
Camelot: A Modular Customizable Sandbox for
Visualizing Interactive Narratives

Alireza Shirvani, Stephen G. Ware
Narrative Intelligence Lab, University of Kentucky

Lexington, KY 40506
{ashirvani, sgware}@uky.edu

Abstract

Camelot is a modular customizable virtual environment that
is inspired by the needs of current and previous narrative
generation research. Camelot is meant to facilitate interac-
tive narrative prototyping, controlled comparisons of differ-
ent systems, and reproducing and building on the works of
others. It provides a 3D presentation layer that is fully separa-
ble from the narrative generation system that controls it. This
allows any application, AI algorithm, or technology, written
in any programming language, to connect and use Camelot to
visualize their interactive narratives. In this paper, we intro-
duce Camelot and its capabilities, and provide some details
on how and to what extent it can be used to benefit the inter-
active narrative community.

1 Introduction
Camelot is a modular and customizable interactive narrative
environment that provides a sandbox to act as a presenta-
tion layer for any narrative generation system. Camelot is
a real-time 3D third-person virtual environment that takes
place in a Medieval fantasy setting and includes customiz-
able characters, places, and items. By using this environ-
ment, researchers can build and test prototypes faster and
easier.

By providing a fully separate presentation layer, Camelot
is independent of the programming language or technology
used by the narrative generation system. This separation of
concerns lets Camelot provide a standard of presentation
that can be shared among the interactive narrative commu-
nity. Through this standard, highly different AI approaches
can be meaningfully compared to one another and evalu-
ated in the same context and with the same subjects. More-
over, this standard can facilitate researchers to reproduce and
build upon the works of others.

In this paper, we provide some details about the accessi-
bility and capabilities of Camelot. We hope that it may reach
and assist many researchers in their efforts to contribute to
the interactive narrative and AI community. In section 2, we
will discuss the design of Camelot to support research and

Copyright © 2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

simplify its application. Section 3 presents the potential ap-
plications of Camelot and several proof of concept games
that are free to access and play. Section 4 discusses our pre-
vious attempts and future plans for community outreach, and
finally, section 5 presents the conclusions.

2 Design to Support Research
2.1 Interoperability
To generate an interactive narrative, Camelot communicates
with an experience manager (EM) (Riedl and Bulitko 2013).
Experience managers, sometimes called drama managers,
emerged early in interactive narrative research (Bates 1992;
Weyhrauch 1997) and continue to be a popular architecture
(see Roberts and Isbell (2008) for a survey). In contrast to
some previous narrative control systems, such as Mimesis
(Young 2001) or Zócalo (Young et al. 2011), Camelot pro-
vides both the presentation layer and the bridge that connects
it to an EM.

A Camelot EM can be written in any programming lan-
guage that has standard input and output capabilities. In fact,
all communications between Camelot and the EM are trans-
mitted via the standard I/O, e.g. System.out.Println
in Java, print in Python, or Console.WriteLine in
C#. Camelot has a large list of available commands that
can be used to control its UI, characters, environments, etc.
These commands are referred to as actions and have the fol-
lowing format1:

ActionName(Argument1, Argument2, ...)

e.g. Attack(Hero, Villain)

Sit(Tom, Room.Chair)

PlaySound(LivelyMusic)

Managing Sequences of Actions
To execute an action, an EM can append start to a command
and sends it to Camelot. Camelot then attempts to execute
that command and responds with the same command with a

1For a complete list of actions, the description of their function,
and the details of their arguments, please refer to the actions page of
the documentation website (link provided at the end of the paper).



Figure 1: The radial menu shows a list of enabled affor-
dances enabled on an object (the eagle statue). The icon,
title, and name of each affordance is specified by the EM.

succeeded prefix, when the execution is successful, or oth-
erwise with an error or failed prefix. The response message
starts with error if the action could not be started, due to,
for instance, insufficient or incorrect arguments, or targeting
characters, items, or places that were not instantiated before-
hand. The response message starts with failed if the action
execution fails after it was started, e.g. characters trying to
walk out of a locked prison cell, player character walking
interrupted by user input. Whether an action fails with an er-
ror or failed message, a short message is also appended that
describes the reason for the failure. The EM can use these
responses to properly sequence the commands its wants to
visualize.

An EM can also append stop to a previously started com-
mand to stop its execution. In that case, Camelot responds
with a failed message and does it best to revert back any
changes made by the execution of that command. For in-
stance, if a character is in the process of exiting a door after
opening it, the door is closed as a consequence of stopping
the Exit command.

Action Abstraction Levels
Many Camelot actions are comprised of smaller units that
are managed by Camelot without concerning the EM. For
instance, when the EM calls the Exit command, Camelot
makes the specified character walk to the specified door,
open the door, and go through the door. Camelot then closes
the door and makes the screen fade out. In doing so, Camelot
does not burden the EM with small units of work that can be
combined into a single action. In this case, walking to, open-
ing, and closing a door, as well as having the screen fade out
are all also available to the EM to execute individually.

Furthermore, the EM is free to define any level of ac-
tion abstraction by managing the execution of a sequence of
Camelot commands. For instance, in an EM, we can define a
Shop function that when called, runs a sequence of Camelot
commands that make a character walk to a merchant and
take an item from them.

Asynchronous Execution
Camelot manages simultaneous actions that use the same as-

sets. Camelot locks characters, furniture, and items when an
action starts using them. All other starting actions that tar-
get those objects need to wait for the release of that lock.
For instance, assume that an EM simultaneously asks both
Tom and Jane to go to a merchant to take an item by call-
ing Take(Tom, Item, Merchant) and Take(Jane, Item, Mer-
chant). If Tom reaches the merchant first, they start taking
the item, while Jane walks to the merchant and waits. At this
point, the EM could, for instance, decide to stop the com-
mand Take(Jane, Item, Merchant) upon receiving started
Take(Tom, Item, Merchant). Otherwise, when Take(Tom,
Item, Merchant) succeeds, Take(Jane, Item, Merchant) re-
sumes and since items cannot be in two places at once, the
item disappears from Tom’s hand and is placed in Jane’s.

User Input
When the player interacts with the environment, Camelot
sends messages with an input prefix to notify the EM. These
commands include any interactions with the objects or non-
player characters in the environment, dialog choices, key-
board inputs, or specific changes in the position of the player
character.

e.g. input arrived Hero position Castle.Door

input Draw Hero Sword

input Key Inventory

Since the EM is fully separate from Camelot, it is not de-
pendent on any specific algorithms or technologies, and it
does not even have to be deployed on the same physical ma-
chine (following the architecture used by Young’s Mimesis
(2001), and many other similar systems). The only connec-
tion between Camelot and an EM are the simple strings of
texts that are human readable and easy to understand.

2.2 Camelot Gameplay Logs
While a user is playing an interactive narrative, Camelot
generates a list of all its communication messages with the
EM, as well as their time stamps. Camelot gameplay logs
capture all the events that occur during a playthrough via the
user input or the EM, including when actions start, succeed,
or fail. These files can then be used to almost accurately re-
produce and analyze a user’s playthrough and the story that
unfolds based on their choices. A log file’s information and
file size make it very efficient to transfer and collect a data
set of user gameplay, which can benefit data-driven story-
telling systems. We also provide an application that can be
downloaded from Camelot’s website and used as an EM to
almost accurately recreate a playthrough from a log file.

2.3 Modular and Customizable
Camelot comes with a set of characters and places that can
be customized as intended. To create various characters,
the EM can choose from different body-types, hair styles,
hair colors, eye colors, skin tones, and outfits. Figure 2
presents some examples of these characters. Camelot also
provides many small, contained, pre-built environments,
named places, that can be instantiated to create the story
world. Figure 3 presents some examples of these places.



Each place comes with a set of interactive furniture, such
as shelves, chairs, tables, or cauldrons, that can be hidden or
shown depending on the context of the story.

Camelot does not impose any restrictions on where the
doors of each place lead to. This enables Camelot’s world
creation to be modular and allows any configuration of the
space. More specifically, every door leads to an area outside
the place obstructed by white clouds. When a character exits
through a door, they stay behind that door and wait for the
EM to change their position. The EM creates the illusion that
doors are connected by having a character enter through one
door immediately after leaving through another.

2.4 Stateless Presentation

Camelot only acts as a presentation layer to an EM. Since
different AI technologies, e.g. planning and machine learn-
ing, have very different representations of state, Camelot
does not require the EM to use any particular state repre-
sentation. In fact, to a large extent, Camelot does not keep
track of the state of the world.

For example, Camelot has a UI element named the List
that can be used to represent character inventory (Figure 4).
It is in fact the List and not a list, as in there are not different
instances of it for different characters. Again, it is the EM
that decides what to put in the list when to display the list
(e.g. to show the inventory of a specific character).

Furthermore, Camelot also has no notion of the player.
More specifically, any of the instantiated characters can be
controlled by mouse and keyboard as long as they are the
camera focus. We will discuss the camera focus later in the
Camera Control subsection. Any references to the player
character in this paper refer to the one currently being con-
trolled by the user.

There are some exceptions to the stateless nature of
Camelot, specifically the physical position of characters. For
instance, if a character is sitting on a chair, an action that at-
tempts to make another character sit on that chair will fail
with a message stating that the chair is already occupied by
another character.

Moreover, many character actions require the character to
first walk to the target. Since places are independent con-
tained environments, the corresponding actions will fail if a
targeted character moves to a different place.

However, this is not true about items. All actions that tar-
get items will teleport the specified item to the position re-
quired by the action. For instance, if an item is on a shelf
and the EM asks a character to take the item out of their
pocket, the item will instantaneously disappear from the
shelf and appear in their hand. In addition, the SetPosition
command can be used to instantaneously teleport a charac-
ter or item to any other position within any place. Therefore,
Camelot can also be adopted in interactive storytelling sys-
tems with a weak or non-existent sense of permanent state,
such as purely language-based interactive narratives (e.g.,
neural language model based storytelling systems such as
(Martin, Sood, and Riedl 2018).

2.5 Simple Description of Affordances
Affordances are the actions a player can choose from in an
interactive narrative (not to be confused with Camelot com-
mands also called actions). In Camelot, affordances can be
simply described by the EnableIcon command. EnableIcon
can be used to describe an affordance that can be performed
to a character, furniture, or item. For instance, it can be used
to allow the player to click on a chair to sit on it.

There are several important things to note about Enable-
Icon. When EnableIcon is used for a character, furniture, or
item,
• The object will be highlighted when the user hovers the

mouse over it.
• If the user right-clicks on the object, a radial menu is

shown that presents all available interactions that can be
performed on that object. Each option can be presented
with a title and an icon. Camelot provides a large variety
of icons that can used for this purpose. Figure 1 presents
an example of a radial menu.

• When the user chooses to interact with an object, Camelot
only responds by sending an input message to the EM.
Camelot does not start any action unless directly in-
structed by the EM. This grants the EM full control
over what to do next in response to user interactions and
whether to accommodate or intervene (see Riedl, Saretto,
and Young’s (2003) discussion of mediation).

• The affordances can also be removed by simply calling
the DisableIcon command.

As an example if Camelot receives EnableIcon(SitDown,
Chair, Room.Chair, “Sit on the chair”),
• When the user right-clicks on the chair, they see an option

with title “Sit on the chair” and icon Chair.
• If the user clicks on the chair, Camelot sends the following

message to the EM: input SitDown Player Room.Chair.
This notifies the EM that the Player has chosen SitDown.

• The EM can then choose to make the player character sit
on the chair by sending start Sit(Player, Room.Chair) to
Camelot, or it can choose to show a message to the user
like “I am not tired right now!”

2.6 Animations and Expressions
A large set of available Camelot commands can be used to
animate characters. For instance, characters can open doors
or chests, sit on chairs, or sleep on beds. These animations
can be used as a visual response to user interactions in form
of player character actions, as well as non-player reactions
to those actions, e.g. clapping, laughing, waving, etc.

In addition to these animations, there are several expres-
sions that can be used to express character emotions, which
are happy, sad, angry, scared, surprised, and disgusted. The
SetExpression command changes a character’s facial expres-
sion as well as their idle animation to reflect that emotion.
Character expressions can also change during dialog to dis-
play their reactions to dialog choices. These expressions can
be used by believable agent research that model affect (Arel-
lano, Varona, and Perales 2008; Marsella and Gratch 2009;



Figure 2: Some examples of Camelot characters

Neto and da Silva 2012; Alfonso Espinosa, Vivancos Rubio,
and Botti Navarro 2014; Shirvani and Ware 2020). Figure 5
presents some examples of these expressions.

Camelot does not support graphic depictions of strong
violence2 or inappropriate nudity in order to make interac-
tive narratives designed with it easier to approve by groups
like university Institutional Review Boards (IRBs). Several
Camelot games have been used in IRB-approved studies
(Ware et al. 2019; Shirvani and Ware 2020).

2.7 Flexible UI
Camelot provides several general UI elements to use in a
narrative. In addition to the radial menu, the list window can
be used to present a list of items to interact with, e.g. display-
ing the inventory of a character or container, RPG character
statistics, a set of skills to purchase, etc., and the narration
window can be used to present simple text.

The dialog window provides interactive dialog that can be
configured with character portraits and links embedded in
the text that the user can click (Cavazza and Charles 2005;
Endrass et al. 2013; Ryan, Mateas, and Wardrip-Fruin 2016).
Dialog links are parts of the text that are highlighted in blue
and can be clicked to represent dialog choices or advance
the dialog tree. Figures 1, 4, and 6 present examples of these
UI elements.

2.8 Camera Control
Camelot provides different options for controlling the cam-
era, which can be used via SetCameraFocus, SetCamer-
aMode, and SetCameraBlend commands. At each moment,

2Characters can attack using the Attack command presented by
swinging their arm while holding an item such as a sword or ham-
mer.

the camera can be focused on a character, furniture, or item
using SetCameraFocus. If the focus of the camera is a char-
acter and the input is enabled (via the EnableInput com-
mand), the camera follows that character’s movements, and
that character can be controlled by mouse and keyboard. We
must note that the input can also be disable at times, for in-
stance, during cutscenes.

SetCameraMode can be used to switch between three
camera modes in real-time. The follow camera mode dis-
plays a third-person over-the-shoulder view of the character
that is the focus of the camera, e.g. as in action RPG games.
This mode can only be enabled if the camera focus is a char-
acter.

In track mode, a top-down view of the place is dis-
played, e.g. as in point-and-click adventures. As the charac-
ter moves, the camera changes rotation to keep the character
at the center, and if the character moves too far, the active
camera switches to a different camera of that place that has
a better view of the character.

Finally, the focus camera mode, presents a front close-up
of the camera focus. This mode can be used to display char-
acter expressions or temporarily shift the focus of the user
to a specific item or furniture that can be interacted with.

When the EM changes the camera focus or mode, the
view transitions from the active camera to the new focus
or mode. The duration of this transition can be controlled
via the SetCameraBlend command. This command gives the
EM more freedom to control the camera and create dramatic
shifts or cuts during cut-scenes.

2.9 License and Availability
Camelot is published under the Non-Profit Open Source Li-
cense 3.0. This license allows Camelot to be used for per-



Figure 3: Some examples of Camelot places

Figure 4: The list shows the current owner of the list (on the
left) and a list of items (at the center) that can be selected to
interact with or view their details (on the right).

Figure 5: Examples of Camelot emotions, from left to right,
surprised, angry, and scared

Figure 6: Interactive dialog can show up to two characters
and any number of clickable links. Clickable links are high-
lighted in blue.

sonal, professional, and academic projects at no cost. It is
only necessary to acknowledge the original project and cre-
ators in any derivative works3. Currently, the executable can
be downloaded and used on Windows and Mac operating
systems. The source code is also available to download.
However, the copyrighted assets are not distributed with the
source, and can be purchased from the Unity Asset Store
at additional cost. The link to Camelot’s documentation and
download are presented at the end of this paper.

3 Applications and Practices
Camelot can benefit a wide range of AI research including
but not limited to:

3We ask users to cite this paper in any published works that use
Camelot.



• Automatic story generation and agent simulations us-
ing neural networks, reinforcement learning, and other
machine learning algorithms (Rowe and Lester 2013;
Harrison, Purdy, and Riedl 2017; Wang et al. 2017;
Martin et al. 2018; Tambwekar et al. 2018).

• Strong-story and strong-autonomy systems using narra-
tive planning (Young et al. 2013), with goals (Riedl
and Young 2010; Teutenberg and Porteous 2013; Ware
and Young 2014; Shirvani and Ware 2019a) and beliefs
(Teutenberg and Porteous 2015; Shirvani, Ware, and Far-
rell 2017; Eger and Martens 2017; Shirvani, Farrell, and
Ware 2018).

• Generating believable behavior by modeling agents with
emotions (Gebhard 2005; Marsella and Gratch 2009;
Shirvani 2019; Shirvani and Ware 2020) or personality
(Bahamón and Young 2017; Berov 2017; Shirvani and
Ware 2019b; Shvo, Buhmann, and Kapadia 2019).

• Dialog generation in interactive narratives (Cavazza and
Charles 2005; Endrass et al. 2013; Ryan, Mateas, and
Wardrip-Fruin 2016).

• Social simulations and interactive dramas using rule-
based systems (El-Nasr, Yen, and Ioerger 2000; McCoy
et al. 2012; 2014) and beat-based architectures (Mateas
and Stern 2003).

• Intelligent camera control for virtual environments
(Drucker and Zeltzer 1994; Ferreira, Gelatti, and Musse
2002; Jhala and Young 2010; Markowitz et al. 2011)

So far, Camelot has been used to create four different in-
teractive narratives. The Relics of the Kingdom and Murder
in Felguard were developed respectively in C++ and Python
by two different teams of undergraduate students at the Uni-
versity of Kentucky. The Three Kings was developed in C#
and best showcases different features of Camelot and the use
of its UI in creating branching narratives. In contrast to the
last three mentioned interactive narratives that were hand au-
thored, Saving Grandma, also developed in C#, is a story
graph interactive narrative that was generated using narra-
tive planning (Ware et al. 2019). Murder in Felguard and
The Three Kings are both free to access on Camelot’s docu-
mentation website.

4 Community Outreach
Our hope is to encourage researcher to adopt Camelot in
their relevant research. In previous years, Camelot was intro-
duced in the Playable Experiences track of AIIDE (Samuel
et al. 2018). A tutorial on Camelot was also held at AIIDE
to showcase the capabilities and use cases of Camelot. This
tutorial featured several invited demonstrations of experi-
ence managers that used interactive behavior trees (Martens
and Iqbal 2019), multi-agent reinforcement learning (Buso-
niu, Babuska, and De Schutter 2008), the Ensemble engine
(Samuel et al. 2015), multi-agent narrative planning (Ware
et al. 2019), and murder mystery generation (Mohr, Eger,
and Martens 2018). A showcase of Camelot will also be pre-
sented at AIIDE 2020’s Intelligent Narrative Technologies
(INT) workshop.

Our focus for the future of Camelot is to organize the In-
teractive Narrative Challenge (INCH). The purpose of INCH
is to solicit AI EMs from many interactive narrative re-
searchers and present their interactive narratives to human
judges for qualitative and quantitative evaluation. INCH pro-
vides a practical context for controlled comparisons of in-
teractive narratives across different systems. INCH will fea-
ture awards for many contributions in various aspects of a
narrative, including use of narrative devices, e.g. flashbacks,
foreshadowing, suspense, etc., story coherence, player free-
dom, replayablility, character richness, and so on. As a result
of INCH, researchers will have access to free evaluation of
their work by human players, as well as the dataset of the
logs of all playthroughs. These logs can be further used to
analyze user experience or to train a data-driven AI narrative
system.

5 Conclusions
Translating AI algorithms and technologies into a user-
friendly, visual interface is almost always a step in evalu-
ating narrative generation systems via a human audience.
The purpose of Camelot is to provide a modular, customiz-
able, and easy-to-use virtual environment for researchers to
visualize their stories. Camelot is fully independent of the
experience manager that controls it, which allows any pro-
gramming language or algorithm to easy connect and take
advantage of Camelot. In addition, it enables the controlled
comparison of drastically different narrative generation sys-
tems and allows researchers to reproduce and build on the
work of others.

We plan to take advantage of Camelot in the Interactive
Narrative Challenge to encourage researchers to submit their
interactive narratives and to provide them with access to
qualitative and quantitative evaluation of their work by hu-
man judges.

Camelot is an ongoing project and we plan to improve
and expand it to support future interactive narrative author-
ing techniques.

Downloading Camelot
You can view a comprehensive interactive documentation
website for Camelot at:

www.cs.uky.edu/∼sgware/projects/camelot
The documentation provides details on how to use

Camelot and its commands, as well as showcasing its char-
acters, places, items, affordances icons, visual effects, and
sound effects. You can also download Camelot for Windows
or MacOs from the documentation website.

The website provides several applications that can be used
as example EMs for Camelot. First, CamelotReplay is an ap-
plication that reproduces a playthrough from a log file. Next,
there are simple EMs that give beginners a place to start
working with Camelot. They showcase a character moving
from one place to another, trying out different outfits, and
buying an item from a merchant. Finally, there are also two
full interactive narratives, Murder in Felguard and The Three
Kings, that showcase the wide range of things you can do in
Camelot.



Acknowledgments
The development of Camelot was supported by the Uni-
versity of New Orleans and the University of Kentucky.
We thank Edward T. Garcia, Rachelyn Farrell, and Porscha
Banker for their insights and assistance with the project.

References
Alfonso Espinosa, B.; Vivancos Rubio, E.; and
Botti Navarro, V. J. 2014. Extending a BDI agents’
architecture with open emotional components. Technical
report, Department of Information Technology, Universitat
Politeócnica de Valeóncia.
Arellano, D.; Varona, J.; and Perales, F. J. 2008. Generation
and visualization of emotional states in virtual characters.
Computer Animation and Virtual Worlds 19(3-4):259–270.
Bahamón, J. C., and Young, R. M. 2017. An empirical eval-
uation of a generative method for the expression of person-
ality traits through action choice. In 13th AAAI International
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 144–150.
Bates, J. 1992. Virtual reality, art, and entertainment. Pres-
ence: Teleoperators & Virtual Environments 1(1):133–138.
Berov, L. 2017. Steering plot through personality and af-
fect: an extended BDI model of fictional characters. In
Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), 293–299. Springer.
Busoniu, L.; Babuska, R.; and De Schutter, B. 2008. A
comprehensive survey of multiagent reinforcement learning.
IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 38(2):156–172.
Cavazza, M., and Charles, F. 2005. Dialogue generation
in character-based interactive storytelling. In Proceedings
of the First AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE’05, 21–26. AAAI
Press.
Drucker, S. M., and Zeltzer, D. 1994. Intelligent camera
control in a virtual environment. In Graphics Interface, 190–
190. Citeseer.
Eger, M., and Martens, C. 2017. Character beliefs in story
generation. In Thirteenth Artificial Intelligence and Interac-
tive Digital Entertainment Conference.
El-Nasr, M. S.; Yen, J.; and Ioerger, T. R. 2000.
FLAME—fuzzy logic adaptive model of emotions. Au-
tonomous Agents and Multi-agent systems 3(3):219–257.
Endrass, B.; Klimmt, C.; Mehlmann, G.; André, E.; and
Roth, C. 2013. Designing user-character dialog in inter-
active narratives: An exploratory experiment. IEEE Trans-
actions on Computational Intelligence and AI in Games
6(2):166–173.
Ferreira, F. P.; Gelatti, G.; and Musse, S. R. 2002. Intelligent
virtual environment and camera control in behavioural sim-
ulation. In Proceedings. XV Brazilian Symposium on Com-
puter Graphics and Image Processing, 365–372. IEEE.
Gebhard, P. 2005. ALMA: a layered model of affect. In
Proceedings of the fourth international joint conference on
Autonomous Agents and Multi-Agent Systems, 29–36.

Harrison, B.; Purdy, C.; and Riedl, M. O. 2017. Toward
automated story generation with markov chain monte carlo
methods and deep neural networks. In Thirteenth Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence.

Jhala, A., and Young, R. M. 2010. Cinematic visual dis-
course: Representation, generation, and evaluation. IEEE
Transactions on computational intelligence and AI in games
2(2):69–81.

Markowitz, D.; Kider, J. T.; Shoulson, A.; and Badler, N. I.
2011. Intelligent camera control using behavior trees. In
International Conference on Motion in Games, 156–167.
Springer.

Marsella, S. C., and Gratch, J. 2009. EMA: A process
model of appraisal dynamics. Cognitive Systems Research
10(1):70–90.

Martens, C., and Iqbal, O. 2019. Villanelle: an authoring
tool for autonomous characters in interactive fiction. In Pro-
ceedings of the International Conference on Interactive Dig-
ital Storytelling, 290–303.

Martin, L. J.; Ammanabrolu, P.; Wang, X.; Hancock, W.;
Singh, S.; Harrison, B.; and Riedl, M. O. 2018. Event repre-
sentations for automated story generation with deep neural
nets. In Thirty-Second AAAI Conference on Artificial Intel-
ligence.

Martin, L. J.; Sood, S.; and Riedl, M. 2018. Dungeons and
dqns: Toward reinforcement learning agents that play table-
top roleplaying games. In Wu, H.; Si, M.; and Jhala, A., eds.,
Proceedings of the Joint Workshop on Intelligent Narrative
Technologies and Workshop on Intelligent Cinematography
and Editing co-located with 14th AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment,
INT/WICED@AIIDE 2018, Edmonton, Canada, November
13-14, 2018, volume 2321 of CEUR Workshop Proceedings.
CEUR-WS.org.

Mateas, M., and Stern, A. 2003. Façade: An experiment in
building a fully-realized interactive drama. In Game devel-
opers conference, volume 2, 4–8.

McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Wardrip-
Fruin, N.; and Mateas, M. 2012. Prom Week: designing past
the game/story dilemma. In Proceedings of the International
Conference on the Foundations of Digital Games, 235–237.

McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. 2014. Social story worlds with
Comme il Faut. IEEE Transactions on Computational intel-
ligence and AI in Games 6(2):97–112.

Mohr, H.; Eger, M.; and Martens, C. 2018. Eliminating the
impossible: a procedurally generated murder mystery. In
Proceedings of the Experimental AI in Games workshop at
the 14th AAAI international conference on Artificial Intelli-
gence and Interactive Digital Entertainment.

Neto, A. F. B., and da Silva, F. S. C. 2012. A computer archi-
tecture for intelligent agents with personality and emotions.
In Human-Computer Interaction: The Agency Perspective.
Springer. 263–285.



Riedl, M. O., and Bulitko, V. 2013. Interactive narrative: An
intelligent systems approach. AI Magazine 34(1):67–67.
Riedl, M. O., and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research 39:217–268.
Riedl, M.; Saretto, C. J.; and Young, R. M. 2003. Managing
interaction between users and agents in a multi-agent story-
telling environment. In Proceedings of the second interna-
tional joint conference on Autonomous Agents and Multia-
gent Systems, 741–748.
Roberts, D. L., and Isbell, C. L. 2008. A survey and qual-
itative analysis of recent advances in drama management.
International Transactions on Systems Science and Appli-
cations, Special Issue on Agent Based Systems for Human
Learning 4(2):61–75.
Rowe, J. P., and Lester, J. C. 2013. A modular reinforce-
ment learning framework for interactive narrative planning.
In Ninth Artificial Intelligence and Interactive Digital En-
tertainment Conference, 57–63.
Ryan, J.; Mateas, M.; and Wardrip-Fruin, N. 2016. Charac-
ters who speak their minds: dialogue generation in Talk of
the Town. In Twelfth Artificial Intelligence and Interactive
Digital Entertainment Conference.
Samuel, B.; Reed, A. A.; Maddaloni, P.; Mateas, M.; and
Wardrip-Fruin, N. 2015. The Ensemble engine: Next-
generation social physics. In Proceedings of the Tenth Inter-
national Conference on the Foundations of Digital Games
(FDG 2015), 22–25.
Samuel, B.; Reed, A.; Short, E.; Heck, S.; Robison, B.;
Wright, L.; Soule, T.; Treanor, M.; McCoy, J.; Sullivan, A.;
et al. 2018. Playable experiences at AIIDE 2018. In Pro-
ceedings of the Fourteenth Artificial Intelligence and Inter-
active Digital Entertainment Conference, 275–280.
Shirvani, A., and Ware, S. G. 2019a. On automatically mo-
tivating story characters. In Proceedings of the Experimen-
tal AI in Games workshop at the 15th AAAI international
conference on Artificial Intelligence and Interactive Digital
Entertainment.
Shirvani, A., and Ware, S. G. 2019b. A plan-based person-
ality model for story characters. In Proceedings of the 15th
AAAI international conference on Artificial Intelligence and
Interactive Digital Entertainment, 188–194.
Shirvani, A., and Ware, S. G. 2020. A formalization of
emotional planning for strong-story systems.
Shirvani, A.; Farrell, R.; and Ware, S. G. 2018. Combin-
ing intentionality and belief: Revisiting believable character
plans. In Fourteenth Artificial Intelligence and Interactive
Digital Entertainment Conference, 222–228.
Shirvani, A.; Ware, S. G.; and Farrell, R. 2017. A possible
worlds model of belief for state-space narrative planning.
In Proceedings of the Thirteenth Artificial Intelligence and
Interactive Digital Entertainment Conference, 101–107.
Shirvani, A. 2019. Towards more believable characters us-
ing personality and emotion. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, 230–232.

Shvo, M.; Buhmann, J.; and Kapadia, M. 2019. An inter-
dependent model of personality, motivation, emotion, and
mood for intelligent virtual agents. In Proceedings of the
19th ACM International Conference on Intelligent Virtual
Agents, 65–72.
Tambwekar, P.; Dhuliawala, M.; Martin, L. J.; Mehta, A.;
Harrison, B.; and Riedl, M. O. 2018. Controllable neu-
ral story plot generation via reinforcement learning. arXiv
preprint arXiv:1809.10736.
Teutenberg, J., and Porteous, J. 2013. Efficient intent-
based narrative generation using multiple planning agents.
In Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems, 603–610. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems (IFAAMAS).
Teutenberg, J., and Porteous, J. 2015. Incorporating global
and local knowledge in intentional narrative planning. In
International Conference on Autonomous Agents and Multi-
agent Systems, 1539–1546.
Wang, P.; Rowe, J. P.; Min, W.; Mott, B. W.; and Lester, J. C.
2017. Interactive narrative personalization with deep rein-
forcement learning. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, 3852–3858.
Ware, S. G., and Young, R. M. 2014. Glaive: a state-space
narrative planner supporting intentionality and conflict. In
Tenth Artificial Intelligence and Interactive Digital Enter-
tainment Conference.
Ware, S. G.; Garcia, E.; Shirvani, A.; and Farrell, R. 2019.
Multi-agent narrative experience management as story graph
pruning. In Proceedings of the fifteenth Artificial Intel-
ligence and Interactive Digital Entertainment Conference,
87–93.
Weyhrauch, P. W. 1997. Guiding interactive drama. Ph.D.
Dissertation, Carnegie Mellon University.
Young, R. M.; Thomas, J.; Bevan, C.; and Cassel, B. 2011.
Zócalo: A service-oriented architecture facilitating sharing
of computational resources in interactive narrative research.
In Working Notes of the Workshop on Sharing Interactive
Digital Storytelling Technologies at ICIDS, volume 11. Cite-
seer.
Young, R. M.; Ware, S. G.; Cassell, B. A.; and Robertson,
J. 2013. Plans and planning in narrative generation: a re-
view of plan-based approaches to the generation of story,
discourse and interactivity in narratives. Sprache und Daten-
verarbeitung, Special Issue on Formal and Computational
Models of Narrative 37(1-2):41–64.
Young, R. M. 2001. An overview of the Mimesis architec-
ture: Integrating intelligent narrative control into an existing
gaming environment. In Working notes of the AAAI spring
symposium on Artificial Intelligence and Interactive Enter-
tainment, 77–81.


