
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259781845

Efficient Intent-Based Narrative Generation Using Multiple Planning Agents

Conference Paper · May 2013

CITATIONS

11
READS

173

2 authors:

Some of the authors of this publication are also working on these related projects:

Machine Understanding for interactive StorytElling View project

Brain-Computer Interfaces View project

Jonathan Teutenberg

Quantum Biosystems

26 PUBLICATIONS   117 CITATIONS   

SEE PROFILE

Julie Porteous

Teesside University

57 PUBLICATIONS   773 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jonathan Teutenberg on 20 January 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/259781845_Efficient_Intent-Based_Narrative_Generation_Using_Multiple_Planning_Agents?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/259781845_Efficient_Intent-Based_Narrative_Generation_Using_Multiple_Planning_Agents?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Machine-Understanding-for-interactive-StorytElling?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Brain-Computer-Interfaces-12?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Teutenberg?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Teutenberg?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Quantum_Biosystems?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Teutenberg?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julie_Porteous?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julie_Porteous?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Teesside_University?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Julie_Porteous?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Teutenberg?enrichId=rgreq-459ff768df851112b98fada55f01b27b-XXX&enrichSource=Y292ZXJQYWdlOzI1OTc4MTg0NTtBUzoxMDEwOTAxMDQxODQ4NDFAMTQwMTExMzE2Nzc3NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Efficient Intent-Based Narrative Generation
Using Multiple Planning Agents

Jonathan Teutenberg
Independent Researcher

jono.teutenberg@gmail.com

Julie Porteous
Teesside University
Middlesbrough, UK

j.porteous@tees.ac.uk

ABSTRACT
In Interactive Storytelling (IS) the prevailing approach for
the automatic generation of plausible narratives that meet
global author goals is intentional planning. However, exist-
ing approaches suffer from limited expressiveness and poor
scalability. We address this by replacing single intentional
planners with multiple agents representing the characters of
a narrative which can reason about the relevance of narra-
tive actions given their individual intents. These are then
combined using a state-based forward search procedure that
results in a significantly smaller search space.

Unlike other multiagent approaches, these agents calcu-
late all reasonable plans in a state.This allows a search of a
wide range of narrative possibilities prior to execution as in
planner-based approaches, rather than agents making early
plan commitments in a simulation.

We demonstrate that this not only produces the same
forms of narrative as single intentional planners but can
be extended to generate narratives that are beyond their
scope. We also present a search heuristic that exploits the
agents’ relevant actions to further reduce the size of the ex-
plored search space. Experimental results demonstrate sys-
tem performance that makes it suitable for use in real-time
applications such as IS.

Categories and Subject Descriptors
H5.1 [Multimedia Information Systems]: Artificial, aug-
mented and virtual realities

General Terms
Algorithms

Keywords
Interactive Storytelling, Agents in games and virtual envi-
ronments, Narrative Modelling, Planning

1. INTRODUCTION
In Interactive Storytelling (IS) systems an important factor
in audience narrative understanding is that the virtual char-
acters must be believable – the audience must suspend belief
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and the actions of virtual characters must not threaten this
[2]. In other words the audience must perceive them as in-
tentional agents [8]. As well as maintaining a believable cast,
narratives generated for IS systems must strive for quality
in terms of such things as author goals or preferences [16].

Narrative generation that features multiagent simulation
neatly solves the problem of endowing agents with intention-
ality. By treating each character as an autonomous agent
with its own beliefs and intents, believable character inter-
actions can emerge from a simulation [1]. The drawback
for an IS system based on such an approach is in the ful-
filling of global narrative goals and author preferences. A
character-only simulation relies on emergence and there is
no guarantee of even an approximation of criteria other than
believability. Systems have been proposed that include di-
rector agents [12] that can interact with the simulation to
try and satisfy author goals. In many ways this turns narra-
tive generation into a hill-climb through the space of possible
narratives with the director guiding its trajectory as best as
possible at each point in time.

In contrast, the planning approach to narrative generation
searches large expanses of the narrative space but struggles
with producing an appearance of intentionality. Narrative
generation by a single classical planner that has available to
it all character actions and plot events is able to compose
sequences of character actions to fulfil the global goals that
make no sense from any individual character’s perspective.
To make character-based planning suitable for IS, intent-
based planning has been proposed with the IPOCL plan-
ner[18]. This generates narratives that ensure that charac-
ters’ actions have intent, as though planned and performed
by autonomous agents, by explicitly representing intent in
the narrative and requiring that each action is assigned to
some intent. Effectively this explores the space of narratives
by considering not only every action available, but every
action-intent pairing available. Unfortunately the applica-
bility of an IPOCL style planner to narrative generation for
IS is limited due to its poor performance. For example, a
figure of 12.3 hours is given for the generation of a sample
narrative in [18], making it unsuitable for real-time IS use.

This is compounded by the fact that IPOCL has a non-
standard representation language which prevents experimen-
tation with more state-of-the art planning approaches whose
performance might be faster. Interestingly, Haslum has re-
cently introduced a compilation for IPOCL narrative do-
mains to classical planning [9]. This meant that the intent-
based planning problems could now be tackled by a wide
range of classical planners, and for IS it was hoped that this



would enable real-time narrative generation. However, we
conducted a series of experiments with versions of IPOCL
domains created using Haslum’s compilation and the results,
which we report in this paper, suggest that narrative gen-
eration was still too slow to realistically be used in an IS
system. Further, the coupling of planning for characters’
goals with planning for narrative goals prohibits the gener-
ation of certain narratives, most notably those narratives in
which one or more characters become unable to complete
their intent. Thus the motivation for our work was to de-
velop an approach that would be capable of performing an
extensive search of the space of narratives, in order to be
able to generate these types of interesting narratives but
which would also be capable of performing within the time
constraints of a real-time IS system.

The solution, which we present in this paper, is one where
the task of reasoning about intentions is delegated to narra-
tive agents who are responsible for the checking of“narrative
action relevance” with regard to their individual intentions.
Then a single narrative planner is used to generate narra-
tives which satisfy the constraints obtained from the rele-
vant actions. These ideas are fully implemented in a system,
called Impractical (Itentional Multi-agent Planning with
Relevant ACTions). The key contributions of this work are
the design, implementation and evaluation of this approach.

The paper is organised as follows. We start in the next
section with a detailed consideration of related work. Then
in Section 3 we discuss a number of narrative examples which
illustrate the scope of intent-based narrative generation. In
Section 4 we overview our novel approach for the integration
of multiple agent reasoning with state-based planning. This
is followed in Section 5 with discussion of the implementa-
tion of these ideas. We present the results of an experimental
evaluation in section 6 and finally present our conclusions.

2. RELATED WORK
The question as to what constitutes a criteria for ‘good’

narratives that are to be used in IS is still open. Current
state-of-the-art requires input from human authors such as
assigning interesting authorial goals [16] the design of ap-
propriate initial and goal states [17], or describing desired
tension arcs [14]. Minimum length criteria also plays a part,
as this implies a tight narrative without superfluous actions.
In addition to a quality measure, narrative plans must be
produced with hard constraints on their plausibility: every
action seen to be performed by a character must appear to
have some motivation or intent [18].

Simulation as narrative generation, also referred to as
“character-based” narrative generation relies on a system
of independent planning agents (characters) with a view to
generating interesting emergent interactions [6]. This has
evolved to model characters as agents with ever-increasing
sophistication, such as social influence [7], recursive beliefs
[20], and social planning [5]. These enable a greater scope of
possible interactions amongst agents and therefore a greater
space in which to find interesting narratives. However the
existence of a vast space alone is insufficient – if solutions
of high quality are to be guaranteed this space must be
searched intelligently to find a suitable narrative. Pure sim-
ulations such as the Continual Multiagent Planning of [5]
effectively produce a single walk through the space of world
states, indeed it was noted that a total of only 20 plans were
evaluated by characters and the simulation to create their

example narrative. It should be noted however that mul-
tiagent narrative generation need not extract uninformed
paths from the narrative space. Adding external guidance
in the form of modifications to agent behaviour [19] or di-
rector agents that can affect the world [13, 12] can hill-climb
by estimating future narrative quality at each point in the
simulation’s execution.

Intentional planning with the IPOCL algorithm [18] was
originally devised as an extension to a causal link planner
that searches the space of partial plans, working backward
from the narrative goals. The appearance of intent was en-
sured by including, in parallel, the planning of frames of
commitment that span contiguous sub-sequences of actions
within a plan. The intent for a frame is defined by a char-
acter and a target fact that they intend to achieve. The
backward chaining nature of the search ensures that char-
acters’ actions are causally linked to, and therefore appear
relevant to, the final action that closes their frame of com-
mitment. While the extensive search of the narrative space
can find solutions that closely match global goals, a notable
drawback of the IPOCL planner is the high complexity of
the search and long run-time. A method of compiling intent-
based problems so that the frames of commitment are rep-
resented as a classical planning problem was proposed in [9].
By transforming the problem to a standard format, advances
in the broader area of generic planning can be applied to
intent-based narrative generation. The concept behind the
compilations is that the possible choices of intent for each
action can be determined prior to planning, and a new action
made for each action-intent pair.

For the remainder of this paper we shall refer to approaches
as being intentional when both intent and action causality
are modelled in the narrative; as monolithic when this is
performed by a single planner (thus [18] is both intentional
and monolithic); and as multi-agent when planning is dis-
tributed amongst characters that manage their own intent.
Our impractical approach, described in the following sec-
tions, lies somewhere in the middle: it is intentional in that
it performs global heuristic search, but is not monolithic as
it delegates intent to multiple planning agents.

3. MOTIVATION
While compiling intentional plans (as in [9]) dramatically
improves the efficiency of their narrative generation, this
still cannot be performed sufficiently quickly for online re-
planning, and it is not clear that the increase in the number
of actions at each state will scale to more expressive domains.

Our goal is an alternative approach which preserves the
satisficing of author and narrative goals of intentional ap-
proaches, but in which action intent is resolved for by multi-
ple agents. Improvements in efficiency are realised by mak-
ing these agents autonomous from the global search proce-
dure that determines the final sequence of actions in the
narrative. This decomposition is not only significantly more
efficient at producing the same narratives as the monolithic
planners, but also can be more expressive, generating alter-
native plausible narratives that may contain higher quality
solutions.

Underpinning the intentional approach to narrative gen-
eration is an assumption that in order to generate believable
narratives we require that every action in a narrative plan
that is performed by a character has intent (in the sense
used in [18]).



A simple illustration of this is given in [18] in which a
princess, knight and king are present and the authored goals
for the narrative are that by the end of the narrative the
princess is jailed and the king dead. An example solution
without perceptible intent is:

1) The princess kills the king;
2) The princess locks herself in the tower.

This is in contrast to a narrative with the appearance of
intent, where:

1) The king locks the princess in the tower;
2) The knight kills the king.

This is a somewhat subjective constraint, but for the pur-
poses of this paper we can use the same criteria as inten-
tional planners: that we require that generated narratives
feature some form of causal link from every narrative action
to an intent of a relevant character and that characters have
achieved their intent at some time prior to the point in time
in which actions occur in a narrative. This is precisely de-
fined in [18] but informally it refers to whether actions make
some kind of sense to the user based on what they know
about the story world – in the above examples, it makes no
sense for the princess to lock herself in the tower, whereas
its perfectly plausible for the king to lock up the princess.

3.1 Characteristics of Intentional Plans
We have identified three types of reasoning that contribute
to character intent as produced by monolithic approaches:
(1) cooperation of two or more characters; (2) characters
predicting other characters’ actions; and (3) the occurrence
of chains of commands which propagate intent. Below we
given an example to illustrate each of these based on the
Aladdin fairy tale [18] and its’ characters.

3.1.1 Example 1: Cooperation
Aladdin and the Genie both intend for Jasmine to love Jafar.
Aladdin is incapable of love-spells, and the Genie is trapped
in the lamp.

Neither character can fulfil their intent by acting alone, so
if their reasoning is limited to considering only their own
actions’ effects on the world in isolation then no actions can
be motivated. However, by co-operating, Aladdin can first
free the Genie who can then cast the spell, fulfilling their
shared intent. Thus both the freeing of the Genie and the
casting of the spell can be assigned an intent via cooperation.

3.1.2 Example 2: Predicting Other Characters
The dragon has the lamp at the mountain. Aladdin intends
to slay the dragon and Jafar intends to have the lamp.

From this state, Jafar reasoning in isolation cannot justify
performing any action. However, by predicting the future
actions of Aladdin, the narrative can have Jafar precede Al-
addin to the mountain. His intent for this action is to await
the anticipated arrival of Aladdin before pillaging the lamp
from the slain dragon.

3.1.3 Example 3: Chains of Command
Jafar intends to marry Jasmine. Only the Genie can make
Jasmine love Jafar. Only Aladdin can slay the dragon to get
the lamp.

Jafar reasons that he can order Aladdin to help who will in
turn command the Genie to help who will cast the love-spell,
allowing Jafar to fulfil his intent. Jafar can only take the first

step of ordering Aladdin if he can foresee the intent passing
again from Aladdin to the Genie, thereby justifying it as
working towards fulfilling his marriage. This encapsulates
the version of Aladdin presented in [18], and we shall refer
to it as the canonical Aladdin problem.

3.2 Extended Forms of Narrative
In addition there are further narratives that can be gener-
ated where every action has plausible intent, but which can-
not be generated by monolithic approaches. In particular
those in which some agents have not succeeded in fulfilling
their intents by the end of the story. Take the example of
the previous section with a narrative goal of having Jafar
succeed in marrying Jasmine. A second narrative solution
is to first have Aladdin fall in love with Jasmine and intend
to marry her. Aladdin can then be motivated to slay the
dragon, and to fulfil the narrative goal Jafar pillages the
lamp from the dragon before Aladdin. At the end of the
narrative when Jafar marries, Aladdin’s intent will remain
unfulfilled. In the approach of [18] this narrative can not be
found because in order to identify an association of intent
to action, a chain of causal links is required from a state in
which the intended fact is true, back to the action that is
to be motivated by it. When no such state exists, as for Al-
addin’s intent in the example above, the causal chain back to
his actions cannot exist and the intent will not be identified.

As we shall show in subsequent sections, it is possible to
generate this class of narratives using our heuristic search
with multiple planning agents, impractical.

4. INTEGRATING AUTONOMOUS AGENTS
WITH STATE-BASED SEARCH

The fundamental concept underlying our proposed approach
to generating intentional narratives is to delegate the prob-
lem of reasoning about intent to a collection of agents. Each
agent represents a character in the narrative and its respon-
sibility is, given a current world state, to provide the nar-
rative generator with all actions that it perceives as being
relevant to its intents. This differs from standard planning
agents that select a single action to apply, based on a single
plan they have committed to in order to fulfil their intent.
By providing all actions that can be part of any reasonable
plan with the same goal, the narrative search can explore
many potential branches without having to make an early
commitment to a specific plan for an action to belong to.

Where a monolithic planner expands the search space to
consider the product of intent and action, impractical re-
duces the search space to only those actions deemed rele-
vant. The trade-off is made in the additional computation
for calculating action relevance, but so long as this is less
expensive than the cost of evaluating the larger number of
partial narratives this approach will be an improvement. In
general, exchanging greater computation per search node
with a reduction in branching factor is a good one to make
as problem sizes increase. Many planning heuristics make
this choice be creating and solving abstract versions of their
problem at every node evaluation [10]. In this paper we
perform similar reasoning with character agents and achieve
similar gains in overall efficiency.

Mitigating the need for agents to reason at every node in
the search is the fact that their reasoning need not be opti-
mal. Agents represent imperfect characters, and an action



they deem relevant can be part of a longer, more costly or
even an ultimately invalid plan, so long as their mistake is
not ‘unbelievable’. However an agent can not permit all ac-
tions or the search will revert to that of a generic planner
without intent. Conversely, even if the agents could produce
optimal plans in reasonable time, this may preclude optimal
narratives as many plausible yet sub-optimal actors’ actions
would be ignored that could have formed part of the optimal
solution. The reasoning about causality should be apparent
to a narrative’s audience, but it is preferable for agents to
be optimistic with their choice of actions.

For an agent to determine actions relevant to its intents
it must be provided with sufficient information. As well as
domain information such as which actions it has access to,
it must also have knowledge of the current world state so
that it can determine which of these actions can be applied.
Plan-space planners like IPOCL can only provide a stateless
partial plan at any given point in the planning process. If
a complete state is to be provided whenever a decision on
adding an action is to be made we are restricted to forward
search through the state-space. Fortunately this form of
search has proven effective for many modern planners such
as HSP [3] and FF [11] and our approach is in this tradition.

In terms of the information available to an agent at any
given decision point, we are consistent with existing inten-
tional extensions to planning domains. This means that an
agent has available:

The set of all possible facts F .
The world state S ⊆ F , containing all true facts.
All agents A, including self.
Open intents I of the form 〈b, j〉 with b ∈ A and j ∈ F .

and a set of actions O, where each a ∈ O is defined by

pre(a) ⊆ F . a is applicable when pre(a) ⊆ S.
add(a) ⊆ F . When a is applied S = S ∪ pre(a).
del(a) ⊆ F . When a is applied S = S \ del(a).
actor(a), one or zero agents from A requiring motivation.
addi(a), a set of 〈b, j〉. When a is applied I = I ∪addi(a).

Furthermore, when an action a is applied all fulfilled in-
tents are removed,

I = I \ {〈b, j〉|b ∈ A, j ∈ add(a)}
For the sake of efficiency we assume the agents consider ful-
filling single intents in isolation, in a completely known world
state, with actions only performed by themselves and agents
explicitly cooperating with them. From this basis in the next
3 sub-sections, we will describe 3 simple procedures for com-
bining agents’ resulting relevant actions that will integrate
them into the search such that the properties of coopera-
tion, prediction and chains of command that were identified
in Section 3 are enabled. We represent the basic reasoning
with a function f(B, i, S) = R that maps a set of cooper-
ating agents B ⊆ A, a target intent fact i ∈ F , and the
world state S, to a set of relevant actions R, and with a
function g(B,S) that returns all reachable actions from S
by the agents B.

4.1 Cooperation
Agents are assumed to be cooperating if and only if they
share an intent. Given a set of cooperating agents the ac-
tions relevant to their intent is defined by f , so determining
the agent set for each intent and applying f , as shown below,
is sufficient for finding all relevant actions with cooperation.

procedure relevantactions-basic(S, I)
R← ∅ . Relevant actions set
H ← {i|〈a, i〉 ∈ I} . Open intent facts
for i ∈ H do

B ← {a|〈a, i〉 ∈ I} . Cooperating agents
R← R ∪ f(B, i, S)

end for
return R

end procedure

This procedure is called in every state S, and the appli-
cable actions in that state are all x ∈ relevantactions-
basic(S,A) such that pre(x) ⊆ S.

4.2 Prediction
As with other intentional narrative generators, the charac-
ters, and therefore their agents, have full world knowledge
at all times. This includes the intent of other agents and the
reasoning process they will use to fulfil these intents. Agents
can therefore plan to make use of other actors’ future actions
without requiring explicit cooperation.

Marking actions as relevant based on the modelling of ex-
pected future actions of other agents can be integrated into
the forward search using an iterative wrapper. In each iter-
ation the agents’ relevant actions are added to the current
state. In following iterations other agents are then able to
use the effects of these expected actions as preconditions to
their own future actions.

procedure relevantactions-predict(S, I)
R← ∅ . Relevant actions set
C ← S . Current state
repeat

T ←relevantactions-basic(C, I)
T ← T \R . Keep the new relevant actions
for a ∈ T do

C ← C ∪ add(a) . Update the state
end for
R← R ∪ T . Store this iteration

until T = ∅
return R

end procedure

4.3 Chaining Commands
For narratives in the form of the example in Section 3.1.3,
integration can be enabled by replacing calls to the function
f with a procedure that recurses down possible chains of
command, calling f at each step. The idea is to have agents
use commands or orders – actions a that act on characters c
which can be grounded to have any fact j in 〈j, c〉 ∈ addi(a)
– to pass their current goal intent to other agents. They will
then meet the requirement to be considered ‘cooperating’
and a new call to f with the additional agent can be made.
The final set of relevant actions is all those relevant to the
intent fact, plus all those relevant to reaching commands
that act on agents whose cooperation was required.



procedure f-commands(B, i, S)

R← f(B, i, S) . Cooperating action set
if R = ∅ then . If i is not achievable

U ← g(B, i, S) . Reachable actions
V ← ∅
C ← ∅
for u ∈ U do

if ∃b s.t. 〈b, i〉 ∈ addi(u) ∧ b /∈ B then
V ← V ∪ {u} . Useful commands
C ← C ∪ {b} . Commandable agents

end if
end for
B ← B ∪ C . Commandable agents join in
R← f-commands(B, i, S) . Recurse
B ← B \ C . Commandable agents are done
for v ∈ V do . Actions to reach used commands

if ∃a ∈ R s.t. actor(a) ∈ C then
R← R ∪

⋃
{f(B, j, S)|j ∈ pre(v)}

end if
end for

end if
return R

end procedure

5. IMPLEMENTATION
In the previous section we outlined three procedures that
can be used to determine actions based on cooperation, pre-
diction and chaining commands, but the basis for all of these
is the relevant actions function f . In this section we give an
example implementation of this function that can be per-
formed efficiently and maintains the causal relationship be-
tween relevant actions and their target intent.

5.1 Relaxed Agent Reasoning
Our implementation relies on the concept of a relaxed plan-
ning domain (as described for example in [11]). To relax
the domain, every actions’ delete effects are removed. This
means that no pair of actions can be mutually exclusive –
one action can never delete required preconditions of an-
other – making it possible to efficiently find solutions to the
relaxed version of a planning problem.

The relaxed domain used here is a reasonable approxima-
tion in many cases and has proven suitable for use in heuris-
tics for planning to optimise plan length [10]. Plans in this
abstracted space are sufficiently close to plans based on the
original, unrelaxed actions to produce a view of plausible,
though at times imperfect, characters.

Solving problems in the relaxed domain usually involves
two steps: firstly finding all reachable actions and facts by
working forward from the current state and storing them in a
relaxed planning graph (RPG); and secondly searching back
through the graph from goal facts to extract the solution.
It is the second step that is most time consuming in this
process, as there can still be many possible combinations of
relaxed actions to consider.

The construction of the RPG is shown in Figure 1 per-
formed by applying relaxed actions to a set of facts, begin-
ning with the current state S, until the agents’ intent fact
is found. The graph is represented with levels L1 to Ln,
alternating between levels with nodes representing facts and

Initial
State

Target intent fact

Forward step: create relaxed 
                           planning graph

Backward step: find relevant
                             actions

Relevant action

Figure 1: Determining relevance for a single agent’s
actions. Solid lines indicate effect to fact or fact to
precondition relations, dotted lines indicate a no-op.
After the backwards step, of the two actions with
their preconditions met in the current state, one is
found to also be relevant to the actor’s intents.

levels with nodes representing actions. The of set facts in a
level Liis a superset of the previous fact level Li−2, with each
new fact s ∈ Li \ Li−2 being linked to each action a ∈ Li−1

with s ∈ add(a). Facts that also appear in earlier levels are
not only connected to any actions that add them, but also
to a ‘no-op’ action in the previous level. Each action in the
graph is associated with a single node, so an action a1 is
causally linked to an action a2 in a later level if and only
if add(a1) ∩ pre(a2) 6= ∅ in which case they are connected
through a path containing fact and no-op nodes. What this
means for agents that reason in the relaxed domain is that
following a chain of actions back through the graph is guar-
anteed to maintain causal links at every step: precisely the
property required to maintain the plausibility of actions in
intentional planning.

Halting the RPG at the goals means any plan extracted
minimises makespan: the number of plan steps when parallel
execution is permitted. The relevant actions for an agent
is the union of these plans, as any one of these solutions
are suitable for narrative believability. All these actions are
causally linked to the goals, and this is guaranteed to be
at least as efficient as constructing the graph. This is our
implementation of the relevant actions function f for each
agent.

The reachable actions g only require calculating in the
case that relevant actions cannot be found, i.e. the intent
was not reached in the RPG. In this case the actions in the
RPG are the reachable actions, and these can be quickly
extracted.

5.2 Heuristic
Modern heuristic search-based planning relies on solving in
simplified, abstract versions of the domain [10]. However,
simply solving a standard planning problem with delete ef-
fects removed will greatly underestimate the distance to the
narrative goals for our approach. Not only will this abstrac-
tion ignore mutex relationships due to deleting facts, but it
will also ignore any requirement of agent intent.

We instead propose to solve in a domain with relaxed
delete effects and a close approximation of the selection of



relevant actions that will be available at each search state.
The approximation of relevant actions relies on the fact
that agents are reasoning in the same relaxed domain, and
so the narrative RPG can be constructed from the rele-
vant actions and commanded actions found in the process
of relevantactions-predict and f-commands.

Two steps complete the heuristic calculation, illustrated in
Figure 2. The addition of arcs in the RPG between relevant
command actions adding 〈b, j〉 and the relevant actions of b,
so that causality from intent is explicitly represented in the
graph (see B). A minor modification to relevantactions-
predict that includes the addition of all applicable hap-
penings (see C and D) in addition to each agents’ relevant
actions. From this point any procedure that extracts a solu-
tion from the RPG can be used. We use the well-established
hFF [11] as this final step in our heuristic: hR.

6. EVALUATION

6.1 Experimental Setup
Existing intentional approaches have been evaluated based
on the production of a single expected narrative using a sin-
gle domain, namely, the Aladdin domain and problem pre-
sented in Section 3.1.3. The first objective of our evaluation
was to show that impractical can replicate these results. In
addition a further objective was to demonstrate the practi-
cal application of the approach for IS where narrative gener-
ation must be possible with multiple character actions and
motivations. Hence, we evaluated our impractical approach
with a new domain that is a combination of actions taken
from a number of narratives that have appeared as examples
in narrative generation including The Vengeful Princess[21],
a Mexica[22] story, and Aladdin[15, 18].1

We compared impractical against problems compiled us-
ing the approach of Haslum [9]. The planner was an A-star
forward search in the manner of HSP [4] using either the
hmax admissible heuristic, or the more informative but in-
admissible hFF . This is compared against the same search
procedure with the applicable actions restricted to happen-
ings or those from relevantactions-predict, with each
agent using f-commands to determine relevant actions. In
addition to the two heuristics used by the monolithic plan-
ner, the hR heuristic was assessed. While we shall measure
both run time and the number of search-states evaluated, we
also wish to compare the overhead of the agents’ relevance
computation with the saving from reducing search space. As
both the heuristic calculation and agents’ reasoning is based
on the time-consuming production of RPGs, we will use the
number and size of these as a measure of the complexity. For
run time calculation, a single core on a consumer desktop
3GHz AMD CPU was used to run the experiments.

6.2 Results

6.2.1 Efficiency
Table 1 shows the results of running the canonical Aladdin

domain and problem using the compiled domain compared
to our approach. Of particular note is the average branch-
ing factor which is approximately ten times greater when
searching the space of compiled intent-action pairs. In any

1The domain model is available to download from
http://www.scm.tees.ac.uk/j.porteous/aladdin-files.zip

A

B

C

D

Figure 2: Construction of the RPG for heuristic
evaluation. Fact nodes other than a combined initial
state (left) and goal facts (right) are excluded. Solid
arcs indicate causal relationships between actions.
A) A single agent’s RPG with additional dashed
arcs showing that each action is self-motivated. B)
An RPG in which a command (crossed action) was
used to command a second (blue) agent to assist.
The blue agent’s actions are motivated by the com-
mand. C) Here the red agent’s motivations are not
shown for clarity. Another iteration begins from (B)
adding actions that require no actor and that require
not additional motivating arcs. Effects of these en-
able the blue agent to fulfil an intent. Note that one
of the blue agent’s actions now has two potential
sources of motivation. D) In the next iteration after
(C) one of the agent-less actions added an intent for
the red agent. An arc from this action to the red
actions leading to the intent is added.



Table 1: Comparison of Haslum’s compiled inten-
tional problem (Mono.) and impractical on the
canonical Aladdin domain and problem.

State RPG RPG Branch Time
count count size factor (s)

Mono. (hmax) >1M 44.1
Mono. (hFF ) 2946 2447 2600 32.4 20.4
imp. (hmax) 1816 2723 32.0 3.8 1.0
imp. (hFF ) 215 357 50.3 3.3 0.5
imp. (hR) 46 274 29.5 2.4 0.3

Table 2: Comparison of the extended domain with
Aladdin problem.

State RPG RPG Branch Time
count count size factor (s)

Mono. (hFF ) > 1M 41.4
imp. (hmax) 291368 340321 130.3 9.9 24.3
imp. (hFF ) 29561 33959 156.3 9.2 3.9
imp. (hR) 165 12345 60.2 8.7 1.8

given search state the agents presented only three to four
reasonable options on average, indicating how restricted this
example domain is.

The compiled problem completed in 20.4s when using hFF

which is at the upper limit of acceptable running times. The
lack of immediacy in response to interactions would greatly
restrict IS systems on this problem. The less informed hmax

heuristic was halted prior to completion after it had evalu-
ated a million search states having run for several minutes.
The curse of dimensionality claimed another victim due to
the high branching factor of the compiled domain.

impractical finds a solution sufficiently quickly using any
heuristic. Using hFF , the number of states evaluated is un-
der 10% of that evaluated by the compilation approach. The
additional RPG evaluations have little impact – there are
still fewer than 15% as many constructed over the course of
the search.

As expected, the more informed heuristic hR gives a signif-
icant reduction in the number of states evaluated over hFF .
Fewer RPGs are constructed and on average these contain
fewer actions as more are agent plans rather than the larger
narrative plans.

Table 2 repeats the comparison of Table 1 using the same
problem description but with the extended domain with a
greater number of available actions. Even using the hFF

heuristic that was able to direct the solution in the smaller
domain, the compiled problem was unable to find a narra-
tive solution in any reasonable time. For impractical, the
branching factor was almost 3 times greater which resulted
in around 50 to 100 times more RPGs and a run time of
more than 6 times as long as the simpler domain.

To evaluate the scalability of impractical, another more
complex problem with different initial state and narrative
goals was evaluated. This problem took 24.2s to solve–longer
than the desired response time for an IS system. This prob-
lem is an example near the upper limit in terms of com-
plexity that our new approach can manage. The solution
narrative contained 18 actions, had an average branching
factor of 12.1, and required 200946 RPGs to be constructed.
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Figure 3: Number of distinct narratives for the Al-
addin problem using the canonical domain (red), the
extended domain (blue), permitting characters with
unfulfilled intents (solid lines) and only fulfilled in-
tents (dashed).

6.2.2 Expressiveness
The results presented in the previous section confirm that
our impractical approach is capable of generating the same
narratives as intentional planners, but much more efficiently.
In this section, to quantitatively evaluate the scope of other
narrative possibilities we have extended the search to find
distinct sets of narratives. We define ‘distinct’ narratives
based on their sets of actions. Two action sets O1 and O2

are distinct when |O1 \ O2| ≥ 2 and |O2 \ O1| ≥ 2. The
search builds the set of narratives in increasing length for
which this constraint holds between all pairs. Some of the
narratives excluded by these constraints may be unique and
interesting, and some that are included may have other in-
teresting variants that can arise through action re-ordering.
However, we believe these omissions are an acceptable com-
promise to avoid considering redundant narratives.

Using the canonical Aladdin domain and problem a total
of 22 distinct solutions are found. All of these feature agent
cooperation as in example 3.1.1; 9 of these feature agents
acting on predictions of others future actions as in example
3.1.2; and 8 feature chains of two or more commands as in
example 3.1.3. None of the narratives found by the planner
using the compiled domain were distinct from these, however
10 of the 22 contained intents that could not be fulfilled and
therefore were outside the scope of the compiled approach.
An example of a new narrative found that demonstrates co-
operation, prediction, a chaining of commands and unful-
filled intents is given in Figure 4. This clearly illustrates
impractical can generate new forms of narratives that still
display the properties identified in intentional plans.

Figure 3 shows the effect of moving to the extended do-
main. Within 5 actions of the optimal solution the extended
domain’s search space already contains over 30 distinct nar-
ratives, more than in the entire space of the canonical do-
main. The dashed lines show that only with the addition of
narratives in which some agents’ intents remain unfulfilled
can this rapid expansion of narrative possibilities occur.



1. Jafar falls in love with Jasmine

2. Aladdin falls in love with Jasmine

3. Aladdin travels to the mountain

4. Jafar travels to the mountain (predicting)
5. Aladdin slays Dragon

6. Aladdin pillages the magic lamp from Dragon

7. Jafar orders Aladdin to help marry (1st)
8. Aladdin summons Genie from the magic lamp

9. Aladdin commands Genie to help marry (2nd)
10. Genie appears threatening to Jafar

11. Jafar orders Aladdin to slay the Genie

12. Jafar travels to the Castle

13. Genie casts a spell on Jasmine (cooperating)
14. Jafar marries Jasmine

15. Aladdin slays Genie

Figure 4: Generated impractical narrative illus-
trating: character co-operation; prediction of other
character intent; chaining of commands and intent;
and unfulfilled intents. For further detail see text.

7. CONCLUSIONS
We have shown that extensive search for high-quality nar-

ratives is not mutually exclusive with run time efficiency.
Our impractical approach begins to bridge the gap from
monolithic intentional planners to multi-agent simulation,
successfully decomposing intent and action causality into
global search and agents’ actions’ relevance.

We have detailed an implementation for agents based on
relaxing the domain that is able to determine the union of
an agent’s reasonable plans efficiently. This was shown to
be 40 times faster than solving the current state-of-the-art’s
example compiled narrative problem.

With a new extended domain we have shown that mono-
lithic intentional planners do not scale when action options
are increased. With our approach the heuristic hFF is shown
to still produce narratives in real-time, and we have pre-
sented a new more informed heuristic for impractical search
that makes further significant reductions in the number of
states evaluated.

The combination of global search and multiagent plan-
ning presented here is a practical solution to the generation
of believable narratives for IS that guarantee author and
narrative goals.
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