

Playable Experiences at AIIDE 2018

Ben Samuel Aaron Reed, Emily Short
 University of New Orleans “Escape Plan” and “At the Bar”:
 bsamuel@cs.uno.edu Dynamic Characters Driven by Spirit AI Character Engine
 Spirit AI
 {aaron, emily}@spiritai.com

Samantha Heck, Barrie Robison, Landon Wright, Terence Soule
Project Hastur: An Evolutionary Tower Defense Game

University of Idaho
{heck9873, wrig8396}@vandals.uidaho.edu, {brobison, tsoule}@uidaho.edu

Mike Treanor, Joshua McCoy, Anne Sullivan

Vox Populi: The Ustradian Games
American University, University of California, Davis, Georgia Institute of Technology

treanor@american.edu, jamccoy@ucdavis.edu, anne@play-crafts.com

Alireza Shirvani, Edward Garcia, Rachelyn Farrell, Stephen Ware
Camelot: An Interactive Narrative Sandbox Environment

University of New Orleans
{ashirvan, etgarci1, rfarrell, sgware}@uno.edu

Katherine Compton

Bottery
University of California, Santa Cruz

galaxykate@gmail.com

Abstract
This paper describes the accepted entries to the sixth Playa-
ble Experiences track to be held at the AIIDE conference.
The Playable Experiences track showcases innovative com-
plete works that are informed, inspired, or otherwise ena-
bled by artificial intelligence.

 Introduction
The AIIDE Playable Experiences track offers creators a
platform to showcase work that is informed, inspired, or
otherwise enabled by artificial intelligence. While other
tracks at the conference, including the main track, the
demo track, and artifact-evaluation, provide opportunities

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

for creators to supplement their research contributions with
interactive demonstrations, accepted entries in the Playable
Experiences track are complete experiences in and of
themselves. As such, though the pieces presented here are
diverse in their approaches and applications of artificial in-
telligence, they all share two commonalities: they are vehi-
cles for both ground-breaking artificial intelligence re-
search and artistic achievement.
 Five entries were accepted to the 2018 AIIDE Playable
Experiences track (chaired by Ben Samuel). These pieces
demonstrate a range of technological innovations and arti-
ficial intelligence techniques, applied towards a variety of
genres both existing and novel. The accepted entries are:
• "Escape Plan" and "At the Bar": Dynamic Charac-

ters Driven by Spirit AI Character Engine is a linked
pair of playable experiences, representing two conversa-
tions with AI-driven characters in a shared fictional uni-
verse.

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

275

• Project Hastur: An Evolutionary Tower Defense
Game features procedurally generated enemies that
evolve based on the automated defenses erected by the
player.

• Vox Populi: The Ustradian Games is a game-based as-
sessment of cross-cultural competency and meta-
cognition, that integrates complex simulation technolo-
gies with gameplay.

• Camelot: An Interactive Narrative Sandbox Envi-
ronment is a modular and customizable interactive nar-
rative environment, which provides a sandbox to visual-
ize and test different narrative systems.

• Bottery is a combination of a simulator, language, par-
ser, and IDE for finite state machine chatbots.
The rest of this paper consists of each of the creators

discussing their works, influences, and approaches towards
applying artificial intelligence to create novel playable ex-
periences.

Accepted Submissions
"Escape Plan" and "At the Bar": Dynamic Char-
acters Driven by Spirit AI Character Engine

We present a linked pair of playable experiences, "Escape
Plan" and "At the Bar," representing two conversations
with AI-driven characters in a shared fictional universe.
The experiences are driven by Spirit AI Character Engine,
a new commercial platform for developing dynamic char-
acter interaction. "Escape Plan" uses free text natural lan-
guage input, while "At the Bar" uses a menu-based input
system with contextually-selected choices. Both experienc-
es use Character Engine to determine likely player actions,
reason over character reactions, and generate a procedural-
ly-assembled response. A diagnostic display shows the log-
ic behind the procedural text system in real-time. Third-
party facial animation, lip-sync, and text-to-speech tech-
nology are used to round out the demos.
 These demos have been created by Character Engine
team members to showcase the engine's capabilities. Our
team includes several people in key technical and creative
positions with a deep background of building interactive
stories and characters within academia and as working
game designers. Our motivation for creating this platform
is to assemble (in a single, authorable package) a range of
technologies that together make more dynamic game char-
acters realizable for commercial game companies: ma-
chine-learning trained natural language classification, hu-
man-level text-to-speech and speech-to-text, and years of
design wisdom about procedural text generation and social
simulation. Our system designs have been driven by our
practical experiences designing previous games and en-
gines concerned with dynamic and authorable interactive
stories [Short, 2011; Plotkin, 2011; McCoy et al., 2014;

Evans and Short, 2014; Reed, 2014] and we aim to both it-
erate and improve on these prior systems, and to make this
design space accessible to mainstream game designers.
 The primary innovation these demos showcase is an
end-to-end system for authoring richly interactive game
characters. Using an authoring tool and SDK, designers
can build reactive characters with capabilities not yet seen
in AAA games, including responding to natural language,
expressing multiple aspects of game state in a single pro-
cedurally assembled response, and shaping a conversation
to meet design goals. For instance, in "Escape Plan," the
NPC follows an author-defined spine where she attempts to
first decide whether the player is trustworthy, and if so,
find out whether they're willing to perform a mission for
her, all the while allowing the player to improvise around
this spine by asking follow-up questions and bringing up
other topics. At a high level, the NPC responds naturally
and then redirects the conversation back to the authorial
goals, an approach enabled by a system of social practices
that drive which behaviors the NPC wants to enact. At a
low-level, the particulars of each NPC response are shaped
by variable character traits to produce transcripts that differ
significantly from one playthrough to the next. In “At the
Bar,” the NPC’s personality is randomly reset each play-
through, leading to different levels of politeness, extrover-
sion, and other traits visible in the top center of the inter-
face.
 Video clips of the demos can be seen at the link below.
The first two clips show two different playthroughs of “Es-
cape Plan,” highlighting different player strategies. The
third clip showcases “At the Bar.”
 http://aaronareed.net/aiide-playable-18/

Project Hastur: An Evolutionary Tower Defense
Game

Project Hastur is a tower defense game that features evolv-
ing, procedurally generated enemies. These enemies, called
the Protean Swarm, are defined by a digital genome of real
numbers that defines all of their game traits. The Proteans’
traits evolve over time, allowing the Proteans to adapt to
the player’s strategy and the environment. The traits in-
clude morphology (size, limb types, color, texture, and
presence of swappable parts), behavior (avoidance and
preference for humans and towers), and performance (re-
sistances, sensory abilities, health, and movement speeds).
Variation in the enemy traits are created by mutations of
the genome and crossover between parent creatures. The
trait expression is fully integrated into the Unity game en-
gine, allowing the morphology, behavior, and performance

276

of each creature to be dynamically generated during
runtime.

 In a typical tower defense game, the enemies are encod-
ed as scripted waves. In Project Hastur, each wave is a dis-
crete generation that is the result of sexual reproduction of
the preceding generation. The Proteans are encoded as dip-
loid, sexually reproducing hermaphrodites. During a gen-
eration, an individual Proteans's genetically encoded traits
work in combination to help it earn fitness by either dam-
aging the player’s defensive towers or approaching and
damaging the player’s base tower. At the end of each gen-
eration, Proteans are selected to be parents based on these
fitness values. Parents are chosen in pairs using tournament
selection and each parent contributes one mutated chromo-
some to create a novel, diploid offspring. This process is
repeated until the fixed population size is reached. As such,
a small sub-set of the most fit Proteans win parenthood and
pass their advantageous traits to their offspring. We call
this game mechanic evolutionary procedural generation
(EPG). In Project Hastur, EPG produces game outcomes
that are responsive to differences in player strategy – the
enemies literally adapt to the player.

 The potential applications of Evolutionary Procedural
Generation of game enemies are numerous. The most ob-
vious application is the customization of player experience
without expensive and time consuming generation of game
content. For example, rather than carefully scripting waves
of enemies, EPG automatically produces generations of
enemies that become progressively more difficult. More
importantly, the increasing difficulty occurs in response to
player decisions. If the player focuses on building
flamethrowers the Proteans are very likely to evolve fire
resistance. This potentially increases replayability because
every time the player tries a new strategy they are likely to
see a different opponent response. Additionally, even when
the player makes the exact same strategic decisions, ran-
dom mutations can produce different but equally effective
enemy populations that will ultimately crush the player.
 Project Hastur also includes an experiment mode (Figure
2) that allows the player to control the parameters of evolu-
tion: mutation rates, selection pressure, population sizes,
etc. The complete genome of every Protean in every gener-
ation can be saved to an external file for analysis, and there
are tools for automating gameplay that allow for the easy
collection of data. Thus, Project Hastur can also be used as
a teaching and research tool, allowing players to explore
the evolutionary processes and perform experiments.
 A playable demo of Project Hastur can be found at:
http://polymorphicgames.com/DEMO

Vox Populi: The Ustradian Games

Vox Populi: The Ustradian Games is a game-based as-
sessment of cross-cultural competency and meta-cognition,
that integrates complex simulation technologies with
gameplay. In the game, players seek to achieve objectives
through having conversations with the people of an un-
known artificial culture. The player's dialogue options and
the non-player character responses are determined by En-
semble [Samuel et al., 2015] and the Social Practice engine
[Treanor et al., 2016]. The game roughly conforms to the
"Visual Novel" game genre, but rather than simply navi-
gating pre-scripted dialogue trees, the responses are dy-
namically selected based on the social state and history of
player choices. Because the results of conversations are
based on a rich model of the non-player character’s culture,
we believe that players will need to focus on gaining an
understanding of the culture, rather than memorizing, or
enumerating all paths through dialogue trees.
 The story of the game is about the Ustradian people, and
a tournament that they hold to determine the new "cultural
minister" of their planet, Ustrad. The winner of the tour-
nament is the person who is able to complete three quests,
and then correctly demonstrate their understanding of the
culture through a quiz. Example quests involve learning
about the occupation of, or getting an item that belongs to,

Figure 1: Screenshot from Project Hastur showing some of the
possible variety of evolving opponents.

Figure 2:Screenshot from Project Hastur showing the parameters
available for experiment mode.

277

the Ustradians. In order to successfully achieve these goals,
the player must learn about the society's hierarchical struc-
tures, and the collectivistic or individualistic nature each
individual (among other cultural factors). Part of the game
involves players inputting their current understanding
about the culture into a game interface. Through empirical
studies with two different versions of the game, where one
had this interface and the other didn't, it was found that
presenting the game interface resulted in better perfor-
mance at the end of game quiz (thus a better understanding
of the simulated artificial culture). We believe that this
demonstrates that interrelating the gameplay and simula-
tion elements can result in deeper engagement with exper-
imental simulation games, and can point the way for new
genres of games that promote system level understandings
of complex subjects.
 As mentioned, central to Vox Populi is the concept of a
“social practice”. In the context of the Social Practice en-
gine, a social practice is a normative pattern of social inter-
action that captures the nuances that result from the indi-
vidual agent’s situation in the social state. In Ensemble, the
particular path through an instance of a social practice is
not strongly pre-authored; instead the path is generated.
Rather than adhering to a static branching tree structure, or
a state machine with transition rules, a sophisticated selec-
tion mechanism (a modified version of Ensemble) is used
to determine an agent’s response to the previous action and
current social state. This mechanism is driven both by the
structure of the practice as well as a model of socio-
cultural norms of the story world.
 Vox Populi is the first completed game to make use of
the Social Practice engine. Building from this work, the
Social Practice engine and Ensemble are being used for an
in-development role-playing game where social history and
a dynamic social state will shape the game’s narrative.

Camelot: An Interactive Narrative Sandbox Envi-
ronment

Purpose
Camelot is a modular and customizable interactive narra-
tive environment, which provides a sandbox to visualize
and test different narrative systems. This environment is a
real-time 3D third-person over-the-shoulder game that
takes place in a medieval fantasy setting and includes cus-
tomizable components, including characters, places, and
items, implemented in Unity3D engine.
Architecture
Camelot can be considered the presentation layer to a nar-
rative system that serves as the logic layer. These two lay-
ers can communicate through standard input messages to
create and customize a virtual world, as well as the interac-

tions of its virtual characters, and allow a “player” to inter-
act with it.
 More specifically, Camelot listens for messages in the
“start some task” format and in turn, performs that task if
possible, and sends back messages about the life cycle of
that task, e.g. started, succeeded, or failed. Moreover, it al-
so processes player input to move the player character and
sends appropriate input messages as the player interacts
with the world, for instance “input Player arrived at a posi-
tion,” “input selected an option,” etc. The logic layer can
use these messages to properly respond to player input and
execute arbitrary sequences of tasks on the presentation
layer.
 The presentation layer has several main components.
Characters can be created using the “Create Character”
command with the options to set the gender, age, hair style,

Figure 3: Camelot presentation layer.

278

skin color, eye color, and clothing. Places represent differ-
ent architectural and natural locations with different gate-
ways, e.g. doors, gates, paths, etc. Each place has a default
spawn position, as well as different positions, which can be
used to put the characters or trigger events, when a charac-
ter enters or leaves them. Finally, as their name suggests,
items are various accessories, which can be held by charac-
ters or be placed in their inventory. Examples of items in-
clude swords, coins, potions, etc.
 Another key task type that allows the player character to
interact with different world components is Enable-
Icon/DisableIcon. These two tasks respectively ena-
ble/disable an interaction option on another character,
door, or object in the world. The corresponding component
is highlighted when hovered by the mouse pointer if it has
at least one enabled option. The player can interact with
different objects by either clicking on them to choose the
default enabled option or right click to open a radial menu
showing all currently enabled options. Upon selecting an
option, a message is sent to the logic layer to execute the
corresponding task sequence.
Example
The logic layer packaged with this playable experience is a
plotgraph experience manager, which uses an intelligently
pruned plotgraph to enable/disable player actions and order
NPCs to take actions at each state of the graph. The experi-
ence manager uses a domain with 4 locations, 4 characters,
and 7 actions. The actions include walking from a place to
another, taking items out of the bandit's chest, buying items
from the merchant for one coin each, stealing an item from
an unarmed character, attacking and killing another charac-
ter, and looting items from slain characters. Finally, a char-
acter who knows the bandit's location can report him to the
town guard. The experience manager maps different tem-
plates of these actions to w sequences of tasks on the
presentation layer.
 In our experiment, the player character begins in their
house, where they learn their grandmother is sick. She
gives them a coin that can be used to buy medicine. The
game features three NPCs, a merchant trading goods for
coins, the town guard who attacks criminals, and a bandit
waiting to steal items. The places include the house, the
cottage, the market, the camp, and the crossroads which
connects the last three places. Each character has a sword
(except the player), the merchant also has the medicine,
and there is another coin in the bandit's chest in the camp.
The game ends when the player either dies or returns home
carrying the medicine. Despite its small size and simplici-
ty, this domain yields a surprising number of interesting
ways the player can accomplish their goal or die in the at-
tempt. We asked 34 participants to play two versions of the
game, one with a randomly generated and the other with
the intelligently pruned plotgraph. The results indicated

that when players noticed a difference between the two
versions, they significantly preferred the intelligent graph.
Otherwise, the participants playing the random version first
significantly preferred the intelligent one.
 In conclusion, we hope other researchers could utilize
this system to visualize their experiments and evaluate
their story generation systems.
Acknowledgements
This research was supported by NSF awards IIS-1647427
and IIS-1464127.

Bottery
Bottery is a combination of a simulator, language, parser,
and IDE for finite state machine (FSM) chatbots. It was
developed at Google from April 2016 to February 2017,
then open-sourced in October 2017.
 Bottery is based on lessons from my previous language-
engine-and-IDE library, Tracery [Compton et al., 2015].
Tracery runs at least 11,000 active Twitterbots, and created
a Cambrian explosion of new bot forms and unexpected
bot poetics [Compton, 2017]. It succeeded (rather acci-
dentally) by combining a novice-friendly online editor with
an on-page simulator and a programming language whose
programs could be expressed as a JSON file (and safely
run on a 3rd party site like CheapBotsDoneQuick).
 FSM libraries already exist, of course, but with Bottery,
the goal is for users to be able to describe interesting, com-
plex, and generative bot conversations, in a JSON format.
These bots can be standalone experiments, or hosted on a
similar site to CheapBotsDoneQuick for conversational
agents that could converse with users on Twitter, smart
speakers, or even be casually embedded as a part of
webpages or Unity games, as Tracery was.
 Bottery programs are maps describing finite state ma-
chines. Each map has a dictionary of states. Each state has
a list of exits with preconditions and post actions, and ac-
tions that it can fire on entering, exiting, etc. When giving
bottery tutorials, I describe maps as boardgame boards
with individual pointers moving around them and changing
scores. Boardgame players know that moving between
states can mean spatial movement, but also temporal (the
Game of Life) or metaphorical/emotional/moral (Chutes
and Ladders) movement, a connection which helps new
users understand how to represent conversational spaces as
FSMs.
 Bottery is built to use Tracery for generative text as well
as parsing. Bottery pointers can change the blackboard (to
set a user's name or hitpoints), and actions that output text
can call on Tracery to expand statements like
“#/userName# has #/data/points#, #congratulations#.”
 We can also use Tracery grammars in reverse . Why? It
is common for conversational bot authors to want to re-
spond to prompts that the user may phrase in different

279

ways (yeah, yes, no, yeah totally). Machine-learning can
help with this, but isn't easily controlled by an author.
Here, the author writes a grammar capable of generating
input values. The exit condition for a state might be #yes#,
which matches any generation of that Tracery rule. Con-
veniently, this also gives us a way to simulate the users of
the system, either autonomously for testing, or to give sug-
gested inputs.
 Bottery is a system under continuing development, but
it’s been able to make a number of interesting bot proto-
types very quickly. The original version is on GitHub
(https://github.com/google/bottery). A playable version is
at https://rawgit.com/google/bottery/master/index.html.

Conclusion
The Playable Experiences track at AIIDE presents five
unique works that leverage artificial intelligence to create
novel, polished gameplay experiences. These pieces are
technical contributions and are valuable resources for the
future of the field. With an emphasis on playability and
audiences, these works have the potential to inspire future
game designers and researchers to further chart unexplored
design space through innovative artificial intelligence ap-
proaches.

References
Compton, K.; Kybartas, B.; and Mateas, M. 2015. Tracery: an au-
thor-focused generative text tool. International Conference on In-
teractive Digital Storytelling: Springer, Cham.

Compton, K. 2017. Bot Poetics. Talk at Interrupt.XYZ. Provi-
dence, RI (https://vimeo.com/225566776).
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A.; Wardrip-Fruin,
N.; Mateas, M. 2014. Social Story Worlds with Comme il Faut.
IEEE Transactions on Computational intelligence and AI in
Games 6.2:97-112.

Plotkin, A. 2011. Characterizing, if not defining, interactive
fiction. IF Theory Reader:59-66. TRANSCRIPT ON Press, Bos-
ton.
Reed, A. A. 2014. Ice-Bound: Combining richly-realized story
with expressive gameplay. Foundations of Digital Games.

Samuel, B.; Reed, A. A.; Maddaloni, P.; Mateas, M.; Wardrip-
Fruin, N. 2015. The Ensemble Engine: Next-generation Social
Physics. Proceedings of the Tenth International Conference on
the Foundations of Digital Games (FDG 2015).
Short, E. 2011. NPC Conversation Systems. IF Theory Reader
(2011): pages 331-358. TRANSCRIPT ON Press, Boston.

Treanor, M.; McCoy, J.; Sullivan, A. 2016. A Framework for
Playable Social Dialogue. In the Proceedings of the AI and Inter-
active Digital Entertainment Conference (AIIDE 2016).

280

