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O ur work relates to automatically guiding
experiences in large, open-world inter-

active dramas and story-based experiences where a
player interacts with and influences a story. Many mod-
ern computer games have (or would like to have) rich,

nonlinear plotlines with multiple
endings, complex story branching
and merging, and numerous sub-
plots. Figure 1 shows an example of
an interactive drama, a screen shot
from Façade,1 in which the player
interacts with two college friends
whose marriage is falling apart; the
player’s actions influence the way
events unfold.

Traditionally, local triggers guide
stories in games. Progress in a linear
story depends solely on how much
of the story has unfolded. In slightly
more complex situations, the author
can specify condition–action rules

(for example, “if the player is in the room and if the play-
er is carrying a gun, then have the nonplayer character
hide behind the counter”). To avoid holes in the story,

the author must specify believable rules for every com-
bination of conditions a player might encounter; a
tedious burden for stories of any complexity. Further,
when just specifying local rules, the author will find it
difficult to both allow the player significant control over
the story’s direction and simultaneously keep it coher-
ent and progressing along some sort of narrative arc. 

A drama manager (DM) is one solution to this prob-
lem: it’s a system that watches a story as it progresses,
reconfiguring the world to fulfill the author’s goals. A
DM might notice a player doing something that fits poor-
ly with the current story and will attempt to dissuade
him or her. This is accomplished using soft actions such
as having a nonplayer character start a conversation
with a player to lure him or her to something else, or by
more direct actions such as locking doors.

We present work applying search-based drama man-
agement (SBDM)2 to the interactive fiction piece
Anchorhead, to further investigate the algorithmic and
authorship issues involved. 

Approaches
Declarative optimization-based drama management

(DODM) guides the player by projecting possible future
stories and reconfiguring the story world based on those
projections. This approach models stories as a set of pos-
sible plot points, and an author-specified evaluation func-
tion rates the quality of a particular plot-point sequence. 

The DM has a set of actions it can make to modify the
world to guide the player toward a story that maximizes
the evaluation function, taking into account any effect
on evaluation the DM actions might have. DM actions
might include things such as causing a nonplayer char-
acter to bring up a particular conversational topic, caus-
ing certain parts of the world to become inaccessible, or
leaving items where the player is likely to find them. At
each step, the DM chooses the DM action that maxi-
mizes projected story quality, subject to a model of a
player’s likely actions. 

This all takes place in an abstract model, connected to
the real game by passing messages back and forth, as Fig-
ure 2 illustrates. The game tells the DM when plot points
occur, and the DM tells the game when it wishes to take
a DM action. In the figure, when the proprietor opens the
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1 The interactive drama Façade. The player speaks to
Grace, a nonplayer character. She will respond in a way
that takes into account the player’s responses as well as
the story. 



puzzle box, the game recognizes this
as the open_puzzle_box plot point and
tells the DM. The DM decides on the
temp_deny_get_amulet action and
sends it to the game, which imple-
ments it by not allowing the player to
get the amulet.

DODM is a generalization of SBDM.
SBDM specifically uses a modification
of a game-tree search to perform the
projection, while DODM is agnostic
about the projection method. SBDM
rests on two fundamental assump-
tions: The first—which also applies to
DODM—is that an evaluation func-
tion can encode an author’s aesthetic.
The second—which DODM doesn’t
assume—is that search can effective-
ly guide a game’s plot progression to
maximize this evaluation function.
Weyhrauch2 demonstrated a proof of
concept for both assumptions in 
a small interactive fiction story, Tea 
for Three, but to what extent these
results can be generalized, scaled, and
extended isn’t clear. The “Related
Work” sidebar (on the next page) dis-
cusses other approaches. 

Anchorhead
Anchorhead is an interactive fiction

piece by Michael S. Gentry, in the style
of H.P. Lovecraft. As compared to the
Tea for Three story that Weyhrauch
investigated, Anchorhead has a much
larger world, in terms of the number
of plot points and the size of the world
itself (the locations and objects available to the player).

The full Anchorhead story is quite large, consisting of
well over a hundred significant plot points, making it
somewhat unwieldy for initial experiments. In addition,
it lacks some features we wished to test, such as the abil-
ity for players to reach multiple endings based on their
actions, and the mixing together of subplots. Fortunate-
ly, the story is broken into five relatively separate days of
action, so we modified the original second day (the first
is short). We removed some subplots that only make
sense in subsequent days so that the story would stand
on its own. We also moved up some events from later
days to give a wider variety of potential experiences
within the second day. The end result is a story with two
main subplots, each potentially leading to an ending.

When the story starts, the player has just arrived in
the town of Anchorhead, where her husband, Michael,
recently inherited a mansion from a branch of his fam-
ily, the Verlacs, that he hadn’t been in contact with. The
player begins to find out strange things about the town
and the Verlac family, such as 

■ Edward Verlac, Michael’s brother and previous occu-
pier of the mansion, killed his family and later com-
mitted suicide in a mental institution;

■ the townspeople are aloof and secretive; and
■ the real-estate agent who had overseen the inheri-

tance is nowhere to be found.

The story then progresses along two interleaved and
somewhat related subplots.

In one subplot, the player discovers a safe that con-
tains a puzzle box she’s unable to open. The owner of
the town’s magic shop will helpfully open it, revealing an
odd lens. When the lens is inserted into a telescope in
the Verlac mansion’s hidden observatory, the player sees
an evil god approaching Earth on a comet, reaching the
climax of the subplot and a possible ending.

In the other subplot, the player discovers that giving
a bum a flask of liquor makes him talkative. Through
questioning, the player discovers the bum knows quite
a bit about the Verlac family, including a terrible secret
about a deformed child, William, who supposedly was
killed soon after birth. The bum grows anxious and
refuses to give more information until the player finds
that William’s coffin contains an animal skeleton. Upon
being shown the animal skull, the bum confesses that
William is still alive, and confesses his role in the matter.
The bum reveals William’s identity and some of the Ver-
lac family’s background. Parallel to this progression, the
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You can leave the courtyard to the east, or enter the
little shop to the south.

> s

A warm and pleasantly dim light surrounds you and
suffuses this cozy little shop.  The proprietor watches
you quietly from behind the display case.

> show proprietor the puzzle box

The proprietor takes the puzzle box and turns it over in
his hands carefully.  “Now, this is a tricky one,” he says.
“Frightfully difficult, unless you know the catch of course.”
His fingers flicker dexterously over the box, sliding a panel
here, pressing a corner in there. Suddenly the lid pops
open with a faint snick.

He places the box on top of the display case.  “And there
you have it,” he says.  “A present for you.”

> x display case

Inside the display case are a deck of tarot cards, an
amulet, and a geode.

> ask for the amulet

The proprietor reaches in through the back of the case
and takes out the amulet.  It spins slowly as he holds
it up to the light.  “Nice, isn’t it?” he says, absent-
mindedly returning it to the case.

Drama
manager

open_puzzle_box

temp_deny_get_amulet

2 An excerpt from
Anchorhead, showing the
relationships between con-
crete game-world actions,
abstract plot points, and
drama-manager actions. 



bum is afraid for his life and desires a protective amulet
the player can get from the shopkeeper. If the player
gives it to him, he’ll in return give the player a key to the
sewers where she can find a book revealing the full fam-
ily background, and forming the other possible ending.

Modeling a story with plot points
The first authorial task when applying DODM is to

abstract the story contents into discrete plot points, each
of which represents some event in the story that the DM
should know about. These plot-point sequences form the
abstract plot space in which optimization will take place.

The author assigns plot-point ordering constraints, so
that the DM only considers possible sequences that could
actually happen. For example, the plot point open_safe
can only happen after both the plot points discover_safe
and get_safe_combo have already happened. (These
ordering constraints specify only what must happen
based on the actual mechanics of the game world—
undesirable but possible sequences are another matter.) 

Weyhrauch specifies these ordering constraints by
placing all the plot points in a directed acyclic graph
(DAG), with the edges specifying ordering. The possi-
ble sequences of plot points are then just the DAG’s topo-
logical orderings. We extend this representation by
allowing constraints to be arbitrary Boolean formulas
over the other plot points. This is useful in Anchorhead,
for example, because the plot point talk_to_bum_

about_william can only happen once the player has been
told of William’s existence, but three different plot points
can satisfy this requirement, for which two ORs in the
constraint are necessary. (We didn’t use any NOT con-
straints in Anchorhead, but we can easily imagine their
use in other stories.) Figure 3 shows the 29 plot points
we used to model Anchorhead’s day two, arranged into
an AND-OR graph showing their constraints.

Level of detail
A difficult question is how abstract or specific to make

plot points: The more high level and general, the more
complex the bits of code that recognize them and signal
the DM that they’ve occurred. We envision those bits of
code as simple and easy-to-code triggers. Some small
amount of complexity might be desirable, so that every
possible variation in the way events can play out doesn’t
need a distinct plot point. However, the amount of com-
plexity should be kept quite small so that recognizing
plot points does not turn into a problem requiring signif-
icant AI of its own.

A similar issue is the question of how fine-grained the
plot points should be. For example, a conversation could
be a single plot point, conversation_happens, or it could
be a set of plot points for the major possible conversa-
tion topics, or in the extreme case there could be a plot
point for every possible line of dialogue. As might be
expected, tradeoffs exist between fine and coarse mod-
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Related Work
Bates1 first proposed search-based drama management

(SBDM) and it was developed by Weyhrauch2; Lamstein
and Mateas proposed reviving the technique.3

Weyhrauch applied SBDM to Tea for Three—a simplified
version of the Infocom interactive fiction Deadline—
achieving impressive results in an abstract story space with a
simulated player. The Mimesis architecture constructs story
plans for real-time virtual worlds.4 The generated plans are
annotated with a rich, causal structure, and the system
monitors player actions that might threaten causal links in
the current story plan, either replanning or preventing
player action if a threat is detected.

The Interactive Drama Architecture takes a prewritten
plot and tries to keep the player on the plot by taking
corrective action according to a state-machine model of
likely player behavior.5 Declarative optimization-based
drama management (DODM), by contrast, tries to
incorporate player action into a quality plot rather than
insisting on a prewritten plot.

Mateas and Stern developed a beat-based drama
manager (DM) for their interactive drama Façade, using the
concept of a dramatic beat.6 Beats are the smallest unit of
change in dramatic value, where dramatic values are
character and story attributes such as love, trust, and
tension. At each point in the story, a beat-based DM selects
one of the available beat-level actions. We hypothesize that
this style of management makes beat-based DMs
particularly suited to tight story structures, where ideally all
the activity in the story world contributes to the story.

DODM, on the other hand, lends itself to more open-ended
story structures.

A more detailed review of the drama-management
literature (as of 1997) is available elsewhere.7
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eling. The DM cannot make decisions about plot com-
ponents not represented as plot points, so the more plot
points, the more decisions the DM can make. However,
each added plot point increases the optimization prob-
lem’s complexity. More importantly, from an author’s
perspective, including many relatively unimportant plot
points tends to make evaluating plot sequences more
error and noise prone as the important plot points are
obscured among the rest (barring a perfect evaluation
function). This leads to the heuristic that any plot point
you might conceivably want to change (that is, cause to
happen, prevent, or otherwise modify) with a DM action
should be represented. As should any plot point that will
have a significant impact on the quality of the story (and
so should be visible to the evaluation function); all oth-
ers should be omitted. This is of course a subjective judg-
ment, and some experimentation is likely the best way
to arrive at a reasonable level of detail.

Player modeling
Finding the action that maximizes expected story

quality requires some model of the likelihood that var-
ious plot points will happen at any given point in the
story. We call this a player model, since fundamentally
which plot points happen and in what order depends on
what the player does.

We currently model what we consider a simple but
reasonable player: one who has no particular knowl-
edge of the story or the author’s goals, and so is acting
in an essentially random manner to explore the story.
Specifically, at any given point in the story, we assume
that any of the possible plot points (that is, those whose
ordering constraints are satisfied) are equally likely. We
also test a variant of this in which we assume that the
player sometimes listens to DM actions that hint at par-
ticular plot points, making those plot points more like-
ly than the rest (these are the same player models that
Weyhrauch uses.)

Player modeling impacts how stories should be
abstracted into plot points, and is thus important from
an authorship perspective. With the current (close to)
random-exploration model, things work better if the

story is modeled at a fairly uniform level of detail; oth-
erwise, parts of the story modeled in more detail (that
is, by more plot points) will be considered more likely
(as a whole) to happen.

Choosing a set of DM actions
The next authorial issue is choosing a set of DM

actions—that is, the tools the DM will have to work with.
Various types of conceivable actions exist: preventing
and causing events, giving hints, and so on. Of course,
an action should not simply make strange things hap-
pen in front of the player’s eyes. If the player hasn’t yet
found the safe, for example, we can just make it disap-
pear so the player never finds it, but if the player has
already seen it, we need to be more careful. Designing
unintrusive DM actions depends a lot on the story world.
One generalization is that it’s much easier to accomplish
actions with plot points involving characters, since they
can often be plausibly made to start conversations, per-
form actions, and so on.

Types of DM actions
We’re currently investigating five types of DM actions: 

■ permanent deniers,
■ temporary deniers,
■ causers,
■ hints, and
■ game endings.

Permanent deniers change the world so that a partic-
ular plot point becomes simply impossible for the dura-
tion of the game. For example, if find_safe hasn’t
happened yet, we can prevent it from ever happening
by changing the bookcase with a loose book (behind
which the safe is hidden) into just a normal bookcase.

Temporary deniers also change the world so a partic-
ular plot point becomes impossible, but only temporar-
ily. Each comes with a paired undenier (or reenabler)
DM action that makes the plot point possible again. For
example, find_safe might be reenabled by hiding the
safe in some other location the player hasn’t yet been to.
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3 Plot points modeling Anchorhead’s day two, with ordering constraints. A directed edge from a to b indicates that a must happen
before b, unless multiple edges are joined with an OR arc.

talk_to_bum_about_anna

talk_to_bum_about_crypt
talk_to_bum_about_himself

talk_to_bum_about_william

read_bedroom_pages

give_bum_amulet

discover_book_in_sewersee_evil_god

find_observatory

get_amulet

get_card
get_flask

give_bum_flask
get_skull

show_bum_skull

find_williams_coffin

get_crypt_key

open_puzzle_box

read_basement_clippings

get_album

get_silver_locket

find_magical_shop

discover_birth_pattern

unlock_laptop

open_safe

discover_safe get_safe_combo leave_house_once

read_library_book

OR



Causers simply make a plot point happen. For exam-
ple, the bum in Anchorhead could volunteer informa-
tion about his past, thereby causing talk_to_bum_
about_himself to happen.

Hints make a plot point more likely to happen, with an
associated multiplier and duration. For example, if the
bum tells the player that the crypt key is hidden in the
house’s basement, it increases the chances that one of
the next few plot points will be get_crypt_key.

Game endings are a special type of DM action that
ends the game. These are included so that stories can
have multiple endings, which the DM triggers by using
the same criteria it uses for its other decisions.

In Anchorhead, we have four per-
manent deniers, five temporary
deniers and the five corresponding
reenablers, four causers, 10 hints,
and two game endings, for a total of
30 DM actions.

Issues in specifying DM actions
The first issue we ran into was

that in a large world like Anchorhead
not every DM action is appropriate
at any given time. The Tea for Three
world is fairly small, so this was a
reasonable assumption, but in
Anchorhead, it hardly makes sense
for the DM to request, for example, that the bum bring
up a particular topic in conversation when the player is
not even remotely near the bum in the world. As a first
step in remedying this, we added two possible con-
straints on DM actions: must-follow and must-follow-
location. A must-follow constraint allows the DM to only
choose a DM action immediately after a particular plot
point. This is particularly convenient for endings, which
usually only make sense to trigger at a specific point. A
must-follow-location constraint allows the DM to only
choose a DM action immediately after a plot point that
happens in a particular location. For example, we can
constrain any DM actions that cause the bum to take an
action that is legal only following plot points that occur
in the bum’s vicinity.

An additional issue is that making DM actions too
powerful can have negative consequences. This is partic-
ularly an issue with permanent deniers, since they force
story choices of potentially major consequence that can-
not then be undone. If a particular plot point denial max-
imizes outcome in, say, 90 percent of cases, but the
player’s playing causes the story to unfold into one of
the other 10 percent, then there is little choice but to
push the story toward a reasonable conclusion. There-
fore, temporary deniers are preferable, since they can
always be undone if necessary. However, permanent
deniers are still worth considering, as some potentially
useful deniers are difficult to make believably undoable.

Specifying an evaluation function
An evaluation function encodes the author’s story aes-

thetic declaratively, which is one of DODM’s main attrac-
tions. The author specifies the criteria used to evaluate
a given story and annotates plot points with any neces-

sary information (such as their location or the subplot
they advance), and the DM tries to guide the story
toward one that scores well according to that function.
In the process of doing so, the DM makes complex trade-
offs—difficult for an author to manually specify in
advance—between possibly conflicting authorial goals
(as specified by components of the evaluation function),
taking into account the player’s actions and incorporat-
ing them into the developing story.

To ease authoring, DODM can be used with a feature
toolbox representing common authorial goals. To make
weighting various goals straightforward, we give all fea-
tures values within the range of 0.0 to 1.0, so an author

can specify an overall evaluation
function as a weighted feature com-
bination. At present, these general-
ized features view the plot point
space as flat, with each plot point
given equal importance. Therefore,
portions of the story with more plot
points will figure more heavily into
the evaluation function. We might
conceivably address this in the
future by allowing either a hierar-
chical space of plot points, or impor-
tance values attached to each plot
point.

We use seven features in our eval-
uation function for Anchorhead, all of which we can
apply to any story where the goal the feature encodes
would be desirable.

General features
Three features specify general properties we’d like

our stories to have: location flow, thought flow, and
motivation.

Location flow is a measure of spatial locality of action:
the more plot point pairs that occur in the same loca-
tion, the higher the score. This feature is based on a judg-
ment that wandering constantly around the world is
undesirable. 

We calculate thought flow in a similar way as location
flow, but it measures the player’s (assumed) thought
continuity, as specified by an optional thought annota-
tion on plot points. This feature prefers short snippets
of coherent sub-subplots. For example, get_safe_combo
and discover_safe are both annotated with the thought
safe, so the thought flow feature would prefer plots in
which the player finds the safe and then looks for the
combination (or vice versa), rather than finding the safe,
getting distracted by something else, and then finding
the combination later.

Motivation is a measure of whether plot points simply
occur out of nowhere or happen after other plot points
that motivated them in the player’s mind (this is a sub-
jective determination by the author). For example, first
finding the observatory (find_observatory) and then
noticing that the telescope is missing a lens would make
opening the puzzle box and finding a lens inside
(open_puzzle_box) motivated, while opening the puz-
zle box without having found the observatory would
make the discovery of the lens unmotivated.
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Features for stories with multiple endings
With multiple subplots leading to multiple potential

endings, we need two additional features—plot mixing
and plot homing—to evaluate the plot interaction.

Plot mixing measures to what extent the initial part
of the story includes plot points from multiple subplots.
We’d like the player to explore the world in the begin-
ning, rather than finding one of the plot sequences and
going straight to one of the endings.

Plot homing measures to what extent the latter part
of the story includes plot points uniformly from the same
subplot. This is a counterpart to the plot mixing feature:
While we don’t want the player to go straight to one sub-
plot and finish the game right away,
we do want them to do so eventual-
ly, rather than continually oscillat-
ing between subplots and then
stumbling upon one of the endings.

Metafeatures
The final two features—choices

and manipulativity—rate the drama
management’s impact on a story
rather than the story itself.

Choices is a measure of how much
freedom the player has to affect
what the next plot point will be. The
goal is to give the player as many
action choices at any given time as possible, rather than
achieving a highly rated story by forcing the player into
one. Without this feature, a DM with access to a lot of
causers and deniers would basically linearize the story,
making the best story as judged by the other features
the only possible story, which would defeat the entire
purpose of an interactive experience. (This feature is a
way of trading off just how much guidance the DM
should give the player.) 

Manipulativity is a measure of how manipulative the
DM’s changes in the world are. The author specifies a
manipulativity score for each DM action, encoding a judg-
ment of how likely the player is to notice it as something
suspicious going on (subtle hints might be judged to be
less manipulative than outright causers, for example).

Evaluation methodology
Drama management’s goal is to improve experience

quality over a whole range of possible player behavior.
Evaluating drama management therefore requires apply-
ing the evaluation function to many stories induced by
the player model and comparing the distribution of story
scores between the drama-managed and nondrama-
managed cases. Successful drama management should
shift the distribution of story scores to the right compared
to the distribution with no drama management.

We test whether this is the case by generating and
scoring random plots to construct the unmanaged dis-
tribution and by running drama management with sim-
ulated players to construct the managed distribution.
In the experiments reported here, we constructed the
nondrama-managed distributions from 10,000 samples
each; the drama-managed distributions for search from
100 simulated runs each; and the drama-managed dis-

tributions for reinforcement learning from 2,000 simu-
lated runs each. All histograms use a bin width of 0.02
for evaluation function values.

Search results
SBDM uses a variant of game-tree search after each

plot point to project possible future stories and decide
which DM action (if any) to take. The search projects
possible future stories that alternate between the DM
choosing its best action and the player choosing a ran-
dom action. This is essentially the same as standard
mini-max game-tree search—in which values are
backed up a search tree by choosing the minimum value

at your opponent’s choice points
and the maximum value at your
own choice points—except that the
minimizing nodes are replaced with
averaging nodes because we model
the player as acting randomly rather
than adversarially.

The problem that immediately
arises is that actually performing a
complete search over all possible
future combinations of DM actions
and plot points is computationally
infeasible because the search space’s
size grows exponentially with the
story’s size.

In Tea for Three, Weyhrauch implemented a memo-
ized full-depth search by creating a lookup table,
indexed by story states, that contained the drama
management moves to take in all possible story states.
This was feasible because of symmetries in the search
space that allowed him to collapse the entire search
tree into a table of approximately 2.7 million nodes.
However, the memoized search is relatively difficult
to author because the way to construct the table
depends on the particular combination of evaluation
features used and would have to be recoded each time
features changed. (This process is less appealing than
specifying a declarative evaluation function for an
unchanging search process.) Weyhrauch noted that
even the memoized search doesn’t scale well: in our
model of Anchorhead’s day two, the table would have
a minimum of hundreds of millions of entries, requir-
ing gigabytes of memory.

More promisingly, Weyhrauch reported surprisingly
good results with sampling adversarial search (SAS),
which performs a sampling version of mini-max search.
SAS performs search to a specified depth (in our ver-
sion, iteratively deepening until a time limit), and then
obtains a score by averaging together a fixed number of
complete plot samples that could follow the cutoff point.
SAS+ is a variant that allows temporarily denied plot
points to appear in the samples, under the assumption
that they could be reenabled at some point in the future
(necessary in order to prevent stories in which no end-
ing is reachable). In Tea for Three, the mean quality of
stories produced through SAS+ with a depth limit of one
was at the 97th percentile of the unmanaged distribu-
tion, nearly equaling the 99th percentile obtained by
the memoized full-depth search.

IEEE Computer Graphics and Applications 37

Drama management’s 

goal is to improve

experience quality 

over a whole range 

of possible 

player behavior. 



The performance of SAS+ on our model of Anchor-
head, on the other hand, is much less impressive. Figure
4 shows the plot score distribution in an unmanaged
story, a SAS+ managed story with a simulated player
ignoring hints, and a SAS+ managed story with a simu-
lated player probabilistically following hints as the DM
expects. With the player ignoring hints, the mean score
is at the 64th percentile and the median at the 59th;
when the player follows hints probabilistically as expect-
ed, the mean is still at the 64th percentile and the medi-
an at the 63rd. This is still successful (the overall curve
is shifted to the right), but less impressively so than in
Tea for Three, indicating that the SAS+ results from that
story aren’t generalizable.

In general, we wouldn’t expect SAS+ to achieve results
anywhere near the 97th percentile reported by
Weyhrauch. With shallow search depth, a sampling

search of this sort is essentially doing a local, greedy
search, at each point choosing the DM action that max-
imizes the average future plot score under the assump-
tion that no further DM actions will be taken. Since the
entire point of DODM is to maximize score, taking into
account the possibility of future DM actions, this is a sig-
nificant handicap. The limitation is particularly prob-
lematic for DM actions that need to be paired to be
effective, such as temporary deniers and their corre-
sponding reenablers.

To determine whether we saw worse results than
Weyhrauch due to the set of DM actions we chose, we
ran an experiment with causers, temporary deniers, and
reenablers for each plot point. These synthetic DM
actions (synthetic because only a subset are plausibly
implementable in the real story world) ought to give the
DM as complete control as possible over the story.

However, as Figure 5 shows, the performance with this
set of DM actions is actually worse than not using drama
management at all. This would be impossible with a
search reasonably approximating full-depth search,
because even in the worst case the DM could avoid actu-
ally worsening a story by simply choosing to never take
any action. Clearly, then, the difference in distribution
quality is due to SAS+ being ineffective on our story.

To untangle the multiple ending effects, we also tried
each plot separately, turning off the plot-homing and
plot-mixing features and keeping only the plot points
and DM actions relevant to each subplot. The results in
Figure 6 show that the DM is much more successful at
improving the quality of the stories with the
discover_book_in_sewer ending (see Figure 6a) than
those with the see_evil_god ending (see Figure 6b). One
possible reason is that the storyline ending with
see_evil_god mostly includes temporary deniers and
reenablers as its DM moves, which local search is bad at
using. Similar to a chess program that searches only
three moves into the future and can’t plan five-move
combinations, SAS-style search can’t effectively plan
using spaced-out pairs of temporary deniers and re-
enablers to delay plot points.

Reinforcement-learning results
To address the shortcomings of search, we have been

investigating using offline reinforcement learning to
precompute a policy, rather than projecting future sto-
ries on the fly. There are orders of magnitude more CPU
time available to run offline learning than to run online
search during actual gameplay, so this allows much
more computation on complex stories than time-
limited shallow search does. As an added bonus, DM
responses during gameplay are nearly instant. 

We train the policy using temporal-difference (TD)
learning,3 specifically taking as a starting point the
approach used by Tesauro4 to learn a policy for playing
backgammon. Essentially, this consists of running many
thousands of simulated games to estimate the values of
story states—that is, the value that full-depth search
would find for each state (a story state is a description of
a partly or fully completed story). A full description of
TD learning is beyond the scope of this article. However,
the general idea is that as a simulation run progresses,
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the drama-managed runs with SAS+, limited to 2 seconds per decision.

5 Distribution of plot qualities with and without drama management,
using synthetic DM actions for the drama-managed runs. We ran the
drama-managed runs with SAS+, limited to 2 seconds per decision.
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TD estimates the value of each state encountered based
on its successor’s current estimate. This is because at the
end of each story we can use the evaluation function to
get a real value rather than an estimate for the last state
in the sequence. The real values propagate backwards,
and all states’ estimates should eventually converge to
the true values.5 The policy is then to simply pick what-
ever DM action leads to a higher value state. Since there
are far too many possible story states to store the value
estimates in a lookup table, we follow Tesauro in train-
ing a neural network as a function approximator to esti-
mate a function from states to their values.

One major difference between backgammon and
drama management is that there is an adversary in
backgammon. Some people have hypothesized that this
allows the reinforcement-learning agent to explore the
edges of and weaknesses in its strategy because the adver-
sary constantly exploits these (although precisely how
this works is controversial). With drama management,
the player isn’t modeled as actively working against the
DM, but, as more or less acting randomly. In our experi-
ments, this makes training more difficult, and the resul-
tant policies tend to be relatively mediocre and not robust.

To address this problem, we train as if the drama-
management problem were adversarial: we perform the
training runs with a simulated player who is actively try-
ing to work against the DM. Even when the resultant
policy is evaluated against a random player, results are
good, and significantly better than the policies trained
directly against the random player, as Figure 7 shows.
This is somewhat surprising, since the standard prac-
tice in machine learning is to assume that training sam-
ples should be drawn from the same distribution as the
test samples. We hypothesize that we get better perfor-
mance by turning the problem into a pseudoadversari-
al one because the adversarial player finds flaws in the
DM’s policy, which the DM then learns to correct. In the-
ory this could result in a policy specially tuned for the
case of an adversarial player, but in practice, the posi-
tive results—even when evaluated with a random play-
er—suggest that many of the policy improvements
learned from training against the adversarial player
must also improve the policy’s performance in the case
of a random player.

Because the reinforcement-learning results reported
here are still preliminary, we have concentrated on a
proof of concept using the discover_book_in_sewer sub-
plot. Figure 8 (on the next page) shows story-quality dis-
tributions for stories that are unguided, guided by
search (as in Figure 6a), and guided by a reinforcement-
learned policy (using our modified pseudoadversarial
training procedure). The reinforcement-learned policy
performs consistently better than search, avoiding the
large gap present in the search results, although its
upper peak is not as tall. In terms of percentiles, Table 1
shows that the reinforcement-learned policy has a bet-
ter mean score and a significantly better median score.
More importantly, it does this without online (game-
time) optimization, so we are confident that it is much
more easily scalable to the larger stories on which
search’s performance degrades markedly (although of
course this should be tested empirically).
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6 Distribution of plot qualities with and without drama management on
the subplots considered separately: (a) discover_book_in_sewer ending
and (b) see_evil_god ending. We ran the drama-managed runs with SAS+,
limited to 2 seconds per decision.
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TD training procedure, on the discover_book_in_sewer ending.



Conclusions
DODM is a conceptually appealing way of casting the

drama-management problem, as it allows an author to
specify what should happen and offloads the details of
making complex tradeoffs in specific cases to an opti-
mization framework. The initial proposal of this style of
drama management as search-based drama manage-
ment, however, reported results that were too optimistic
in the general case. Exponential explosion in the size of
the search space makes brute-force, full-depth search
infeasible. Unfortunately, more tractable shallow sam-
pling searches don’t always perform well, and in some
cases perform particularly badly. SAS+ does positively
impact the quality of Anchorhead, but not as effectively
as in Weyhrauch’s Tea for Three, indicating that his pos-
itive SAS+ results don’t generalize to arbitrary stories. In
many ways we expected this; the whole point of declar-
atively casting the drama-management problem is to
force the DM rather than the author to perform complex
tradeoffs among story evaluation features. In general,
deep search will be required to perform such tradeoffs.

Reinforcement learning provides a promising alter-
native to search, however, especially on larger and more
complex stories. By doing the optimization offline
instead of during the actual gameplay, it performs more
extensive optimization than possible with online search.
However, we need to do more experiments to conclu-
sively show that reinforcement learning can perform
well on a range of stories, including those on which
search performs particularly badly.

Future work
The most immediate avenue for future work is to fur-

ther develop the reinforcement-learning-based 
optimization approach and demonstrate that it per-
forms well on a variety of stories of significant size and
complexity.

Ultimately, we need real-world validation to verify
that this style of drama management actually impacts a
player’s experience in a real game. The current experi-
ments aim at maximizing the plot-score curves, on the
assumption that the author has successfully specified
his or her aesthetic in the evaluation function. We could
check the assumption itself by evaluating whether 
players judge actual drama-managed gameplay to be
improved. Real-word experimentation might also allow
a better understanding of how to develop good evalua-
tion functions in the first place.

In addition, development of a more realistic player
model would allow for more accurate optimization. The
current model of an essentially uniform player is a rea-
sonable first approximation. However, in many story
worlds, features of the story world, such as spatial local-
ity or particularly strong motivating goals, will induce
nonrandom patterns on plot-point sequences. 

One way of improving the model is to recognize that
player behavior depends on both the players themselves
and on the structure of a particular story. We already do
this to some extent by having plot points annotated with
ordering constraints, so our player model doesn’t do
things that the game simply doesn’t allow. 

We might build better player models by having the
author annotate plot points with more detailed infor-
mation. For example, if the author provided a rough
map of the story world with the locations of each plot
point, we could assume (all else being equal) that plot
points spatially closer to each other are more likely to
happen in sequence. We could even have the author
annotate plot points with an estimate of their a priori
probability. For example, an optional hidden side quest
could be less likely than a conversation with an easily
findable nonplayer character. 

Another option would be to sidestep this process
entirely and simply build an empirical model by having
players play through the game while logging what they
do. This is not without its pitfalls either, though, as it
would require quite a bit of data to build an accurate
player model, especially on a larger story, and we would
have to recollect data if the story were changed in any
but the most minor ways. ■
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