie’s model of each
student’s knowledge of all the operators in the game world.

4.2 Student Modeling

The simplest model of the student’s knowledge of the
operators in the domain would register whether the student
“knows about X” or “doesn’t know about X,” where X is
one of the metaconditions that describes the operators in the
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world. This simple model fails to capture the perennially
uncertain nature of student knowledge in an exploratory
environment, where the student’s understanding of the
world evolves gradually. To represent this uncertainty, we
have chosen a rough-grained five-valued scale (High-

lyLikely, Likely, Neutral, Unlikely, HighlyUnlikely) to
represent varying estimates of the likelihood that the
student believes or knows about a particular facet of the
domain, where “Neutral” is the default initial value. Future
work may investigate the usefulness of a more sophisticated
student modeling based on traditional A.I. belief systems,
based on modal logic. By comparison, the current repre-
sentation is impoverished in that it does not allow for
reasoning of “knowing about knowing X.”

To illustrate, in a game that teaches the processes
involved in aerobic cellular respiration, Annie may observe
a student behavior, which implies that the student knows
an effect of the Krebs cycle is the production of CO2 waste,
but may have no information yet on whether the student
knows another effect of the process is the production of
H2O. This could be represented in the student model by
marking the hasEffect condition corresponding to CO2

production of a particular action in the Krebs cycle as
HighlyLikely, while the effect that produces H2O is marked
as a student belief with Neutral likelihood.

This representation may seem unnecessarily complex.
The rules for handling deleteFile could be specified much
more simply. However, our focus is not the individual
operators, but rather their application in the larger structures
of individual plans, and more usefully, the space of all
possible plans that delivers value to Annie in the form of
valuable inferences. To that end, we will skip over some of
the high-level description of Annie to investigate the possible
benefits of plan space exploration for serious games.

4.3 Plan Space Exploration

A potentially difficult paradox for us is that as the student
progresses, Annie gains more and more information about
the state of the student’s knowledge, but has less and less
time remaining to act on these inferences. In order to
characterize how close a student is to achieving important
goals or milestones within the game world, we compute the
game world’s plan space—a directed graph that charac-
terizes the space of all possible plans for a given planning
problem. In this graph, nodes represent (possibly partial)
plans and an arc from one node to the next indicates that
the second node is refinement or more complete version of
the first. Planning algorithms, called plan-space planners [25],
construct plan spaces as part of their search process when
solving a planning problem. Each plan in the plan space
differs, in part, due to the variations in the sequences of
actions they use to achieve their goals. Because the proper
sequencing of actions within a plan relies on valid student
knowledge regarding the tasks involved, Annie can use the
plan space to prioritize and sequence its strategies for
guiding the student toward acquiring the requisite knowl-
edge. Annie does not introduce any new deductive reason-
ing to make sense of the actions in plans, but merely
leverages the power of plans and plan space representations
provided by traditional planning.

For example, Fig. 3 depicts a situation where action B
has completed successfully. The upper case letters repre-
sent actions and lower case letters in the Figure represent
preconditions and effects. The most proximal actions to
consider are those shaded yellow {C, D, E, and G}. Any of
those actions could be executed next, as all of their
preconditions are currently satisfied, i.e., zero intermediate
steps are required before they can execute. This group of
actions can be called “Tier 0.” The next most proximal tier
of actions (Tier1 ¼ fH;Fg: shaded orange) are those whose
preconditions can be satisfied by a causal chain of length
one. Finally, action K is in tier 2, because it cannot execute
until both of its preconditions are satisfied, and the
shortest chain that establishes precondition q is of length 2.
Thus, we have a numerical method (tier numbers) to rank
goal proximity across the plan space. Annie can use this to
diagnose student misconceptions and generate timely
guidance.

Annie is designed to exemplify the strengths of a human
tutor in being extremely attentive to the actions of the student,
deferential to student initiative, but skillful and clever when
intervention is warranted. These are ambitious goals. The
plan space gives Annie a foundation for the generation of
intelligent tutoring behaviors in the context of games.

5 INTEGRATING GAME MECHANICS WITH LEARNING

We have argued that the most successful educational games
tightly integrate the pedagogical elements with game play.
We have shown that the divergent implementation meth-
odologies of ITS and games preclude a facile synthesis, or
“bolting-on” of one with the other. We have presented one
model for a knowledge representation that could help bind
educational content with game play. The goal is the
dynamic generation of game play elements that guide a
player experience that is both educational and fun. What we
have yet to describe are the prevalent approaches to fun in
digital game design.

5.1 Conventional Game Design

Where ITS research strives to adapt systems to the needs of
individuals, the game industry designs a one-size-fits-all
system for an entire population (a.k.a. “target market”).
This requires vast expenditures of time and money,
expenditures that keep increasing as the industry evolves.
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For example, during the design of Halo 2, over 400 test
gamers were brought into Bungee studios for more than
2,000 hours of meticulously recorded and analyzed game
sessions. Analyses included “heat maps” depicting how
much time the different players spent in different parts of
each level, and where players failed to discover “choke
points” in the design of the game. In less than three years,
between the release of Halo 2 and its sequel Halo 3, the
expense of this testing rose by 50 percent, requiring over
3,000 hours of analysis of 600 gamers [26].

This play testing was crucial to learning “if and when
players are getting bored or (as is more often the case)
frustrated,” because “the goal every developer aims for, is
an experience that keeps players in a flow state—constantly
surfing the edges of their abilities without bogging down”
[26]. An additional aspiration of game design is to
encourage players to move along an intentionally circuitous
route to incorporate experiences that positively affect the
player’s enjoyment. Game designers refer to the circuitous
route as the golden path and the most direct route as the
spine. “The spine of any game consists of events that are
absolutely mandatory [...] those elements of the story the
player is guaranteed to experience. Most games have an
entirely linear spine, or a spine that supports a small
amount of flexibility in terms of the sequence of events but
no variation in which events are involved in completing the
game and its story” [27]. In contrast, the golden path
contains additional, nonmandatory game elements that
enhance other aspects of the player’s experience. Perhaps
equally important, however, the golden path enhances the
player’s sense of agency over the events that occur during
game play, and helps disguise the essentially static
structure of the underlying spine.

The static structure of digital games is an old story.
Crawford stated flatly in the mid-1980s that the structures
underlying digital games are no more than “branching tree
structures” [28]. By “tree structure” Crawford refers to a
directed graph, where each node represents a game state,
arcs are actions that result in state transitions, and nodes with
multiple outgoing arcs correspond to choices. Although the
scale and visual sophistication of today’s games dwarf those
of the early era, it is still the case that almost all games are no
more complex than branching tree structures. The problem
with this underlying structure is that it is statically defined at
design time. This requires a time-consuming and expensive
play-testing effort to calibrate the game to a population
(target market) rather than to individuals.

We believe that a plan-based representation can provide
a language to describe simultaneously learning content and
game play. With automated planning techniques, we can
ensure that the spine of the game is traversed while
encouraging the player to explore far beyond the small set
of detours built into a golden path. Through planning, a
widely varied golden landscape unfolds where individual
users can explore a wide variety of experiences tailored to
their particular educational and entertainment aspirations.

The Mimesis [24] and Zócalo [29] systems, upon which
Annie is based, showed that automated planning can be
combined with industry-leading game engines to deliver
dynamically adaptive content. This foundation provides

Annie with the fine-grained control, required for ITS-style
dynamic adaptation. As will be shown in the following
section, Annie’s contribution is a framework that leverages
the teaching principles and conventions proven to be
effective within games.

5.2 Recapitulating Game-Based Learning Through
Planning

The knowledge representation, described in Section 4, is not
meant to be definitive. Other plan-based models could be
constructed, including those based on different theories of
learning. Our immediate interest is not in providing a
perfect model, but rather in proving that a model of this
general type can be used to drive the dynamic generation
and adaptation of learning principles in games.

Gee described a rich set of learning principles evident in
commercial games [2], and Quintana described a frame-
work that described many of the scaffolding techniques
used in exploratory ITS research [15], but neither of these
descriptions lends itself to a generative model. Each leaves
it to the artistic spirit of game or tutorial designers to decide
when, where, and how extensive the computational support
should be.

Annie, however, requires a generative model for game-
based learner guidance. We have built such a model
inspired by the descriptions of Gee and Quintana. To the
extent that this generative model is successful, it will
provide the following capabilities:

1. Synthetic Generation. Each learning principle is
articulated through one or more plan-based tem-
plates to allow automatic generation of game play
elements that embody that principle, rather than
expensive and time-consuming human-authored
design elements.

2. Dynamic Adaptation. A secondary advantage of
synthetic generation is that it allows for generation
to be performed at runtime, where the game can
dynamically adapt to the behaviors exhibited by the
student.

3. Quantifiable Extent. With the ability to generate
and adapt, as needed, comes the capability to
measure or specify the frequency and extent to
which learning principles are realized. In other
words, it provides researchers with a mechanism
to freely vary the prevalence of one principle versus
another and measure the effects.

A detailed examination of the 36 learning principles
articulated by Gee revealed a set of nine of these principles
that appear to be good initial candidates for testing this
generative model. Three of these are described in detail in
the following sections. Space limitations prevent us from
describing all nine in detail. Each description begins with
Gee’s characterization of the principle, followed by our
identification of the quantifiable properties we derive from
the description, and a high-level sketch of generative, plan-
based computational patterns that could be used to
dynamically instantiate the principle in a game.

In Section 6, we describe the core algorithm and provide
a worked example showing how these principles are used
to dynamically construct plan-based learning experiences.
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5.2.1 Discovery Principle

“Overt telling is kept to a well-thought-out minimum,
allowing ample opportunities for the learner to experiment
and make discoveries.”

Quantifiable Properties. We use the term remediation to
describe an action Annie inserts into the game environment
to attempt to correct what it perceives to be a misapprehen-
sion on the part of the student. We can count the number of
remediations applied for each student, the best-case, worst-
case, and average number of remediations required for each
particular knowledge component, and the comparative
frequency of stronger or weaker hints that correspond to
different type of remediations. Across a broad range of
students, these measurements can be used to characterize the
difficulty of different parts of the game world and help
pinpoint areas where more student guidance opportunities
may be required.

Computational Pattern. Remediations are organized in
such a way as to allow software to choose between
successively more explicit modes of instruction. This builds
on extensive ITS research into the optimal selection strategy
between the frequently used guidance options of “Prompt,”
“Hint,” “Teach,” or “Do.”

5.2.2 Multiple Routes Principle

“There are multiple ways to make progress or move ahead.
This allows learners to make choices, rely on their own
strengths and styles of learning and problem solving, while
also exploring alternative styles.”

Quantifiable Properties. Annie can quantify the number
of distinct successful plans, the number of qualitatively
different plans in the plan space, the number of actions that
must be included in any successful plan, or even the ratio of
the number of these critical actions to the mean total
number of actions in successful plans.

Computational Pattern. Annie allows for extensive
mining of the space of potential plans to reveal bottlenecks,
potential for off-task activity, etc., in a way that could be
much cheaper and more extensive than traditional game
design play testing strategies.

5.2.3 Explicit Information On-Demand and Just-in-Time

Principle

“The learner is given explicit information both on-demand
and just-in-time, when the learner needs it, or just at the
point where the information can best be understood and
used in practice.”

Quantifiable Properties. The timeliness of explicit in-
formation can be measured by the duration between when
the information is provided and when it is needed. This can
be compared and contrasted with the number of opportu-
nities for on-demand information in the environment. For
some students or groups of students, Annie may want to
vary how far in advance help can be provided, based on
projected memory persistence of those students. As post-hoc
measurements, analysis of these properties over many
students can be used to calibrate the guidance within Annie.

Computational Pattern. As described in later sections on
system implementation, the Annie system continuously
calculates the immediacy of information requirements in
terms of proximity of plan operators in successful plans.

5.2.4 The Other Six Principles

Space does not allow for a full description of the remaining
six of Gee’s principles that Annie currently implements.
However, they are briefly listed and described below:

1. Incremental Principle. Orders challenges so that
complex situations build on earlier, simpler examples.

2. “Regime of Competence” Principle. Provides only
as much support as the student needs to avoid
frustration.

3. Semiotic Principle. Uses a broad range of sign
systems to communicate pedagogical content.

4. Achievement Principle. Provides intrinsic rewards,
customized to individual performance to signal
mastery.

5. Practice Principle. Provides paths to success that
allow for repetition and even failure.

6. Transfer Principle. Varies the levels of specificity
and generality in learning content.

5.3 Summary: Advantages of Plan-Based Game
Design

We have based our model not on a scientific theory of
learning, but simply on a survey of learning conventions
evident in commercial games. Clearly, a knowledge repre-
sentation, based on a more powerful theory of learning, may
reveal profound advantages. Our immediate intention is
simply to demonstrate that a nominal plan-based knowledge
representation can lead to a computational framework that
can automatically synthesize and adapt to game/teaching at
an atomic level. If this demonstration is successful, it should
motivate future work to discover useful revisions to the
knowledge representation.

We have selected a set of learning principles, derived by a
scholar of digital games and shown how a plan-based
design can enable the realization of these principles in
arbitrary domains. Specifically, our proposed knowledge
representation synthetically generates game structures that
implement these principles, requiring less time and money,
resulting in a shorter and cheaper development cycle.
Because these structures are automatically generated, their
instantiation can be shifted to runtime, so they can be
tailored to the immediate and subtle learning needs of the
individual rather than the statically defined and obvious
extremes of an entire population. Finally, the rules govern-
ing how and when to change course are visible and
modifiable, rather than deeply entwined with tutorial
algorithms. This enables the system to conform to externally
specified metrics for particular applications.

The use of a plan-based knowledge representation
breaks the game spine into interchangeable parts, allowing
for dynamic synthesis of game progression while ensuring
that the player eventually traverses segments of the spine
nominated as particularly critical. Any fixed branching
structure could be implemented through a plan-based
representation by representing each critical action choice
as a distinct operator with unique prerequisites and effects.
But planning not only replicates the expressivity of existing
game progression, but allows for a much wider variety of
scaffolding techniques, partial ordering of actions and
varied bindings of particular game elements (e.g., any
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organic molecule as opposed to particular phosphate
molecule instance 314), and arbitrary number of repetitions
or cycling through particular types of actions.

6 IMPLEMENTATION OVERVIEW AND EXAMPLE

APPLICATION: ANNIE AND FIXIT

6.1 System Implementation: Annie

Annie is an extension of a system, called Zócalo [29], that
generates interactive narrative for 3D game worlds through
a planning-based knowledge representation. Annie uses
plan construction techniques to build and dynamically
adapt tutorial plans that guide learners’ actions in a virtual
environment. This adaptation takes the form of automatic
generation and fading of scaffolding, tailored to the
immediate knowledge requirements of the student. All of
this relies on a knowledge representation whose base
element is the description of in-game tasks.

Although this burdens application developers, using
Annie with the responsibility of providing a plan-based

description of the relevant features of the domain, modern
GUI-based tools like Bowman [30] and Wide-Ruled [31] can
help reduce the effort of authoring and validating these
descriptions. The trade-off is that a one-time investment in
providing a plan-based description is all that is required for
Annie to model student progress and automatically provide
support tailored to the specific learning needs of a student
for any learning challenge in the domain.

Annie uses this representation to define the initial and
goal states of student knowledge and to provide proactive
mediation within the exploratory environment to guide the
student toward successful learning.

Annie constructs an initial tutorial plan, consisting of a
plausible partially-ordered sequence of student and system-
initiated actions that is designed to bring about a specific
goal state for the world, including a particular state of task

knowledge acquisition in the student model. The plan
marks out the optimal game play path for the user, prior to
the start of the session, but it is continually revised based on
student actions.

Annie’s execution loop iterates each time an action is
taken in the world, either by the student or the system.
Following the action, Annie consults an extensive library
of general diagnostic templates to update its student
model. A template is a collection of domain-independent
plan reasoning rules that Annie uses to diagnose and
remediate student misconceptions. An example of a
diagnostic template is the set of rules that define a case,
where a student-initiated action fails due to an unsatisfied
precondition. In its initial implementation, the rules
comprising each template are hard-coded, but once our
experimental evaluations help us determine an optimal

initial set of rules, we intend to develop a schema to allow
these templates to be defined externally to Annie and
loaded at runtime. These templates are described in more
detail in [32].

As shown in Fig. 4, Annie is an extension of the Zócalo [29]
and Mimesis [24] systems that generate interactive narrative
through planning-based knowledge representations.

6.2 Example Application: FixIt

Because Annie specializes in task-based learning, it is
optimally suited for domains where the key learning
challenges require the student to properly compose a
sequence of causally-related actions. For our initial evalua-
tion of Annie’s effectiveness, we have chosen the domain of
computer security, viewed from the perspective of a generic
operating system. This domain is the basis for a game called
“FixIt” we have developed on the Unreal Tournament 3
engine. The game features four progressively more difficult
missions that require the student/player to identify and
remove increasingly complex forms of computer malware.
The learning goal is for the user to gain a deep under-
standing of the mechanisms by which computers can
become infected and the procedures that security software
uses to disinfect operating systems.

The game is constructed as a series of missions. The
player’s first mission is to identify a system program
(shown in Fig. 5) that is consuming too many resources.
The player is asked to use the “Information” tool to
determine the wayward process, which is depicted in
Fig. 5 as the process Syswatch.exe. The player is then
supposed to correct the problem with the “Nice” tool to
reset the priority of the process. Subsequent missions,
presented to the player, involve malicious attacks on
the computer. The challenges build on each other, so that
the student must reuse skills acquired in earlier missions.
This helps reinforce learning while extending the relevance
of the student model, providing more flexible scaffolding
and fading than would be possible, if the tasks were more
discrete. This reuse also allows us to confront the student
with fairly complex challenges.

For example, in the third mission, a renegade child
process is automatically respawned by a trojan, hidden
inside a trusted system program. If the parent is found and
killed, it triggers an automatic system restart. But the attack
has also left a back door; so, if the user does not close that
vulnerability, the parent process will be reinfected and will
respawn the child process. The back door is a hidden file
that can only be deleted when not protected by a
FILE_IN_USE flag held by the renegade child. Thus, the
third mission forces the user to evaluate earlier learning: that
killing a bad process cures a malware infection, and shows
that this is not always true. It requires that the student revise
this overgeneralization. Furthermore, it helps show a core
domain concept: that malware is not like a stain or infection
that can be cured by straight-forward excision,, but it is often
a multipronged invader that requires a multistage solution.
By forcing the student to revisit the same tasks through a
series of “missions”, where the same task is operating on
different objects in the world, we are able to evaluate the
usefulness of our task-based student model.

6.3 Required System Inputs

Annie is a data-driven system. External libraries of domain-
independent plan-based diagnostic and remediation tem-
plates encode all the particulars of Annie’s scaffolding. At
initialization, these libraries are applied to the session-
specific Learning Problem Description (LPD), which defines
a set of domain-specific learning goals for Annie to achieve
in that particular session. The first component of the LPD is
a typical planning problem description, which describes the
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plan operators, objects, conditions, initial, and goal states of
the game world, without reference to any learning states or
goals. This problem description is written in a restricted
form of the STRIPS-like language, used for all interactive
narratives in Zócalo.1

It would be possible to embed pedagogical goals into
particular operators and states of objects in the world to
create a tutorial that does not exercise any of Annie’s
student modeling. Indeed, most commercial games imple-
ment teaching by creating actions for the student to perform
that signify to the system that the student knows some
particular thing. However, one of the prime motivations for

Annie is that it is often not enough for the student to simply
“do” some action. It is possible for a student to perform an
action without fully understanding it, either because the
action was a “lucky guess,” or the student was distracted by
other game elements when the action was performed. For
these situations, the second component of the LPD allows
the author to specify learning goals as a set of explicit
metaknowledge of the operators in the problem description,
using predicates derived from the planning problem
description, such as “hasPrecondition(operator, condition)”
and “hasEffect(operator, condition).”

6.3.1 Remediation Templates

Assume that Annie has selected the following knowledge
gap for remediation:

336 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 3, NO. 4, OCTOBER-DECEMBER 2010

Fig. 4. System architecture.

1. The plan-based interactive narrative representation used by Zócalo is
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hasPreconditionðdeleteFile;:inUseð?fileDescriptorÞÞ:

This means that Annie wants to increase the student’s
strength of belief that the delete-file operator has a
precondition that the file cannot be inUse. Annie chooses a
remediation template from the library to apply to the plan.
The following example shows one possible instantiation of a
demonstrate remediation template:

1. showðinUseðfile1; app1ÞÞ. Shows that file1 is in use
by an application, app1.

2. deleteFileðAnn; file1Þ. A system-controlled charac-
ter (named Ann) attempts to delete file, file1.

3. closeApplicationðAnn; app1Þ, where the application
app1 is the current user of file1.

4. showð:inUseðfile1; app1Þ. Shows that file1 is not in
use by application app1.

5. deleteFileðAnn; file1Þ. Ann deletes file, file1.

This fairly complex example was chosen to highlight
that the remediation templates are not simple atomic
activations, but partially specified plan structures that
Annie must dynamically weave into the particular state of
the particular session to achieve defined pedagogical goals.
The template is “partially specified” in that it contains
place holders that allow Annie to find the right combina-
tion of operators and ground terms to bring about the
intended changes.

6.3.2 System Initialization

At initialization, Annie uses the external template libraries,
the problem description, and the rest of the LPD to compile
its runtime knowledge base. The first task is to initialize the
knowledge base with the problem description amended
with pedagogically focused elaborations of each operator.
Annie uses these elaborations to represent a student’s state
of belief for each precondition and effect of each operator in
the planning problem description. Included in this con-
struction phase is the compilation of all the remedial and
diagnostic templates to represent beliefs, specific to the
individual operators of the domain.

The final step of Annie’s initialization is creating a
tutorial plan, consisting of a plausible, partially ordered
sequence of student and system-initiated action that is

guaranteed to bring about a specific goal state for the world.
Annie then uses heuristics, derived from its knowledge
base, to choose the initial plan from the set of successful
plans. These heuristics will consider the student’s specified
proficiency, plan adaptability, as well as traditional mea-
sures of plan structure. The planner generates a set of
successful plans as well as a wider space of possible plans,
both complete and incomplete. Annie uses this plan to
initiate the tutorial session within the game world. Because
the planner is only concerned with the states of the world,
the tutorial plan does not guarantee that the goal beliefs for
the student will be achieved. Rather, Annie monitors
student behavior and optimizes the frequency and extent
of its tutorial interventions to increase the likelihood that
the goal beliefs are acquired.

6.4 Execution Cycle Overview

Annie’s runtime behavior consists of a loop that iterates
each time the student or the system executes an action in the
world. As VanLehn observed [1], many seemingly dissim-
ilar tutoring systems employ cyclic execution models. In
fact, most of these can be characterized as a pair of nested
loops, where the outer loop iterates over “tasks” and the
inner loop iterates over each step in a task. Because Annie’s
plans contain hierarchical plan structure, its single loop
sometimes iterates over tasks and sometimes over steps in a
task. As depicted in Fig. 6, Annie’s execution cycle is
divided into five stages. It may be helpful to think of these in
the context of a cycle, since an action is actually executed in
the fourth stage, and the fifth stage is where Annie updates
its student model based on the action taken. When the cycle
returns to the first stage, it means Annie must consider
whether or not to alter the plan to remediate some student
misconception, based on the data analyzed in the fifth stage
of the previous cycle.

6.5 Stage 1: Remediation Consideration

First, Annie reviews the student model for unrealized
pedagogical goals. It then compares the beliefs about
upcoming tasks in the tutorial plan space to identify
knowledge gaps that may hinder the student’s immediate
progress. Urgency thresholds for repairing these knowledge
gaps are derived, based on the proportion of steps
remaining in the possible successful plans. If the threshold
is met, the most critical gap is chosen for remediation in
Stage 2. Otherwise, if no candidate remediation is deemed
sufficiently urgent, the plan is left unchanged and Annie
proceeds directly to Stage 3. The key part to Stage 1 is that
Annie continually examines the current fringe, the proximal
set of actions, some subset of which is hopefully in the mind
of the student. Annie does not need to predict all of the
actions the student will take in the future, but merely needs
to help the student get past the immediate challenges of the
next few actions in the plan and learn the beliefs specified in
the LPD.

6.5.1 Remediation Consideration: Calculate the Mean

Goal Proximity Ratio (MGPR)

The MGPR provides a rough estimate of how close the
student is to completing any of the remaining potentially
successful plans. It is calculated as the mean of the Goal
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Proximity Ratio (GPR) of all such plans. For a given plan, the
GPR is given by

GPR ¼ number of actions until goal

total number of actions in successful plan
:

Annie uses the MGPR as an estimate for the remaining
number of useful tasks consistent with successful plans.
This helps determine the urgency with which Annie guides
a student toward tasks on known paths to success.

6.5.2 Remediation Consideration: Identify and Rank the

LPD Gap Set

The LPD Gap Set is the subset of the LPD beliefs that are not
currently satisfied. Annie ranks each gap according to the
distance between its current belief strength and its target
belief strength, given in the LPD.

6.5.3 Remediation Consideration: Identify and Rank the

Proximal Belief Gap Set

The Proximal Belief Gap Set (PBGS) is the subset of the
beliefs about the proximal actions in the set of possibly
successful plans. These are ranked according to belief
distance, just as with the LPD gap set. In addition, each

belief is ranked according to the proximity of the action
that contains the belief.

6.5.4 Remediation Consideration: Select a Gap that

Exceeds Threshold

Empirically derived thresholds are applied to the beliefs in
each of the gap sets to decide which beliefs, if any, should
be remediated in this execution cycle. If none of these
exceeds the thresholds, Annie considers the LPD gap set.
These thresholds will be calibrated so that Annie’s
proclivity for remediation is low. In most cases, no
candidate remediation will exceed the urgency threshold,
and Annie will proceed directly to Stage 3. Only when a gap
is chosen for remediation will Annie proceed to Stage 2 to
revise the plan.

There are two key reasons for Annie’s remediation
reticence. First, the student needs to be in charge. Annie’s
interruptions will become increasingly transparent and
annoying as they break the student’s flow and sense of
being in charge of the learning experience. Second, Annie
must respect the uncertainty, inherent in its projection of the
student’s plan. Annie runs the risk of remediating gaps in
actions that are not even required for the student’s plan to
succeed. This could result in Annie inefficiently oscillating
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between several candidate plans forcing the student to
adjust to an incoherent sequence of Annie’s actions.

6.6 Stage 2: Plan Revision

The purpose of Stage 2 is to identify the plan alteration
required to remedy the knowledge gap identified at Stage 1.
This is accomplished in four steps. First, Annie selects a
remediation. Second, Annie generates a subplan tailored at
runtime to the current plan context. Third, the existing
tutorial plan is repaired to include this new subplan.
Finally, the repaired plan is compared to alternative
successful plans in the plan space to see if one of these
offers a better fit for the student’s recent plan history.

At the end of the stage, if the student’s recent actions
show a pattern of increasing divergence from the current
plan, coupled with increasing similarity to an alternative
plan, Annie defers to the student’s initiative and switches to
the plan that seems to better match what the student is
doing. Otherwise, if a remedy is selected, a subplan,
particular to the current plan context, is generated, and
the existing tutorial plan is repaired to include this new
subplan. Each of these steps is described in detail below.

6.6.1 Plan Revision: Remediation Selection

The primary focus of the plan revision stage is for Annie to
adopt tutorial plans to the needs of the student by selecting
from the remedial operators, whose knowledge outcomes
address the knowledge gap selected in the previous stage.
The simplest variety of remedial operators correspond to
common ITS interventions including prompt, hint, demon-
strate, teach, or do. In addition, Annie can be provided with
hand-authored composite remedial operators, particularly
attuned to common misconceptions for a particular domain.
If more than one remedial operator is found, Annie
considers the knowledge outcomes and prerequisite knowledge
that annotate each alternative, comparing these to the
current state of knowledge represented by the student
model and the selected knowledge gap. In addition, Annie
considers the student’s proficiency and progress history to
determine how aggressively the knowledge gap should be
remediated. Our initial work uses a simplified selection
algorithm, similar to the “Fixed Strategy” studied by
Murray and vanLehn [33].

6.6.2 Plan Revision: Subplan Formation

Subplan formation is simply the instantiation of the selected
remedial operator (likely an abstract, or hierarchical
operator) with details from the current plan context.

6.6.3 Plan Revision: Subplan Integration

Once the new remediation subplan has been created, it must
be integrated into the current plan. Our work extends the
DPOCL planning algorithm [34] at the heart of Zócalo with a
new function capable of wedging a new subplan into an
existing plan at a particular point (i.e., so that the subplan is
ordered to precede a particular action in the original plan).

6.6.4 Plan Revision: Alternative Plan Consideration

In the final step, Annie considers abandoning the currently
active and newly remediated tutorial plan in favor of
another potentially successful plan in the plan space, if it

offers a better fit for the current plan history. Remember that
Annie is largely a spectator, and its active plan is merely a
guess at a likely course of action for the student. If the
student’s actions show a pattern of increasing divergence
from the current plan, coupled with increasing similarity to
an alternative plan, it is rational for Annie to adopt the
alternative plan rather than to continue to steer the student
back onto a plan that the student has chosen not to follow.

6.6.5 Plan Revision: Example

To show how Annie would traverse the four steps of the plan
revision stage for a typical case, we return to the example of
the operator, named deleteFile, depicted in Fig. 2 in
Section 4.1. We assume that the current plan calls for the
student to perform a closeApplicationðapp0Þ and then
deleteFileðfile0Þ, and that Annie has identified the knowl-
edge gap

hasPreconditionðdeleteFile;:inUseð?fileDescriptorÞÞ:

This means that Annie is concerned that the student does
not know that delete-file operator has a precondition that
the file cannot be inUse. In Step 1, Annie consults the set of
remedial operators defined for “Unknown Precondition.”
Based on the current state of student learning, Annie might
choose the demonstrate remediation.

In Step 2, Annie instantiates the remedial operator, so
that it forms the following subplan:

1. revealðinUseðfile1ÞÞ. “Show” that file1 is inUse.
2. showðAlice; opr1Þ. “Show” a system-controlled char-

acter (Alice) attempt and fail to deleteFile on file1.
3. showðAlice; closeApplicationðapp1ÞÞ, where app1 is

the current user of file1.
4. showðAlice; deleteFileðfile1ÞÞ. “Show” a character

successfully deleting file1.

In Step 3, this subplan is merged into the current plan,
such that the subplan will complete prior to the action
already in the plan that required the student to
closeApplicationðapp0Þ. In Step 4, Annie may or may not
choose to abandon the current plan in favor of an
alternative.

This example also illustrates some of the challenges in
writing sufficiently general operator templates that produce
predictable pedagogical impacts. Clearly, some cleverness
is required on the part of the template writer. As Annie is
applied to different domains, we expect to discover some
best practices for the confluence of knowledge representa-
tion and template construction.

6.7 Stage 3: Action Specification

Annie’s job in Stage 3 is to decide which of the actions in the
(possibly updated) current plan should execute next. Annie
remembers whether a remediation was selected in Stage 1
and if the plan was updated in Stage 2. If a remediation was
selected and the plan was updated, Annie would narrow
the focus to the added subplan. In any case, there may still
be more than one potential action that can be executed next
(which we have been referring to as proximal actions), and
these actions may be either student- or system-initiated.

If Annie chooses a student-initiated action to execute next,
its subsequent actions may seem counterintuitive. Because,
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Annie cannot force the student to take a particular action, the
Zócalo execution manager must process this as a null request
and do nothing, no matter which particular action is chosen.
Therefore, if all the proximal actions are student-initiated,
Annie should abbreviate its deliberations in Stage 3, as the
result will be the same, no matter which action is chosen. In
fact, because Annie should be deferential to student
initiative, it will often be the case that a student-initiated
“null” action will be chosen even when there are possible
system-initiated actions that could change the state of the
world in a way Annie would judge to be desirable.

In cases, where the plan has been updated with a
remedial action and all the elements of that remedial action
have not yet executed, Annie chooses from the proximal
actions of that remediation. Otherwise, Annie chooses
nondeterministically from the set of proximal actions,
giving higher priority to student-initiated actions.

6.8 Stage 4: Execution

First, Annie checks its message buffer to see if it has been
notified of any student actions since the last iteration. If not,
Annie sends a message to the execution manager, telling it
the next action to be executed. The execution manager
acknowledges this message and the loop continues. It might
seem reasonable that in the case of student-initiated actions,
Annie should wait for an acknowledgement that the
student has, in fact, taken the action. Instead, we allow
those messages to arrive asynchronously and buffer them.
If, at the beginning of this stage, such a message is in the
buffer, Annie discards the action that had been selected and
simply carries the student-initiated action result message
into Stage 5.

If the action chosen in Stage 3 is a system-initiated action,
Annie sends a message to the Zócalo execution manager to
execute that action. The execution manager will then notify
Annie when the action has completed, and the execution
loop will continue. If the action chosen in Stage 3 is a
student-initiated action, Annie sends a continue message to
the Zócalo execution manager and initiates a wait loop of
approximately one second that can be interrupted only by
notification of student action. It is reasonable to suspend
Annie’s execution cycle at this point, because nothing will
change in the game world until the student takes an action.
This ensures that Annie does not needlessly consider its
entire inventory of system-initiated actions or oscillate
between alternatives in a way that confuses the student.

6.9 Stage 5: Action Result Processing

The Zócalo execution manager sends a notification message
to Annie, any time an action succeeds or fails, whether it is
initiated by the system or by the student. Annie updates its
world model with the effects of that action. Annie updates
its student model by finding the best match between the
action result within a precomputed catalogue of action
result scenarios.

Each action attempted by the student presents an
opportunity for Annie to update its model of the student’s
beliefs. Annie bases this reasoning on the assumption that
the student intends for the action to succeed, and believes
that the action will succeed. Although it is not difficult to
imagine special cases where this assumption would not

hold, the net value in making this assumption is over-
whelmingly positive.

For Annie, student model maintenance is more complex
than one might assume. If a student’s action fails, it should
be the case that the student has at least one misconception
in his mental model, but it may also be the case that this
action attempt presents evidence in support of one or more
correct beliefs. For example, an action, which fails due to a
single unestablished precondition, may, nevertheless, pro-
vide positive evidence for parts of the student model that
are associated with other fulfilled preconditions of the same
action. Likewise, successful actions may attest to both
correct and incorrect beliefs in the student’s mental model.
In any of these cases, a given belief in the student’s mental
model may or may not already be represented in Annie’s
student model. Therefore, Annie examines evidence to
strengthen or weaken beliefs in the student model for both
failed and successful actions.

6.9.1 Diagnostic Templates: Scenario Descriptions

Each of the diagnostic templates in Annie’s library
corresponds to a particular scenario that describes the
relationship between the most recently executed actions,
the plan space, and the rest of Annie’s knowledge base. We
describe each of the scenarios below. For one of the
scenarios, we provide a detailed illustration.

. Failed action. When an action, that the student
attempts, fails, there is a good probability that an
underlying misconception can be identified, because
Annie can identify at least one precondition that was
not established at the time the student’s action was
performed. This could be caused by a precondition
that has never become true, since the beginning of
the session, or, as shown in Fig. 7, where a student’s
attempt to execute action C fails because precondi-
tion p, which was established by action Action A, but
subsequently negated as an effect of action B. Table 1
provides a brief logical description of five possible
misconceptions Annie evaluates in this scenario.

. Successful, but fatally flawed action. The action
may be predicted to succeed, but Annie may detect
that its execution will eliminate all possible success-
ful plans from the plan space (e.g., the student just
destroyed an irreplaceable resource required for
successful completion of the plan).
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. Successful, but path-limiting action. A successful
student action eliminates some but not all possible
successful plans from the plan space (e.g., student
burned a bridge).

. Successful, but task-irrelevant action. An action
that does not limit future success may reflect a
misconception in the student model, if it does not
advance the student down a path of success. We
assume that the student is performing tasks with an
intention of reaching the goal. If an action does not
result in progress toward that goal, perhaps the
student holds mistaken beliefs.

. Successful, plan-relevant, but suboptimal action.
Even though an action succeeds and is on a path
toward the goal, it may introduce problems that
result in a less-optimal plan (e.g., one that requires
more actions than would otherwise be required).

. Successful, plan-relevant, optimal, but threat-ignor-
ant action. An action that will be required as part of
any successful plan, but does not resolve an obvious
immediate threat, may indicate a gap or error in the
student model. Perhaps, the player is unaware of the
sniper, because he is reloading his gun instead of
scanning the roof tops for muzzle flashes.

. Successful, plan-relevant, optimal, threat-aware
action. In this situation, the student has chosen an
optimal action.

. Inaction. This is the case where the student has not
performed any action.

6.9.2 Diagnostic Templates: Sources of Belief

Each student belief in a diagnostic template is classified

according to the five components of the student model it

affects: the Operator Schema, the Initial State, the Goal

State, the Plan History, and the student’s understanding of

future possibilities described by the Plan Future. For the

diagnostic template depicted in Table 1, the first misconcep-

tion concerns the Operator Schema, and the remaining four

misconceptions correspond to errors in the student’s

understanding of the possible Plan Future.

6.9.3 Student Model: Updating Beliefs

Each time a student-initiated action succeeds or fails, Annie

considers all of these scenarios in determining which beliefs

should be updated in the student model. Where the
scenarios describe positive beliefs, Annie will strengthen
the associated belief in the student model. Where the
scenarios describe negative beliefs, Annie will weaken the
associated belief strength in the student model.

6.10 Execution Cycle: Example Walkthrough

To help summarize the execution cycle, we return to the
FixIt evaluation environment. By the time the third mission
in this game begins, the student will have killed a malicious
process and a process that is being spawned by another
process. Annie will likely reflect in its student model that
the student has a higher than neutral likelihood of knowing
many of the preconditions and effects of the kill-process
operator. The third mission adds a new wrinkle, in that the
malicious child process is spawned after each restart by a
hidden startup file that infects a trusted system program. A
successful path through this mission requires the student to
complete the following tasks in order:

1. Kill the harmful child process.
2. Delete startup file that infects the parent process.
3. Kill parent process (child process’ hidden respawner).

With Annie’s help, this example might play out as follows:
As the mission begins, we would expect Annie to choose not
to intervene, given that the student model already shows a
high likelihood that the student knows what is required for
killing processes, and the first job of the student is to kill a
process. The student would probably kill the child process,
and Annie would still not intervene, since the student model
is initialized with a neutral likelihood that the student knows
about deleting hidden startup files. In light of Annie’s
inaction, the student’s next action would be to kill the parent
process. As noted, this triggers a restart, since the parent is a
trusted system program, and after the restart, the child is
respawned. However, as Annie processes the result of this
action, it will update the student model to reflect that the
student probably does not know about the hidden file that
must be deleted so that the parent will not be reinfected.

Following the restart, Annie may choose to fix this flaw
in the student model with a remediation. Depending upon
how the student has fared with other remediations, Annie
may choose a subtle hint, like a diversion that directs
attention toward the location that contains the hidden file,
or it may choose something more direct, like a system-
controlled character who approaches the player character
and mentions that he has heard that someone spotted a
trojan startup file on the system. If the student attempts to
delete the file without first killing the parent process, then
Annie may introduce another remediation to advise the
student of the FILE-IN-USE flag, as discussed earlier.

7 EXPERIMENTAL EVALUATION

This section describes an initial experimental evaluation to
assess the accuracy with which Annie is able to estimate
human subjects’ understanding within an exploratory
learning environment.

7.1 Experimental Design

Sixteen adult college graduates from a variety of disciplines
volunteered to participate in the study. Each evaluation
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session involved an individual participant interacting with
the system in a private room under the supervision of a
single experimenter. A two-page description of the control
of the game and mission objectives was presented to the
subject at the beginning of the session. The experimenter
provided no additional information to the subject. The
subject was asked to read this set of instructions with no
explicit time limit given. When the subject indicated a
readiness to continue, the game was started. Unknown to
the subject, the game automatically terminated after five
minutes, at which point the subject was asked to complete a
written questionnaire that assessed their knowledge level of
actions, preconditions, and effects central to the game.

7.2 Results

As each session ended, Annie output the entire contents of its
student model to a log file. The experimenter translated
specific elements of this student model to corresponding
questions on the student’s self assessment. For example,
question #8 asked the student to specify as to what happened
when the left mouse button was used to apply tool number 3
to a particular object in the game. The question offers six
choices to the student, including the correct answer: “slowed
it down.” Annie’s student model contained an entry for the
likelihood that the student is aware that an effect of the tool 3
action is to slow objects down. If this likelihood was positive,
it was interpreted as Annie predicting that the student would
correctly answer question #8.

In addition, each game session was recorded with
FRAPS video capture software. A volunteer, unfamiliar
with Annie’s design, was trained for several hours in the
use of the game, including all the potential actions and
learning objectives accessible to the subjects of the study.
Upon completion of this training, this volunteer was
deemed a human “expert” in the functionality of the game.
This human expert watched and listened to the full FRAPS
session recording of each subject. Upon completion of each
viewing, the human expert completed the same question-
naire given to the subject, with a goal of emulating the
subject’s responses, based on the expert’s assessment of the
student’s actions with the game.

Thus, we had three versions of the same questionnaire,
first filled out by the subject, second by a human expert, and
a third through a transliteration of Annie’s student model.
We then compared how accurate the human expert and
Annie were in predicting how each student filled out their
questionnaire. The results are depicted in Table 2. For each
subject, the first column shows the percentage of the
student’s answers to the 24 questions were accurately
predicted by Annie, and the second column shows the same
for the human expert. Because there were only 24 questions,
the table contains several repeated values. For example,
91.67 percent accuracy occurs when all but two of the
answers were correctly predicted.

Averaging over all subjects, Annie correctly predicted an
average of 76 percent of student responses which compared
to an average accuracy of 75 percent for the human observer.
Furthermore, the student-by-student correlation between
Annie and the human expert was 0.89 at a significance level
of (p < 0:0001). This means that we found Annie’s assess-
ments to be highly consistent with those of the human expert

at a statistically significant level. In a few instances, Annie
outperformed the human expert when the human failed to
remember all of a subject’s actions. Conversely, the human
occasionally noticed character actions or visual occlusions
unobserved by Annie. The overall correlation of 0.89,
however, showed that the student model Annie builds and
uses during game execution can be as accurate as that
supplied by a human observer.

Several factors contributed to Annie’s strong perfor-
mance. First, we were careful to ensure that the learning
tasks were not so easy that a majority of students would be
fully successful in achieving all the learning objectives. It
would be unsurprising to assess the student’s knowledge as
completely accurate in these cases, but such assessments
would be useless, as there would be nothing left to teach.
Rather, our aim was to allow only enough time for our
students to learn an average 25-50 percent of the game
content. Our rationale is that this is the level of under-
standing most germane to Annie’s prospective deliberations.
Second, we want the game to have a rather short duration, so
that the subjects’ self-assessments of in-game knowledge
were still accessible in short-term memory. Unfortunately, it
proved more difficult to complete substantial portions of the
game in the time allotted than anticipated, as our subjects
learned an average of only 22 percent of the entire content.
This relative paucity of understanding provided a diagnostic
advantage to Annie and the human expert in that there is a
higher probability in correctly predicting that the student is
unknowledgeable about actions that they never performed.
We will soon conduct an expanded evaluation of Annie in a
much more complex game, expected to engage each student
for at least 30 minutes. An important question we hope to
answer in that expanded study is whether Annie’s student
modeling can retain its accuracy over a longer duration in a
task-rich environment.

8 DISCUSSION AND CONCLUSION

This paper describes a novel approach for building intelli-
gent educational games by integrating pedagogy with the
core mechanics of games. Our system, called Annie, uses
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plan-based representations to describe game actions, game
states, and student knowledge. Annie leverages these
representations to provide intelligent tutoring within games.

Annie is not sufficient by itself to ensure that an
educational game is fun. Rather, it separates the tasks of
designing for fun and designing for teaching in such a way
that the results of these efforts can be automatically
integrated. Although this relieves the burden on the tutorial
designer of balancing fun with teaching, it demands that
both learning goals and pedagogical content are expressed
in plan-based terms, which will be easier for some learning
domains than it is for others.

Our preliminary evaluation has found a strong and
significant correlation between Annie and a human ob-
server in diagnosing students’ knowledge acquisition in an
exploratory game environment. We will soon conduct a
more extensive evaluation of Annie’s teaching effectiveness
within a more complex and lengthy game, where Annie’s
student model will be used at runtime to generate learner-
specific guidance.
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