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Abstract

In this work we aim to narrow the gap between plan
recognition and planning by exploiting the power
and generality of recent planning algorithms for
recognizing the set G∗ of goals G that explain a se-
quence of observations given a domain theory. Af-
ter providing a crisp definition of this set, we show
by means of a suitable problem transformation that
a goal G belongs to G∗ if there is an action sequence
π that is an optimal plan for both the goal G and the
goal G extended with extra goals representing the
observations. Exploiting this result, we show how
the set G∗ can be computed exactly and approxi-
mately by minor modifications of existing optimal
and suboptimal planning algorithms, and existing
polynomial heuristics. Experiments over several
domains show that the suboptimal planning algo-
rithms and the polynomial heuristics provide good
approximations of the optimal goal set G∗ while
scaling up as well as state-of-the-art planning al-
gorithms and heuristics.

1 Introduction

Plan recognition is an ubiquitous task in a number of ar-
eas, including natural language, multi-agent systems, and as-
sisted cognition [Schmidt et al., 1978; Cohen et al., 1981;
Pentney et al., 2006]. Plan recognition is planning in re-
verse: while in planning, we seek the actions to achieve
a goal, in plan recognition, we seek the goals that explain
the observed actions. Both are abductive tasks where some
hypothesis needs to be adopted to account for given data:
plans to account for goals, and goals to account for par-
tially observed plans. Work in plan recognition, however,
has proceeded independently of the work in planning, us-
ing mostly handcrafted libraries or algorithms that are not
related to planning [Kautz and Allen, 1986; Vilain, 1990;
Charniak and Goldman, 1993; Lesh and Etzioni, 1995; Gold-
man et al., 1999; Avrahami-Zilberbrand and Kaminka, 2005].

In this work we aim to narrow the gap between plan recog-
nition and planning by exploiting the power and generality
of recent classical planning algorithms. For this, we move
away from the plan recognition problem over a plan library

and consider the plan recognition problem over a domain the-
ory and a possible set G of goals. The plan recognition task
is then formulated as the problem of identifying the goals
G ∈ G such that some optimal plan for G is compatible
with the observations. Such goals are grouped into the set
G∗. The reason for focusing on the optimal plans for G is that
they represent the possible behaviors of a perfectly rational
agent pursuing the goal G. By a suitable transformation, we
show that a goal G is in G∗ if there is an action sequence that
achieves optimally both the goal G and the goal G extended
with extra goals Go representing the observations. Exploiting
this result, we show how the set of goals G∗ can be com-
puted exactly and approximately by minor modifications of
existing optimal and suboptimal planning algorithms, and ex-
isting polynomial heuristics, that are then tested experimen-
tally over several domains. The suboptimal algorithms and
the heuristics appear to provide good approximations of the
optimal goal set G∗, while scaling up as well as state-of-the-
art planning algorithms and heuristics.

The paper is organized as follows. We provide first the ba-
sic planning terminology, define the plan recognition problem
over a domain theory, and introduce the transformation that
allows us to compile away the observations. We then focus
on exact and approximate computational methods, present the
result of the experiments, and discuss limitations and gener-
alizations of the proposed framework.

2 Planning Background

A Strips planning problem is a tuple P = 〈F, I,A, G〉 where
F is the set of fluents, I ⊆ F and G ⊆ F are the initial
and goal situations, and A is a set of actions a with precon-
dition, add, and delete lists Pre(a), Add(a), and Del(a) re-
spectively, all of which are subsets of F .

For each action a ∈ A, we assume that there is a non-
negative cost c(a) so that the cost of a sequential plan π =
a1, . . . , an is c(π) =

∑
c(ai). A plan π is optimal if it has

minimum cost. For unit costs, i.e., c(a) = 1 for all a ∈ A,
plan cost is plan length, and the optimal plans are the shortest
ones. Unless stated otherwise, action costs are assumed to be
1.

In the plan recognition setting over a domain theory, ac-
tion costs c(a) carry implicit information about the probabil-
ity that the agent will use action a to solve a problem P , as
the agent should rationally avoid plans with higher cost than
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needed. The most likely plans, assuming full rationality, are
the optimal plans, and hence, we will focus initially on them.

Algorithms for computing optimal plans cast the planning
problem as a problem of heuristic search with admissible
heuristics derived automatically from the problem encoding
[Haslum and Geffner, 2000] . An heuristic h(s) is admis-
sible if h(s) ≤ h∗(s) for all the states, where h∗(s) is the
optimal cost from s. Optimal planners use such heuristics
in the context of admissible search algorithms like A* and
IDA*. Computing optimal plans, however, is much harder
than computing plans that are good but not necessarily opti-
mal, and indeed suboptimal planners such as FF and FD, that
use more focused search algorithms and more informative
heuristics, scale up much better [Hoffmann and Nebel, 2001;
Helmert, 2006]. We will thus use optimal plans for providing
a crisp definition of the plan recognition task, and develop ef-
ficient methods that borrow from suboptimal planning meth-
ods and heuristics for producing good approximations that
scale up.

3 Plan Recognition over a Domain Theory

The plan recognition problem given a plan library for a set G
of possible goals G can be understood, at an abstract level, as
the problem of finding a goal G with a plan π in the library,
written π ∈ ΠL(G), such that π satisfies the observations.
We define the plan recognition problem over a domain theory
in a similar way just changing the set ΠL(G) of plans for G
in the library by the set Π∗

P (G) of optimal plans for G given
the domain P . We will use P = 〈F, I,O〉 to represent plan-
ning domains so that a planning problem P [G] is obtained by
concatenating a planning domain with a goal G, which is any
set of fluents. We can then define a plan recognition problem
or theory as follows:

Definition 1. A plan recognition problem or theory is a
triplet T = 〈P,G, O〉 where P = 〈F, I,A〉 is a planning
domain, G is the set of possible goals G, G ⊆ F , and
O = o1, . . . , om is an observation sequence with each oi be-
ing an action in A.

We also need to make precise what it means for an ac-
tion sequence to satisfy an observation sequence made up of
actions. E.g., the action sequence π = {a, b, c, d, e, a} sat-
isfies the observation sequences O1 = {b, d, a} and O2 =
{a, c, a}, but not O3 = {b, d, c}. This can be formalized with
the help of a function that maps observation indices in O into
action indices in A:

Definition 2. An action sequence π = a1, . . . , an satisfies the
observation sequence O = o1, . . . , om if there is a monotonic
function f mapping the observation indices j = 1, . . . , m
into action indices i = 1, . . . , n, such that af(j) = oj .

For example, the unique function f that establishes a cor-
respondence between the actions oi observed in O1 and the
actions aj in π is f(1) = 2, f(2) = 4, and f(3) = 6.
This function must be strictly monotonic so that the action
sequences π preserve the ordering of the actions observed.

The solution to a plan recognition theory T = 〈P,G, O〉 is
given then by the goals G that admit an optimal plan that is
compatible with the observations:

Definition 3. The exact solution to a theory T = 〈P,G, O〉 is
given by the optimal goal set G∗

T which comprises the goals
G ∈ G such that for some π ∈ Π∗

P (G), π satisfies O.

Figure 1: Plan Recognition in a Navigation Domain

Figure 1 shows a simple plan recognition problem. Room
A (marked with a circle) is the initial position of the agent,
while Rooms C, I and K (marked with a square) are its pos-
sible destinations. Arrows between Rooms A and B, and F
and G, are the observed agent movements in that order. In the
resulting theory T , the only possible goals that have optimal
plans compatible with the observation sequence are I and K.
In the terminology above, the set of possible goals G is given
by the atoms at(C), at(I), and at(K), while the optimal goal
set G∗

T comprises at(I) and at(K), leaving out the possible
goal at(C).

Before proceeding with the methods for computing the op-
timal goal set G∗

T exactly or approximately, let us first com-
ment on some of the limitations and strengths of this model of
plan recognition. The model can be easily extended to handle
observations on fluents and not only on actions. For this, the
observation of a fluent p can be encoded as the observation of
a ’dummy’ action NOOP (p) with precondition and effect p.
Similarly, it is not difficult to account for actions that must be
among the observations when they have been executed. For
this, it suffices to remove such actions from the domain theory
when they haven’t been observed. Notice that the same tricks
do not work in library-based approaches that are less flexible.
Likewise, the assumption that the observations are ordered
in a linear sequence is not critical, and can be replaced with
no much trouble by a partial order. Library-based recogni-
tion can also be accommodated by a suitable compilation of
(acyclic) libraries into Strips [Lekavý and Návrat, 2007]. A
critical aspects of the model is that it does not weight the hy-
potheses G in G but it just filters them. We will talk more
about this in Section 8.

4 Compiling the Observations Away

In order to solve the plan recognition problem using planning
algorithms, we need to get rid of the observations. This is
actually not difficult to do. For simplicity, we will assume
that no pair of observations oi and oj refer to the same action
a in P . When this is not so, we can create a copy a′ of the
action a in P so that oi refers to a′ and oj refers to a.

We will compile the observations away by mapping the
theory T = 〈P,G, O〉 into an slightly different theory T ′ =
〈P ′,G′, O′〉 with an empty set O′ of observations, such that
the solution set G∗

T for T can be read off from the solution set
G∗

T ′ for T ′.
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Definition 4. For a theory T = 〈P,G, O〉, the transformed
theory is T ′ = 〈P ′,G′, O′〉 such that

• P ′ = 〈F ′, I ′, A′〉 has fluents F ′ = F ∪ Fo, initial sit-
uation I ′ = I , and actions A′ = A ∪ Ao, where P =
〈F, I,A〉, F0 = {pa | a ∈ O}, and Ao = {oa | a ∈ O},

• G′ contains the goal G′ = G∪Go for each goal G in G,
where Go = Fo,

• O′ is empty

The new actions oa in P ′ have the same precondition, add,
and delete lists as the action a in P except for the new fluent
pa that is added to Add(oa), and the fluent pb, for the action
b that immediately precedes a in O, if any, that is added to
Pre(oa).

In the transformed theory T ′, the observations a ∈ O are
encoded as extra fluents pa ∈ Fo, extra actions oa ∈ Ao,
and extra goals pa ∈ Go. Moreover, these extra goals pa

can only be achieved by the new actions oa, that due to the
precondition pb for the action b that precedes a in O, can be
applied only after all the actions preceding a in O, have been
executed. The result is that the plans that achieve the goal
G′ = G∪Go in P ′ are in correspondence with the plans that
achieve the goal G in P that satisfy the observations O:

Proposition 5. π = a1, . . . , an is a plan for G in P that
satisfies the observations O = o1, . . . , om under the function
f iff π′ = b1, . . . , bn is a plan for G′ in P ′ with bi = oai

, if
i = f(j) for some j ∈ [1, m], and bi = ai otherwise.

It follows from this that π is an optimal plan for G in P that
satisfies the observations iff π′ is an optimal plan in P ′ for
two different goals: G, on the one hand, and G′ = G∪Go on
the other. If we let Π∗

P (G) stand for the set of optimal plans
for G in P , we can thus test whether a goal G in G accounts
for the observation as follows:1

Theorem 6. G ∈ G∗
T iff there is an action sequence π in

Π∗
P ′(G) ∩ Π∗

P ′(G′).

Moreover, since G ⊆ G′, if we let c∗P ′(G) stand for the
optimal cost of achieving G in P ′, we can state this result in
a simpler form:

Theorem 7. G ∈ G∗
T iff c∗P ′(G) = c∗P ′(G′)

As an example of the transformation, for the plan recog-
nition task shown in Figure 1, the extra fluents Fo in T ′ are
pmove(A,B) and pmove(F,G), while the extra actions Ao are
omove(A,B) and omove(F,G); the first with the same precon-
dition as move(A, B) but with the extra fluent pmove(A,B)

in the Add list, and the second with the extra precondition
pmove(A,B) and the extra effect pmove(F,G). Theorem 7 then
means that a goal G accounts for the observations in the origi-
nal theory T , and thus belongs to G∗

T , iff the cost of achieving
the goal G in the transformed domain P ′ is equal to the cost
of achieving the goal G′ = G∪Go. In the transformed prob-
lem, thus, observations have been replaced by extra goals that
must be achieved at no extra cost.

1Note that while a plan for G′ = G∪Go is always a plan for G,
it is not true that an optimal plan for G′ is an optimal plan for G, or
even that a good plan for G′ is a good plan for G.

5 Computation

We present next a method for computing the optimal goal
set G∗

T exactly, and two methods that approximate this set
but scale up better. The first method is based on domain-
independent optimal planning techniques, while the latter two
are based on suboptimal planning algorithms and heuristic
estimators respectively.

5.1 Exact Methods

Optimal planning algorithms are designed for computing an
action sequence in Π∗

P (G), if one exists, for any planning do-
main P and goal G. The cost of such a plan is the optimal cost
c∗P (G). This computation is done by running an admissible
search algorithm like A* or IDA* along with an admissible
heuristic h that is extracted automatically from the problem
[Haslum and Geffner, 2000].

Theorem 7 can be used to check whether a goal G is in
G ∈ G∗

T using an optimal planner for computing the optimal
cost c∗P ′(G) of achieving G in P ′, and then using this cost
as an upper bound in the search for an optimal plan for the
goal G′ = G ∪ Go in P ′. This computation is not exactly
the solution to two planning problems as the search in the
second problem is heavily pruned by the use of cost c∗P ′(G)
as a bound. The bound can be used profitably in either A*
or IDA* searches, in both cases, pruning right away nodes
n with cost f(n) = g(n) + h(n) greater than cP ′(G)∗. In
the experiments below, we use the latest implementation of
the optimal HSP* planner due to Haslum, that uses the A*
algorithm modified to accommodate this pruning.

Three other optimizations have been made in the code for
HSP*. First, the cost c∗P ′(G) of achieving the goal G in P ′
is equivalent to the cost c∗P (G) of achieving the same goal in
the original problem P that has no extra fluents or actions,
and thus, can be solved more efficiently. This is because ev-
ery occurrence of an actions oa in P ′ that is not in P can be
replaced by the corresponding action a in P . Second, since
the difference between the action oa in P ′ and the action a
in P is that oa adds the fluent pa that is never deleted, it is
not necessary to consider plans for G′ in P ′ where such ac-
tions are done more than once. And last, since there cannot
be plans for G′ in P ′ with cost lower than c∗P ′(G), in the sec-
ond part of the computation we are just testing whether there
is one such plan for G′ with cost equal to c∗P ′(G). For this,
it is wasteful to use A*; it is more efficient to run a single
IDA* iteration with memory and setting the initial bound to
c∗P ′(G), avoiding the use of a heap.

5.2 Approximate Methods

Suboptimal planners such as FF and FD scale up to much
larger problems than optimal planners as they can use more
informed heuristics that are not necessarily admissible and
more focused search algorithms. We want to use such subop-
timal planners for computing approximations of the optimal
goal set G∗

T . This approximation can be understood as replac-
ing the test that checks the existence of an action sequence
π in Π∗

P ′(G) ∩ Π∗
P ′(G′), by the weaker test that checks for

the presence of an action sequence π in Πs
P ′(G) ∩ Πs

P ′(G′),
where Πs

P (G) denotes a set of ’good plans’ for G not neces-
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sarily optimal. For example, while planners such as FF pro-
duce a single plan for a goal G in a domain P , we can think
of Πs

P (G) as the set of plans that FF is capable of produc-
ing if ties were broken in all possible ways. Yet, we do not
need to make this intuition precise because we will not com-
pute such sets of plans explicitly: rather we will modify FF
so that it will ’break ties’ for producing a single plan πG for
G in P ′ that achieves as many goals from G′ (observations)
as (greedily) possible.

The FF planner in Enforced Hill Climbing (EHC) mode
iteratively moves from one state s to another state s′ with
lower heuristic value hFF that is found by a local breadth first
search from s that considers a small fragment of the actions
applicable in a state, called the helpful actions [Hoffmann and
Nebel, 2001]. Both the helpful actions in s and the heuristic
value hFF(s) are derived from the relaxed plan π(s) that is
obtained efficiently from every state s explored.

In this process, there are two decision points where the ex-
tra goals pa ∈ G′ \G, encoding the observations in O, can be
used to bias the search towards plans that achieves as many
atoms pa from G′ as possible. First, rather than moving from
s to the first state s′ that improves the heuristic value hFF(s)
of s, we exhaust the local breadth first search space bounded
by g(s′), and commit to the state s′′ in this local space that
improves the heuristic value of s and maximizes the measure
|π(s′′)∩Ao|. Second, rather than computing the relaxed plans
π(s) as in FF, we follow the formulation of the set-additive
heuristic in [Keyder and Geffner, 2008], where the relaxed
plans π(p; s) for all fluents p from the state s are computed
recursively. For biasing the construction of the relaxed plan
π(s) in s for accounting for as many dummy goals pa in G′ as
possible, we just choose as the ’best supporter’ ap of a fluent
p, the action a that adds p and minimizes c(π(a; s)), while
maximizing, in addition, the measure |π(a; s) ∩ Ao|, where
π(a; s) = {a} ∪ ∪q∈Pre(a)π(q; s).

With this modified version of the FF planner, we define the
approximation Gs

T of the optimal goal set G∗
T , as the set of

goals G in G for which the measure |πP ′(G) ∩ Ao| is high-
est, where πP ′(G) is the plan produced by the modified FF
planner for achieving the goal G in P ′.

We will actually test below a second approximation Gh
T of

the optimal goal set G∗
T that is polynomial and requires no

search at all. We will call Gh
T , the heuristic goal set, and Gs

T ,
the suboptimal goal set. The heuristic goal set Gh

T is defined
as the set of goals G ∈ G for which |π(G; s0)∩Ao| is highest,
where π(G; s0) is the relaxed plan obtained for the goal G in
P ′ from the initial state s0 = I of P ′. In other words, while
the computation of G∗

T involves an optimal planner, and the
computation of the approximation Gs

T involves a suboptimal
planner, the computation of the approximation Gh

T involves
the computation of one relaxed plan and neither search nor
planning. Below, we compare the accuracy and scalability of
these different methods where we will see that the computa-
tion of the the sets Gs

T and Gh
T yields good approximations of

the optimal goal set G∗
T and scale up much better.

For improving the quality of the approximations fur-
ther, the implementation below accommodates two additional
changes. The purpose of these changes is to allow ’gaps’ in

the explanation of the observations. In the description used
up to now, if the observation sequence is O = o1, . . . , om,
no plan or relaxed plan is able to account for the observation
oi if it doesn’t account for all the observations ok preceding
oi in the sequence. This restriction is used in the definition
of the optimal goal set G∗

T and is needed in the methods that
compute this set exactly. On the other hand, it imposes un-
necessary limits on the approximation methods that are not
required to account for all the observations. Clearly, a goal
G1 that explains all the observations oi except for the first
one o1 should be selected over a possible goal G2 that ex-
plains none, yet unless we allow suboptimal and relaxed plans
to ’skip’ observations, this is not possible. Thus, in the im-
plementation, we allow ’relaxed plans’ to skip observations
by computing the set-additive heuristic and the relaxed plans
using a further relaxation where the preconditions pa that ex-
press the precedence constraints among the actions oa that
account for the observations, are dropped. Instead, during the
computation of the heuristic, we set the heuristic value of an
action oa to infinity if its support includes an action ob such
that the observation a precedes the observation b in O. The
precedence constraints, however, are preserved in the execu-
tion model used in FF for performing the state progressions.
In such a phase though, when the planner selects to execute
the action a instead of the action oa that accounts for the ob-
servation a in O, the planner compares a with a new action
forgo(a) that is not considered anywhere else by the planner.
Basically, while the action oa is like a but with a precondition
pb if b comes right before a in O and postcondition pa, the ac-
tion forgo(a) is like oa but without the precondition pb. The
action forgo(a) thus says to leave the observation a ∈ O
unaccounted for (as oa will not make it then into the plan),
but by adding pa to the current state, it opens the possibility
of accounting for actions d that follow a in the observation
sequence. The planner chooses then between a and forgo(a)
as between any two actions: by comparing the heuristic value
of the resulting states s′ and by breaking ties in favor of the
action that maximizes |π(s′) ∩ Ao|.

6 Example

As an illustration, we consider an example drawn from the
familiar Blocks World, with six blocks: T, S, E, R, Y and A,
such that the initial situation is

I = {clear(S), on(S, T ), on(T, A), on(A, R),
on(R,E), on(E, Y ), ontable(Y )} .

The possible goals in G are towers that express words: ’year’
(G1), ’yeast’ (G2), and ’tray’ (G3). The following observa-
tion sequence is then obtained

O = {unstack(T, A), unstack(R,E), pickup(T )} .

that results in the following extra (fluents and) goals in the
transformed theory T ′:

Go = {punstack(T,A), punstack(R,E), ppickup(T )} .

The exact method described in Section 5.1 proceeds by es-
tablishing that c∗(G1) = 14 and c∗(G1 ∪ Go) > 14, so that
G1 is ruled out as a possible goal. Then it determines that
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c∗(G2) = 14 and c∗(G2 ∪ Go) > 14, so that G2 is ruled out
as well. Finally, it computes c∗(G3) = c∗(G3 ∪ Go} = 14,
and concludes that G∗

T = {G3}, and hence that G3 is the
only goal the agent may be trying to achieve. The first ap-
proximate method described in Section 5.2 computes plans
π(G1), π(G2), π(G3) for each of the goals with the modified
FF planner, and finds that |Ao ∩ π(G1)| = |Ao ∩ π(G2)| = 2
while |Ao ∩ π(G3)| = 3, so that the suboptimal and optimal
goal sets coincide; namely, Gs

T = {G3}. On the other hand,
in this example, the heuristic goal set Gh

T is weaker, not ex-
cluding any of the possible goals in G. In the domains below,
however, we will see that the heuristic approach can do very
well too.

7 Empirical Evaluation

We have tested the optimal and approximate algorithms pro-
posed on several PR theories defined from Planning domains
used as benchmarks in the official planning competitions.2 In
the GRID–NAVIGATION domain the tasks can be summarized
with the question “where is the agent going?” with the hypo-
thetical goals being a subset of the nodes in the navigation
graph. The graphs were built by randomly connecting chain–
like graphs of fixed–length, connecting nodes so that every
node was reachable from any other node. In IPC–GRID+

the query is the same, and to the challenges posed by GRID–
NAVIGATION, we added the fact that, fixed the set of possi-
ble destinations, we tossed the keys necessary to reach those
destinations at a restricted set of places. This has the effect
that (potentially) many observations are relevant to many dif-
ferent hypotheses.3 For LOGISTICS the question is “where
are the packages being transported to?”. Here the number of
valid plans to consider is not as large, but these plans have
many actions in common. In BLOCK-WORDS the question is
“which is the ’word’ the agent is trying to build?”. Here we
built three dictionaries with 20 English words, not featuring a
letter twice, and further constrained to use only 8 different let-
ters. Here we have both a potential combinatorial explosion
of possibilities as well as the problem of ambiguity: if many
words use the letter ’E’, their plans will share a considerable
number of actions involving the block ’E’.

Table 1 summarizes the experimental results of the three
computational methods over hundreds – exact numbers re-
ported under domain name – of plan recognition problems
T = 〈P,G, O〉 drawn from these four domains, where P is a
planning problem without goals, G is a set of possible goals,
and O is an observation sequence. The problems were gen-
erated by considering for each domain, the combination of
several ’incomplete’ planning problems P , several goal sets
G, and many observation sequences O. For a given P and
a given (hidden) goal G in G, we generated several obser-
vation sequences O by randomly taking a certain percentage
of the actions in an optimal plan for P [G]. A ratio of 10%
means that the observations contain 10% of the actions in the

2The pages for the different competitions can be obtained from
http://ipc.informatik.uni-freiburg.de

3This domain is a modification of the one in IPC-1 where the
agent is not limited to carry a single key at any time.

optimal plan, while a ratio of 100% means that the obser-
vation sequence is the whole plan. In the tables, five ratios
are considered, and for each P and G, 13 different samples
of observations O were generated: one for 100%, three for
each of the other ratios. For each of the four domains, each
row expresses averages taken for each observation ratio while
varying P and G.

Table 1 shows these averages: the number of goals in G,
the ratio and number of observations used, the length of the
optimal plans, the total time to compute the optimal goal set
G∗

T and its resulting size. It then includes the length of the
suboptimal plans found, the total time to construct the subop-
timal goal set Gs

T , and its resulting size too. Last is the infor-
mation about the second approximation Gh

T : the total time to
compute it and its average size. The columns headed by the
letters FPR, AR, and FNR provide further information about
the quality of the suboptimal and heuristic approximations Gs

T

and Gh
T . False Positives indicate cases where the approximate

methods fail to exclude a possible goal, and False Negatives,
when they fail to include a possible goal. More precisely,
in the columns of the table the False Positive Ratio (FPR)
is |Gs

T \ G∗
T |/|Gs

T ∪ G∗
T |, the False Negative Ratio (FNR) is

|G∗
T \ Gs

T |/|Gs
T ∪ G∗

T |, and the Agreement Ratio (AR), shown
in bold, is |Gs

T ∩ G∗
T |/|Gs

T ∪ G∗
T |. The ratios for the heuristic

method are the same with Gh
T in place of Gs

T .
From the table, we can see that the approximate meth-

ods are orders of magnitude faster than the optimal method,
and that they manage to filter the goal hypotheses in a way
that often coincides with the optimal account. Indeed, both
the suboptimal and the heuristic method, that is polynomial
and does no search at all, do very well in 3 of the domains,
and slightly worse in the more challenging ’Blocks-word’ do-
main, where they fail to rule out some of the hypotheses. The
optimal algorithms make no error at all, as they are used to
define and compute the optimal goal set exactly. They are
displayed here nonetheless to provide a reference to the other
algorithms and to illustrate the type of problems that they can
effectively solve. For larger problems, approximate methods
are the way to go, and we believe that further progress in
heuristics and search algorithms with these plan recognition
problems in mind, can potentially deliver more powerful and
more accurate recognition algorithms.

8 Discussion

We have provided a crisp definition of the plan recognition
task given a domain theory and have developed good ap-
proximation methods that use domain-independent planning
techniques and are able to scale up. The proposed model is
more flexible than library-based approaches and admits cer-
tain straightforward extensions such as dealing with the ob-
servation of fluents, handling actions that must be observed
when executed, and partial orders on the observations. A crit-
ical aspect of the model, however, is that it does not weight
the possible hypotheses (goals) but it just filters them. A nat-
ural extension of the model involves attaching a weight Δ(G)
to each possible goal given by the difference between the cost
c∗P ′(G′) of solving the goals G′ = G∪G0 of the transformed
domain P ′, and the cost c∗P ′(G) of solving the goal G alone.
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Optimal Suboptimal Heuristic
Domain |G| %Obs |O| Length Time |G∗

T | Length Time FPR/AR/FNR(%) |Gs
T | Time FPR/AR/FNR(%) |Gh

T |
10 1.1 1192.4 10.3 12.1 10.67 32 / 66.1 / 1.9 14.38 0.33 7.3 / 76 / 16.8 7.81

block- 30 2.9 1247.06 3.71 12.9 24.25 33.2 / 58.6 / 8.1 5.71 0.34 16.2 / 73.6 / 10.2 3.97
words 20.3 50 4.3 8.6 1288.33 2.08 11.3 23.7 21.4 / 72.6 / 6 3.11 0.35 10.8 / 83.8 / 5.4 2.73
(778) 70 6.4 1353.36 1.38 10.0 10.37 7.8 / 87.6 / 4.6 1.55 0.37 10 / 88.6 / 1.5 1.89

100 8.6 1415.97 1.24 9.2 8.05 3.7 / 96.3 / 0 1.46 0.39 4.9 / 94 / 1.1 1.51
10 2.2 2351.86 2.03 16.9 0.89 7.7 / 91.1 / 1.2 2.83 0.52 6.3 / 93.2 / 0.4 2.60

grid- 30 5.4 2119.61 1.25 16.7 0.94 0 / 100 / 0 1.26 0.55 0 / 100 / 0 1.23
navigation 11.3 50 8.5 16.0 2052.87 1.14 16.6 0.99 0 / 100 / 0 1.15 0.56 0 / 100 / 0 1.15

(718) 70 12 2075.93 1.04 16.6 1.05 0 / 100 / 0 1.05 0.58 0 / 100 / 0 1.05
100 16.0 1914.86 1.03 16.0 1.15 0 / 100 / 0 1.02 0.63 0 / 100 / 0 1.02
10 1.7 124.55 2.01 13.6 0.65 4.4 / 94.8 / 0.7 2.2 0.1 5.7 / 93.6 / 0.7 2.27

ipc- 30 4.2 131.18 1.23 13.5 1.22 1.4 / 96.5 / 2.1 1.22 0.1 2.3 / 97.7 / 0 1.29
grid+ 6.5 50 6.8 13.5 135.61 1.21 13.8 0.17 0 / 98.9 / 1.1 1.19 0.1 0 / 100 / 0 1.21
(303) 70 9.6 142.05 1.15 13.8 0.17 0 / 100 / 0 1.15 0.11 0.7 / 99.3 / 0 1.16

100 13.5 149.31 1.12 13.7 0.2 0 / 100 / 0 1.12 0.11 0 / 100 / 0 1.12
10 2 1432.86 2.45 19.1 0.49 10.9 / 84.8 / 4.3 2.8 0.25 21.8 / 77.9 / 0.3 3.81
30 5.9 1853.51 1.27 18.8 0.53 8.3 / 85.7 / 6 1.3 0.26 11.1 / 88.9 / 0 1.61

logistics 10.0 50 9.5 18.7 997.19 1.07 18.7 0.61 8.1 / 87.1 / 4.9 1.14 0.27 7.6 / 91.1 / 1.2 1.32
(648) 70 13.4 365.16 1.02 18.7 0.63 6.1 / 90.5 / 3.4 1.07 0.29 5.6 / 93.5 / 0.8 1.13

100 18.7 1179.3 1.0 18.7 0.7 6 / 90.2 / 3.7 1.08 0.32 2.4 / 96.3 / 1.2 1.04

Table 1: Comparison of optimal and approximate plan recognition methods. Figures shown are all averages over many problems as explained
in the text: size of G, ratio and number of observations, length of optimal plans for goals in G∗

T , total time to compute G∗
T and resulting size;

length of suboptimal plans for goals in Gs
T , time to compute Gs

T , accuracy ratios for suboptimal method (AR in bold), and size of set; total
time to compute heuristic approximation Gh

T , accuracy ratios for heuristic method, and size of set. See text for details.

Indeed, such weight Δ(G) provides a measure of how far the
agent has to move away from the best plans for achieving G
in order to account for the observations: the greater the dis-
tance, the less probable the hypothesis G given the observa-
tions. Indeed, such weights can be used to define a probability
distribution over the goals given the observation, something
that has not been easy to do over the space of all plans. In
this work, we have considered the special case where the hy-
potheses G selected are the most likely with Δ(G) = 0.
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pressivity of strips-like and htn-like planning. In Agent
and Multi-Agent Systems: Technologies and Applications,
Proc. of 1st KES Int. Symp.KES-AMSTA 2007, pages 121–
130, 2007.

[Lesh and Etzioni, 1995] N. Lesh and O. Etzioni. A sound
and fast goal recognizer. In Proc. IJCAI-95, pages 1704–
1710, 1995.

[Pentney et al., 2006] W. Pentney, A. Popescu, S. Wang,
H. Kautz, and M. Philipose. Sensor-based understanding
of daily life via large-scale use of common sense. In Pro-
ceedings of AAAI, 2006.

[Schmidt et al., 1978] C. Schmidt, N. Sridharan, and
J. Goodson. The plan recognition problem: an intersec-
tion of psychology and artificial intelligence. Artificial
Intelligence, 11:45–83, 1978.

[Vilain, 1990] M. Vilain. Getting serious about parsing
plans: A grammatical analysis of plan recognition. In Pro-
ceedings of the Eighth National Conference on Artificial
Intelligence, pages 190–197, 1990.

1783




