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Intelligent Tutoring Systems (ITS) are computer programs that model learners’ psychological states to
provide individualized instruction. They have been developed for diverse subject areas (e.g., algebra,
medicine, law, reading) to help learners acquire domain-specific, cognitive and metacognitive knowl-
edge. A meta-analysis was conducted on research that compared the outcomes from students learning
from ITS to those learning from non-ITS learning environments. The meta-analysis examined how effect
sizes varied with type of ITS, type of comparison treatment received by learners, type of learning
outcome, whether knowledge to be learned was procedural or declarative, and other factors. After a
search of major bibliographic databases, 107 effect sizes involving 14,321 participants were extracted
and analyzed. The use of ITS was associated with greater achievement in comparison with teacher-led,
large-group instruction (g � .42), non-ITS computer-based instruction (g � .57), and textbooks or
workbooks (g � .35). There was no significant difference between learning from ITS and learning from
individualized human tutoring (g � –.11) or small-group instruction (g � .05). Significant, positive mean
effect sizes were found regardless of whether the ITS was used as the principal means of instruction, a
supplement to teacher-led instruction, an integral component of teacher-led instruction, or an aid to
homework. Significant, positive effect sizes were found at all levels of education, in almost all subject
domains evaluated, and whether or not the ITS provided feedback or modeled student misconceptions.
The claim that ITS are relatively effective tools for learning is consistent with our analysis of potential
publication bias.
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In 1970, computer scientist Jaime Carbonell published a report
on SCHOLAR, a program he designed to conduct limited, mixed-
initiative, instructional dialogues with a student about South Amer-
ican geography (Carbonell, 1970). SCHOLAR used natural lan-
guage to answer a learner’s question or pose a question and give
feedback about the correctness of the learner’s response. Although
the term Intelligent Tutoring System (ITS) was not used in Car-
bonell’s article, SCHOLAR is often regarded as the first ITS

(Corbett, Koedinger, & Anderson, 1997). Beyond the mixed-
initiative dialogue, what was remarkable about SCHOLAR was the
way its architecture represented domain knowledge separately
from the natural language interface. The separate, explicit domain
representation allowed the program, in theory, to generate a di-
verse and combinatorally large set of questions and answer a
similarly large and diverse set of questions posed by the learner.
Framing his work as an extension and application of research in
artificial intelligence, Carbonell emphasized the fundamental dif-
ferences between SCHOLAR and the other types of computer-
assisted instruction being designed at the time. In particular, he
discussed how a domain representation can serve as the basis for
modeling student knowledge.

BIP, another early example of an ITS (Barr, Beard, & Atkinson,
1976) assigned programming tasks to students that matched their
individual learning needs and competencies. The BIP researchers
constructed a domain representation that mapped goal skills (e.g.,
printing variables) to the programming tasks that exercised them.
Students’ performances on a task supported inferences about their
acquisition of skills linked to that task. In this early ITS, like many
that have been designed since, the student model was an overlay or
subset of the domain model. By the time a special issue on
Intelligent Tutoring Systems appeared in theInternational Journal
of Man-Machine Studies(Sleeman & Brown, 1979) it was clear
that a new type of instructional system and a new field of research
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had emerged. Almost all the articles in the special issue and in the
associated book (Sleeman & Brown, 1982) were centrally con-
cerned with student modeling.

As indicated in Figure 1, scholarly interest in ITS has grown
significantly since 1980. However, only since about 1997 have a
significant number of evaluative studies been published which
compared the learning outcomes of students using ITS with those
using other instructional methods. Research evaluating the instruc-
tional efficacy of ITS has been conducted from elementary to
postsecondary levels in a wide range of knowledge domains in-
cluding algebra (Koedinger, Anderson, Hadley, & Mark, 1997),
physics (Albacete & VanLehn, 2000), medical physiology (Woo et
al., 2006), law (Pinkwart, Ashley, Lynch, & Aleven, 2009), lan-
guage learning (Tsiriga & Virvou, 2004), reading comprehension
(Mostow et al., 2002), and meta-cognitive skills (Mitrovic, 2003).

The purpose of our research was to review and critically assess
research that compared the learning outcomes of ITS with out-
comes from other modes of instruction. Expanding on recent
meta-analyses of ITS effectiveness, our meta-analysis reviewed
evaluative studies published prior to 2013 and covers all knowl-
edge domains and levels of education.

What Is an ITS?

When conducting a meta-analysis it is crucial to articulate a
working definition of the subject so that clear and replicable
inclusion criteria can be established. The goals we set for our
definition of ITS were as follows:

• The definition should broadly conform to usage of the term by
theorists and authors of peer-reviewed reports.

• The definition should result in a minimal number of border-
line cases whose inclusion status is uncertain.

• Where theory and usage do not offer certain grounds to prefer
one definition over another, we accept the more inclusive defini-
tion and use moderator variables to mark the less inclusive criteria.
For example, although one might assume that ITS exhibit a high
degree of interactivity and offer feedback to learners’ responses,
some systems that otherwise qualify as ITS do not offer feedback
and instead provide features such as individualized task selection.
Our solution was to include such programs as ITS and use a

moderator variable to distinguish between feedback and no-
feedback systems.

Shute and Psotka (1996) presented an extended consideration of
the definition of ITS that included definitions elicited from leading
ITS researchers. In summarizing these expert definitions, they
noted that (a) almost all agreed “that the most critical element is
real-time cognitive diagnosis (or student modeling)” and (b) “the
next most frequently cited feature is adaptive remediation” (p. 14).
An emphasis on student modeling as the key to adaptive tutoring
remains evident in more recent conceptualizations of ITS (Sotti-
lare, Graesser, Hu, & Holden, 2013). Drawing from these works
and our reading of published evaluations of ITS we adopted the
following definition.

An ITS is a computer system that for each student:

1. Performs tutoring functions by (a) presenting information
to be learned, (b) asking questions or assigning learning
tasks, (c) providing feedback or hints, (d) answering
questions posed by students, or (e) offering prompts to
provoke cognitive, motivational or metacognitive change

2. By computing inferences from student responses con-
structs either a persistent multidimensional model of the
student’s psychological states (such as subject matter
knowledge, learning strategies, motivations, or emotions)
or locates the student’s current psychological state in a
multidimensional domain model

3. Uses the student modeling functions identified in point 2
to adapt one or more of the tutoring functions identified
in point 1

An example of multidimensionality in an ITS is the use of
multiple production rules to represent domain knowledge in the
Cognitive Tutors developed at Carnegie Mellon University (An-
derson, Corbett, Koedinger, & Pelletier, 1995). Multidimensional-
ity of the student or domain model is necessary to distinguish ITS
from adaptive systems that model student knowledge as a single
ability parameter as do some adaptive instructional systems based
on item response theory (Veldkamp, Matteucci, & Eggen, 2011).

Figure 1. Number of research articles (1980–2012) retrieved with the term “intelligent tutor” from three
representative bibliographic databases.
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Indeed, the multidimensionality criterion is necessary to distin-
guish ITS from the many adaptive testing systems that use item
response theory to model student knowledge as a single ability
parameter and which, by selecting questions matched to student
ability, may have incidental or intentional instructional effects
(Santopietro, 2011). However, we do categorize as an ITS, and
have included in our meta-analysis, an adaptive instructional sys-
tem that uses item response theory to model student knowledge on
multiple dimensions (C. M. Chen, Lee, & Chen, 2005).

There are some sophisticated tutor characteristics that, while
likely desirable, we do not regard as essential to the definition of
ITS. The modeling of student misconceptions or bugs has been
investigated since the 1970s (Brown & Burton, 1978), but because
many systems without misconception modeling have been identi-
fied as ITS in peer-reviewed research (e.g., Rowe & Schiavo,
1998) we chose to include such systems in our definition. Many
ITS collect responses which are inputs the student makes to an
interface that supports the stepwise construction of an answer to a
problem. VanLehn (2011) assembled evidence that such step-
based tutors result in better learning outcomes than tutors that
work only with students’ final answers. Nevertheless, because
peer-reviewed research has identified answer-based systems as
ITS (e.g., Tsiriga & Virvou, 2004), we have chosen to also include
these in our definition.

Especially in reports appearing in the 1970s and 1980s, ITS
were frequently distinguished from other forms of computer-based
instruction in terms of their architectural qualities. The “test-and-
branch” computer-based instruction systems being deployed and
studied during that period required content authors to pre-program
sequenced presentations, questions, response feedback and condi-
tional branching to subsequent instruction (Hannum, 1986). Thus,
adaptation was usually sensitive to only the student’s most recent
response. ITS researchers emphasized differences between the
design theory of intelligent systems and that of the preceding
instructional systems, and they articulated a four-component con-
ceptual structure for ITS that has been remarkably resilient, even
as ITS themselves varied significantly in their design (Dede, 1986;
Hartley & Sleeman, 1973). The four “generally accepted” (Sotti-
lare et al., 2013, p. ii) conceptual components of ITS are as
follows:

1. An interface that communicates with the learner by pre-
senting and receiving information. Often constrained to
the subject domain (e.g., algebra), the interface deter-
mines the moves the learner can make in solving prob-
lems, seeking information or responding to questions.

2. A domain model that represents the knowledge the stu-
dent is intended to learn. The model is a set of logical
propositions, production rules, natural language state-
ments, or any suitable knowledge representation format.

3. A student model that represents relevant aspects of the
student’s knowledge determined by the student’s re-
sponses to questions or other interactions with the inter-
face. Although the student model may be a subset or
“overlay” of the domain model, in some ITS the student
model represents common misconceptions or other
“bugs” in the student’s knowledge.

4. A tutor model that represents instructional strategies such
as offering a hint when the student is unable to generate
a correct response or assigning a problem that requires
knowledge only slightly beyond the current student
model.

Not all ITS have four distinct architectural components corre-
sponding to these conceptual components. For example, an ITS
may have a single knowledge base that serves as a domain and
student model and have no explicit representation of teaching
strategy. In our view, consistent with the definition we have
provided, the student modeling process, and its use to adapt
instruction, is the essential feature that distinguishes ITS from
other computer-based instructional systems.

Types of ITS

ITS researchers have adopted a variety of student modeling
approaches including model-tracing (Roll, Baker, Aleven, &
Koedinger, 2004), probabilistic modeling (Conati & VanLehn,
1999; Conati & Zhao, 2004), reconstructive bug modeling
(Mitrovic & Djordjevic-Kajan, 1995), and constraint-based mod-
eling (Suraweera & Mitrovic, 2002). Because student modeling is
a core element of ITS design and there is value in analyzing the
learning outcomes associated with the most prevalent types of
student modeling, we categorized the ITS in the studies we ana-
lyzed into the following four types.

Expectation and Misconception Tailoring (EMT)

Tutorial dialogues in which the computer and student exchange
ideas using natural language have been a challenging goal for ITS
research since SCHOLAR (Carbonell, 1970). AutoTutor is an ITS
that supports natural language dialogue for instruction that, like
much observed human tutoring, involves “imprecise verbal con-
tent, a low to medium level of user knowledge about a topic, and
earnest literal replies” (Graesser et al., 2004, p. 181). AutoTutor
models student knowledge by matching the students’ responses to
text passages representing expectations (i.e., learning goals) and
anticipated misconceptions in the domain. The specified expecta-
tions and misconceptions constitute a multidimensional domain
model. Matching is performed by a statistical method called latent
semantic analysis (LSA; Landauer, Foltz, & Laham, 1998) that
returns a similarity metric between an aggregation of the student’s
responses and each expectation and misconception in the domain
model. AutoTutor uses the result of the matching process to drive
scripted “dialogue moves” such as hints, feedback, prompts, and
assertions (Graesser et al., 2004, p. 183).

Model Tracing

The type of student modeling adopted in the cognitive tutors
developed at Carnegie Mellon University is rooted in Anderson’s
ACT-R theory of human learning and cognition (Anderson, 1993;
Anderson & Lebière, 1998). In the design of a cognitive tutor, the
skill to be learned is modeled by a set of production rules that can
be activated to solve automatically the problems in the domain
(Anderson et al., 1995). The production rules, which consist of
operations and the conditions under which they are triggered, are
selected to form a psychologically realistic emulation how humans
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solve problems in the domain. The operations in the domain model
are exposed in the interface where the student can select them to
progress toward a problem solution. As the student selects opera-
tions amodel-tracingprocess maps them to a series of production
rules in the domain model. If an error is detected, the student is
given immediate feedback and allowed to choose a different op-
eration. After the student’s use of a production rule is identified by
model tracing, a Bayesian procedure calledknowledge-tracingcan
be used to update an estimate of the probability that it has been
correctly learned. Thus, the multidimensional student model in a
knowledge-tracing cognitive tutor is constituted as probabilities
assigned to production rules in the domain model.

Constraint-Based Modeling (CBM)

Constraint-based modeling is an established technique for stu-
dent modeling that is fundamentally different from the model
tracing and knowledge tracing used in the cognitive tutors (Koda-
ganallur, Weitz, & Rosenthal, 2005). Based on Ohlsson’s theory of
learning from performance errors (Ohlsson, 1994), CBM repre-
sents domain knowledge as logical constraints by relating each
constraint to states that could arise in the solution of a problem. A
constraint consists of three components: (a) a relevance condition
that indicates when the constraint is applicable, (b) a satisfaction
condition that tests the current state of the student’s solution, and
(c) a feedback message that, when the solution state fails the
satisfaction condition, advises the student of the error and reminds
them of the principle that was violated by the error (Mitrovic,
Martin, & Suraweera, 2007). To explain by analogy, if the rele-
vance condition is “cooking a pot roast,” the satisfaction condition
might be “oven temperature below 120 degrees Celsius” and the
feedback message might be “when cooking a pot roast remember
to keep the oven temperature below 120 degrees Celsius.” Thus,
when a student’s behavior violates a constraint, an error is detected
and appropriate feedback is provided (Mitrovic et al., 2011). If no
constraint is violated, the student is considered to be on the right
solution path. For modeling domain knowledge, constraints play a
similar role in CBM as production rules play in model tracing,
except that constraints cannot be executed to generate a problem
solution. Constraints can be used to model student knowledge in a
variety of ways. For example, the ITS can represent a student’s
knowledge as constraints that were found to be relevant, satisfied
and violated during a problem solving session.

Bayesian Network Modeling

A Bayesian network is a tool for probabilistic reasoning and
representation of uncertain knowledge (Pearl, 1988). In ITS,
Bayesian networks are used to represent a multidimensional do-
main model consisting of multiple variables. Connections between
variables are specified to form a network, and inferencing about
the value of a variable in the network is accomplished by Bayesian
calculations on other variables connected to it (Millán, Loboda, &
Pérez-de-la-Cruz, 2010). To take a simple example, a list of binary
target variables representing concepts and misconceptions might
constitute the domain model and a list of evidence variables
representing test items might feed forward with connections to the
target variables. Taking the student’s performance on the test items
as input, the Bayesian network would calculate the probability that

the student “has” each concept and misconception. Bayesian net-
works can be used to create much more complex models, such as
dynamic models of student problem solving in tutors that provide
hints and coaching (Conati, Gertner, & VanLehn, 2002). Bayesian
networking is a flexible method that can be used to implement
many different types of student models, including aspects of CBM
and knowledge tracing. In practice though, we found that ITS
researchers identified their ITS as belonging to at most one of the
four types we have described.

Why ITS May Be More Effective Than Other Forms
of Instruction

Prior reviews concluded that under some circumstances using
ITS results in greater achievement than participating in tradi-
tional classroom instruction and studying printed materials
(Steenbergen-Hu & Cooper, 2014; VanLehn, 2011). We hy-
pothesize that a portion of the advantage of ITS over traditional
classroom instruction and learning activities with printed ma-
terials can be attributed to the characteristics ITS share with
other forms of computer-based instruction (CBI). Asecond-
order meta-analyses by Tamim, Bernard, Borokhovski, Abrami,
and Schmid (2011) found an effect size of .31 for CBI as the
primary means of instruction compared with traditional classroom
teaching. Researchers have explained the CBI advantage as result-
ing from greater interactivity and adaptation than is available in
teacher-led, large-group instruction and presentational modes of
instruction. Specifically, they have attributed the effectiveness of
CBI to greater immediacy of feedback (Azevedo & Bernard,
1995), feedback that is more response-specific (Sosa, Berger, Saw,
& Mary, 2011), greater cognitive engagement (Cohen & Dacanay,
1992), more opportunity for practice and feedback (Martin, Klein,
& Sullivan, 2007), increased learner control (Hughes et al., 2013),
and individualized task selection (Corbalan, Kester, & Van Mer-
riënboer, 2006).

The prior quantitative reviews also concluded that using ITS is
associated with greater achievement than using non-ITS CBI. We
hypothesize that multidimensional student modeling enables ITS
to outperform non-ITS CBI on each of its advantages cited in the
previous paragraph. An ITS that models domain knowledge as
production rules can perform task selection by characterizing each
task as a set of production rules required to complete it and each
student as a set of production rules that most need to be practiced,
and then finding the best match. This type of multidimensional
matching is likely to be more effective than unidimensionally
matching student ability to task difficulty. A system that monitors
and models a student’s task choices and uses that model to indi-
vidualize learner-control options is likely to be more effective than
a system that provides the same learner-control options to all
students. Likewise, feedback adjusted to account for a history of
prior interactions is likely to be more effective than feedback that
is determined only by the last response.

ITS may also be more effective than non-ITS CBI in the sense
that ITS can extend the general advantages of CBI to wider set of
learning activities. For example, the ability to score and provide
individualized comments on a student’s essay would extend the
advantage of immediate feedback well beyond what is possible in
non-ITS CBI.
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Student modeling also enables ITS to interact with students at a
finer level of granularity than test-and-branch CBI systems. Van-
Lehn (2011) argued that while CBI systems typically pose a
question and offer feedback about students’ answers, ITS are able
to interact with students at the level of the system interface that
students operate on as they construct an answer. He hypothesized
that whereas such interface-level interaction may scaffold students
to successfully complete multi-step problems, the answer-level
hints and try-again loops of typical CBI systems “offer such weak
scaffolding and feedback that students are usually allowed to [quit]
after several failed attempts” (p. 212).

Prior Quantitative Reviews of ITS and the Need for a
Comprehensive Synthesis

VanLehn (2011) conducted a quantitative review to investigate
whether computerized or human tutors that deal with more finely
grained student problem-solving responses are associated with
greater achievement in STEM subjects than tutoring systems that
work at the level of problem solutions. He found no difference in
outcomes among human tutoring, step-based systems, and substep-
based systems but a significant difference favoring these finer-
grained approaches over answer-based interventions that interact
with learners at the level of problem solutions. Another notable
contribution of VanLehn’s review was that he reported an effect
size ofd � 0.79 for human tutoring compared with no-treatment
controls, a value much smaller than the frequently cited, two-
sigma effect sizes reported by Bloom (1984). VanLehn attributed
the larger effects reported by Bloom as the result of combining
individual tutoring with mastery learning, a strategy that other
tutoring research did not use.

Steenbergen-Hu and Cooper (2014) conducted a meta-analysis
of 39 studies evaluating the use of ITS for college students’
academic learning The studies appeared between 1990 and
2011and reported on 22 different types of ITS While most types of
ITS in the analysis were evaluated by only a single study, those
evaluated in multiple studies included AutoTutor (Graesser, Chip-
man, Haynes, & Olney, 2005), ALEKS (Hagerty & Smith, 2005),
and xTEx-Sys (Grubišić, Stankov, & Hrepic, 2008). The research-
ers found an overall, moderate, positive effect (g � .35) favoring
the use of ITS. When compared specifically to alternatives that
were either “self-reliant learning activities” or no-treatment con-
ditions, the use of ITS appeared to offer a large advantage (g �

.86). However, the three studies that compared ITS to human
tutoring resulted in a negative mean effect size (g � –.25) that was
not statistically significant.

The same authors (Steenbergen-Hu & Cooper, 2013) conducted
a meta-analysis of 34 studies from evaluations of ITS in K–12
mathematical learning. The studies were published between 1997
and 2010 and mostly compared the used of ITS to regular class-
room instruction. Using a random effects model, they obtained an
overall effect size that was not significantly different from zero.
Notably, there was a statistically significant mean effect size
favoring ITS when learning was measured by course-specific tests
but not when measured by standardized tests.

The previous meta-analyses were limited to subsets of the ITS
evaluation literature defined by subject or level of schooling. There
are two major reasons why a comprehensive meta-analysis is
preferable to a collection of smaller analyses collectively covering

the same studies. First, the greater number of studies included in a
more comprehensive review increases statistical power for detect-
ing whether a mean effect size is significantly greater than zero or
significantly different from an effect size at a different level of a
moderator variable. Second, to perform a statistical comparison of
the effect sizes of two or more categories of studies it is necessary
to establish them as two or more levels of a moderator variable in
the same meta-analysis. In their discussion, Steenbergen-Hu and
Cooper (2014) noted the disparity between the overall effect sizes
of their two meta-analyses and questioned whether ITS might
affect college students and K–12 students differently. Only by
including the different levels of schooling as different levels of a
moderator variable in the same ITS meta-analysis can we deter-
mine whether the difference between these levels is statistically
significant. In addition to these reasons, a comprehensive meta-
analysis of ITS is currently needed to incorporate and expose to
comparative review the studies that evaluated the effects of ITS in
K–12 subjects other than mathematics.

Research Questions

This review synthesizes research on the relative effectiveness of
Intelligent Tutoring Systems and addresses the following research
questions:

1. Do students using ITS have different learning outcomes
from students using other modes of instruction?

2. Do the effects associated with ITS vary with character-
istics of the ITS?

3. Do the effects associated with ITS vary with character-
istics of the students, outcome assessments, and research
setting?

4. Do the effects associated with ITS vary with the meth-
odological features of the research?

Method

Selection Criteria

To capture evidence relevant to the research questions, studies
were considered eligible for inclusion in the meta-analysis if they:

(a) reported original data;

(b) assessed learning outcomes after interaction with software
that matched the definition of ITS presented in the introduc-
tory section of this review;

(c) compared learning outcomes from the ITS with outcomes
from a non-ITS mode of instruction;1

(d) were publicly available, online or in library archives;

1 Studies that compared a group learning from ITS with a control group
that received no instructional treatment were retained but were meta-
analyzed separately to provide interpretive context for the results bearing
more directly on the research questions.
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(e) reported sufficient data to calculate effect size;

(f) reported measurable cognitive outcomes such as recall,
transfer, or a mix of both.

Search, Retrieval, and Selection of Studies

We conducted a comprehensive search for relevant research in
four major bibliographic databases: ERIC, PsycINFO, Springer
Link, and Web of Science. The search, which returned 26,613
titles, applied the following key terms: intellige� tutor�, intellige�

agent�, cognit� tutor�, adapt� tutor�, cognit� virtual companion�,
and intellige� coaching system�. Also, the reference sections of
review articles on Intelligent Tutoring Systems were manually
searched to add studies to the selection pool (Arnott, Hastings, &
Allbritton, 2008; Conati, 2009; Steenbergen-Hu & Cooper, 2013,
2014; VanLehn, 2011; N. Wang et al., 2008).

In the initial screening phase, the abstracts of the articles were
compared with criteria a, b, c and d to exclude irrelevant studies.
The 362 articles that passed the initial screening were retrieved,
and full-text copies were further evaluated against all six inclusion
criteria. Finally, the 107 studies (involving 14,321 participants)
that met the inclusion criteria were coded using a pre-defined
coding form and coding instructions developed for this meta-
analysis. All effect sizes were calculated with Hedges’s correction
for bias due to small sample sizes (Lipsey & Wilson, 2001).

Coding Study Characteristics and Effect
Sizes Extraction

The coding form included 44 fixed-choice items and 37 com-
ment items, not all reported here, that elicited detailed information
about the studies such as author, year published, source of the
study, research questions, type of ITS, control treatment, grade
level of participants, research settings, duration of the study, reli-
ability reporting and statistics needed for computing the effect size
of each study.

During the coding process, we observed that some studies
evaluated the learning outcomes of more than two groups. For
instance, in addition to a control group there might be a group that
interacted with an ITS via text and another group that interacted
with the same ITS via an animated agent. If each ITS and control
contrast were entered in the coding spreadsheet, the control group
would be counted twice, the overall weight attributed to the study
would be inflated, and the two contrasts would be statistically
dependent. A coding strategy was followed to avoid statistical
dependence when there were more than two groups in a study
(Borenstein, Hedges, Higgins, & Rothstein, 2009; Lipsey & Wil-
son, 2001). Specifically, when there was more than one control
group in a study, any control group that received no instructional
treatment was dropped from the main meta-analysis according to
selection criterion c and other control groups that did receive
instructional treatment were combined by calculating their
weighted mean. Similarly, when there was more than one group in
a study that learned from an ITS, we combined them by calculating
their weighted mean.

Data Analysis and Interpretation

We followed standard guidelines for conducting a meta-analysis
(Adesope & Nesbit, 2012; Adesope, Lavin, Thompson, & Unger-

leider, 2010; Cooper, Hedges, & Valentine, 2009; Lipsey & Wil-
son, 2001; Nesbit & Adesope, 2006). After coding had been
completed, the spreadsheet was imported to IBM® SPSS® Statis-
tics software (Version 21) and later to Comprehensive Meta-
analysis 2.2.048 for further analysis (Borenstein et al., 2009). The
Comprehensive Meta-Analysis software was used to generate the
unbiased mean effect size (Hedges’sg), the standard error of
Hedges’s unbiased estimate of the mean effect size, 95% lower and
upper confidence interval around each mean, and values for the
test of heterogeneity includingQ, p and I-squared.

We interpreted the confidence intervals spanning a range above
zero as indicating a statistically significant result favoring learning
from Intelligent Tutoring Systems over learning from other in-
structional treatments. Moreover, the upper and lower 95% confi-
dence intervals were used to detect between-levels differences
among different categories of analyses. Specifically, when the
confidence intervals of categories were not overlapping, their
effect sizes were judged to be significantly different.

An important step in meta-analysis is testing whether the ob-
served effect sizes of individual studies that are averaged into a
mean effect size all estimate the same population effect size. This
assumption of homogeneity of effects is tested by theQ statistic.
When all findings are drawn from the same population,Q has an
approximate chi-square distribution withk-1 degrees of freedom,
wherek is the number of studies that constitute a particular subset
of analysis. WhenQ exceeds the critical value of the chi-square
distribution, (i.e.,p � .05), the mean effect size is said to be
significantly heterogeneous, indicating that individual effect sizes
do not estimate a common population mean (Borenstein et al.,
2009; Lipsey & Wilson, 2001).

Two primary effect sizes produced extreme standardized scores
(�3.3 � Z � 3.3; p � .001) and were thereby identified as
outliers. One of these studies produced an effect sizeg � 2.25,
whereas the other produced an effect sizeg � �1.10. Further
examination of these two studies did not reveal any methodolog-
ical flaws. Comprehensive Meta-Analysis was used to determine
whether removing the two outliers would yield a homogeneous
distribution (Hedges & Olkin, 1985). First, we examined the forest
plot of all 107 effect sizes and then removed the two potential
outliers one at a time. The recalculated results showed that the
removal of potential outliers did not improve the fit of the remain-
ing effect sizes to a simple model of homogeneity. However, as
recommended by Tabachnick and Fidell (2013), we adjusted each
effect size toward the nearest other effect size in the distribution.
The adjusted effect sizes wereg � 1.5 and�0.5.

To maximize interpretation of results, we used both the fixed-
effect and random-effects model in all data analyses. A fixed-
effect model operates under the assumption that all the studies
included in the meta-analysis (107 studies in the present article)
share one true effect size, which is estimated to be the average
effect size. Conversely, a random-effects model operates under the
assumption that there is more than one true effect and that the
effect sizes could vary from one study to the other (Borenstein et
al., 2009; Lipsey & Wilson, 2001). Considering the great diversity
in the ways that research interventions are implemented (e.g., the
many different ways that ITS are designed and used) and the
variability that could potentially exist from aggregating such a
multiplicity of conditions, a random-effects model is usually re-
garded as a more accurate model than a fixed-effect model (Bo-
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renstein et al., 2009; Denson, 2009; Hedges & Vevea, 1998;
National Research Council, 1992). Therefore, we reported detailed
results for the random-effects model and added summary results
for the fixed-effect model to allow comparison with the fixed-
effect results reported by prior ITS meta-analyses. Because the
fixed-effect results may give additional indication to researchers
about the areas in which further research might yield significant
effect sizes we also reported which moderator variables and levels
showed significant differences under a fixed-effect model. Any
mean effect size reported without specifying the type of model was
generated by a random-effects model.

Results

We found nine effect sizes (785 participants) derived from six
publications in which the control group did not receive instruc-
tional treatment but which otherwise met the inclusion criteria
(Arroyo, Royer, & Wolf, 2011; Beal, Arroyo, Cohen, & Wolf,
2010; L. H. Chen, 2011; Halpern, Millis, Graesser, & Butler, 2012;
Shute, Hansen, & Almond, 2007; H. C. Wang, Rosé, & Chang,
2011). As these effect sizes, shown in Table S1 in the online
supplementary materials, did not bear directly on our research
questions, they were analyzed separately to provide interpretive
context for the main results. Under a random-effects model, they
were found to have a statistically significant, weighted mean effect
size ofg � 1.23.

Figure 2 shows the distribution of effect sizes for the main
meta-analysis after adjustment of the two outliers. The effect
sizes are mainly clustered between –.25 and.75 standard devi-
ations, indicating that in most studies the Intelligent Tutoring
Systems groups outperformed their respective control groups.
Throughout the results section, a positive effect size indicates

that students who used ITS outperformed those who experi-
enced other modes of instruction. Conversely, a negative effect
size indicates that students who used other modes of instruction
performed better than those who used ITS.

Table S2, shown in the online supplemental materials, sum-
marizes the characteristics of each study that met the inclusion
criteria, including the author(s), subject domain, grade-level of
participants, type of ITS, comparison treatment, study setting,
the unbiased effect size, Hedges’sg, and 95% lower and upper
confidence intervals around each unbiased effect size.

Tables 1–6 present the results organized by the research ques-
tions. These tables present results for both the fixed- and random-
effects models and include the number of participants (N) in each
category, the number of studies (k), the weighted mean effect size
(g�) and its standard error (SE), the 95% confidence interval
around the mean, and a test of heterogeneity (Q). Each weighted
mean effect size was obtained through weighting of independent
effect sizes by inverse variances.

Research Question 1: Do Students Using ITS Have
Different Learning Outcomes From Students Using
Other Modes of Instruction?

Table 1 shows the overall analysis of the weighted mean of
all statistically independent effect sizes. Under a fixed-effect
model, Table 1 shows a moderate, statistically significant effect
of learning with intelligent tutors (g � .36, p � .001) with
significant heterogeneity,Q(106)� 390.52,p � .001,I2

� .73.
Under a random-effects model, the overall weighted mean
effect size was also statistically significant and moderate (g �

.41, p � .001).
Table 1 also lists the breakdown of the comparison treatment

instruction in all studies. It shows that the majority of the
studies compared the use of intelligent tutors with large-group
human instruction (k � 66). Under both the fixed- and random-
effects models, the use of ITS produced moderate, statistically
significant mean effect sizes when compared with large-group
human instruction which included but was not limited to tradi-
tional classroom instruction (g � .44), individual computer-
based instruction (CBI,g � .57) and the individual use of
textbooks or workbooks (g � .36). The use of ITS did not
produce statistically significant effect sizes when compared
with small-group human instruction (defined as any form of
synchronous instruction in groups of up to 8 students conducted
with the presence of a human tutor such as problem-based
learning and similar collaborative methods). Individual human
instruction (i.e., human tutoring) appeared to offer a small,
non-significant advantage over the use of ITS. The between-
levels variance was statistically significant under both the
fixed- and random-effects models (p � .001). Post hoc analyses
found studies which compared the use of ITS to large-group
human instruction had effect sizes similar to those which com-
pared ITS to individual computer-based instruction and indi-
vidual use of textbooks or workbooks, but these all had signif-
icantly higher weighted mean effect sizes than studies which
compared the use of ITS to human tutoring. Taken together,
these results showed that students who used ITS learned sig-
nificantly more than students who used other modes of instruc-
tion except small-group and individual human tutoring.Figure 2. Distribution of 107 effect sizes (M � 0.43,SD � 0.40).
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The significant heterogeneity in the overall result indicatesthere
was unattributed variability in the individual effect sizes that
constitute the overall result. Therefore, moderator analyses
were conducted on ITS characteristics, sample characteristics
and methodological features of the studies to further determine
the factors that may be responsible for the variability in effect
sizes.

Research Question 2: Do the Effects Associated With
ITS Vary With Characteristics of the ITS?

The results in Table 2 show how different features and charac-
teristics of ITS moderated the overall effect of learning with these
systems. We examined the effects of learning with different char-
acteristics of ITS including the type of ITS, the nature of inter-

Table 1
Overall Mean Effect and Mean Effect Sizes for Comparison Treatments

Overall effect N k

Effect size 95% CI Test of heterogeneity

g� SE Lower Upper QB df p I2 (%)

Fixed-effect model 14,321 107 0.36� 0.02 0.32 0.39 390.52 106 �.001 0.73
Random-effects model 14,321 107 0.41� 0.04 0.34 0.48

Random-effects model Fixed-effect model

Effect size 95% CI Effect size 95% CI

Comparison treatments N k g� SE Lower Upper QB p g� SE Lower Upper QB p

Type of instruction 27.54 �.001 27.35 �.001
Large-group human instruction 11,296 66 0.44� 0.05 0.35 0.53 0.37� 0.02 0.33 0.41
Small-group human instruction 184 4 0.05 0.28�0.50 0.61 0.10 0.16 �0.21 0.41
Individual human instruction 404 5�0.11 0.10 �0.31 0.10 �0.11 0.10 �0.31 0.10
Individual CBI 1,034 15 0.57� 0.11 0.34 0.79 0.47� 0.06 0.34 0.59
Individual textbook or workbook 1,403 17 0.36� 0.09 0.18 0.53 0.30� 0.06 0.19 0.41

Note. CI � confidence interval; CBI� computer-based instruction.
� p � .05.

Table 2
Weighted Mean Effect Sizes for Characteristics of Intelligent Tutoring Systems (ITS)

Random-effects model Fixed-effect model

Effect size 95% CI Effect size 95% CI

Moderator variables N k g� SE Lower Upper QB p g� SE Lower Upper QB p

Type of ITS 4.18 .52 36.37 �.001
Model tracing 5,970 21 0.35� 0.07 0.22 0.47 0.25� 0.03 0.20 0.31
Constraint-based modeling 569 7 0.24 0.16�0.08 0.56 0.20� 0.09 0.03 0.37
Bayesian network modeling 1,417 10 0.54� 0.10 0.35 0.73 0.52� 0.06 0.41 0.63
Expectation and misconception tailoring 142 3 0.34 0.35�0.35 1.02 0.24 0.18 �0.12 0.59
Other 4,425 53 0.44� 0.06 0.32 0.56 0.44� 0.03 0.38 0.50
Not reported 1,798 13 0.40� 0.10 0.20 0.59 0.43� 0.05 0.32 0.54

ITS intervention 2.41 .79 32.38 �.001
Principal instruction 4,505 35 0.37� 0.07 0.23 0.51 0.32� 0.03 0.26 0.38
Integrated class instruction 4,045 15 0.33� 0.08 0.17 0.49 0.25� 0.03 0.18 0.31
Separate in-class activities 1,939 24 0.47� 0.10 0.27 0.67 0.53� 0.05 0.43 0.62
Supplementary after-class instruction 933 8 0.43� 0.11 0.22 0.64 0.36� 0.07 0.23 0.48
Homework 2,480 15 0.45� 0.07 0.32 0.59 0.46� 0.04 0.38 0.54
Not reported 419 10 0.48� 0.13 0.23 0.74 0.47� 0.10 0.27 0.66

Feedback provided? 4.55 .10 13.53 �.001
No 1,411 10 0.54� 0.15 0.25 0.83 0.40� 0.05 0.30 0.51
Yes 11,728 86 0.42� 0.04 0.34 0.50 0.37� 0.02 0.33 0.41
Not reported 1,182 11 0.21� 0.10 0.02 0.41 0.15� 0.06 0.04 0.27

Model misconception? 0.02 .99 5.14 .08
No 1,508 21 0.40� 0.07 0.27 0.54 0.39� 0.05 0.29 0.49
Yes 9,911 58 0.40� 0.05 0.31 0.49 0.33� 0.02 0.29 0.37
Not reported 2,902 28 0.42� 0.10 0.23 0.61 0.43� 0.04 0.35 0.51

Note. CI � confidence interval.
� p � .05.
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vention provided by the ITS, whether the ITS modeled miscon-
ceptions, as well as whether the ITS provided feedback. Most
commonly, ITS were used as the principal means of instruction
(k � 35), provided feedback to students (k � 86), and modeled
student misconceptions (k � 58). Under a random-effects model,
two types of ITS, constraint-based modeling and expectation and
misconception tailoring, did not produce significant effects. How-
ever, ITS with model tracing, Bayesian network modeling and
other types of student modeling produced statistically significant
effect sizes. Although ITS with Bayesian network modeling pro-
duced a higher weighted mean effect size (g � .54) than model
tracing (g � .35), constraint-based modeling (g � .24), and ex-
pectation and misconception tailoring (g � .34), the between-
levels difference was not statistically significant under a random-
effects model. However, statistically significant differences were
detected under a fixed-effect model,QB(5) � 36.37,p � .001, and
post hoc analyses found ITS which used Bayesian network mod-
eling had a significantly higher weighted mean effect size than
those which used model tracing and constraint-based modeling.

Table 2 also shows that ITS were effective in all the instruc-
tional roles in which they were evaluated. Adopting the cate-
gories used by Steenbergen-Hu and Cooper (2014), the instruc-
tional roles of ITS were coded as: principal instruction (the ITS
was the principal means of instruction); integrated class instruc-
tion (the ITS was an integral part of regular classroom instruc-
tion); separate in-class activities (the ITS was used for separate
laboratory or other exercises that took place during class time),
supplementary after-class instruction, and homework (the ITS
was used as part of homework assignments). Across all these
categories, the use of ITS was associated with statistically

significant effect sizes under both the fixed- and random-effects
models. The between-levels difference was not statistically
significant under a random-effects model. However, the
between-levels variance was statistically significant under a
fixed-effect model,QB(5) � 32.38,p � .001. Post hoc analyses
found that studies which used ITS for separate, in-class activ-
ities and homework had significantly higher weighted mean
effect sizes than those which used ITS for other purposes such
as principal instruction.

Table 2 shows that, under both fixed and random-effects
models, the use of ITS was associated with statistically signif-
icant effect sizes whether or not they provided feedback to
students. Under both the fixed- and random-effects models,
overlap in confidence intervals indicates that effect sizes were
not moderated by whether or not the ITS provided feedback.
Table 2 also shows that the use of ITS produced moderate,
statistically significant effect sizes regardless of whether the
ITS modeled misconceptions or not. The between-levels differ-
ence was not statistically significant under both the fixed and
random-effects models.

Research Question 3: Do the Effects Associated With
ITS Vary With Characteristics of the Students,
Outcome Assessments, and Research Setting?

To answer the third research question, Tables 3, 4, and 5 show
results of moderator analyses based on student and study charac-
teristics, outcome assessments and research settings, respectively.
Specifically, Table 3 shows the effects of using ITS across differ-
ent grade levels, subject domains, and levels of prior knowledge.

Table 3
Weighted Mean Effect Sizes for Student and Study Characteristics

Random-effects model Fixed-effect model

Effect size 95% CI Effect size 95% CI

Moderator variables N k g� SE Lower Upper QB p g� SE Lower Upper QB p

Grade levels 2.2 .82 25.74 �.001
Elementary school 1,496 19 0.31� 0.08 0.16 0.47 0.26� 0.05 0.16 0.37
Middle school 810 10 0.41� 0.13 0.15 0.66 0.45� 0.07 0.31 0.59
High school 4,355 14 0.40� 0.10 0.21 0.59 0.25� 0.03 0.18 0.31
Postsecondary 6,767 60 0.43� 0.05 0.33 0.53 0.43� 0.03 0.38 0.48
Mixed grades 771 3 0.61 0.32 �0.02 1.25 0.42� 0.07 0.28 0.57
Not reported 122 1 0.33 0.18 �0.02 0.69 0.33 0.18 �0.02 0.69

Subject domains 6.53 .48 50.67 �.001
Mathematics and Accounting 8,038 35 0.35� 0.05 0.24 0.45 0.29� 0.02 0.25 0.34
Physics 2,890 24 0.38� 0.07 0.26 0.51 0.41� 0.04 0.33 0.49
Computer Science 1,152 19 0.51� 0.11 0.30 0.72 0.46� 0.06 0.34 0.58
Language and Literacy 1,075 14 0.34� 0.11 0.12 0.56 0.27� 0.06 0.15 0.39
Chemistry 141 2 0.16 0.17 �0.17 0.48 0.16 0.17 �0.17 0.48
Biology and Physiology 210 3 0.59� 0.27 0.07 1.11 0.51� 0.14 0.23 0.78
Humanities and Social Science 671 8 0.63� 0.22 0.20 1.06 0.84� 0.08 0.68 1.01
Others and Not Reported 144 2 1.23 0.96�0.65 3.10 0.53 0.17 0.20 0.87

Prior domain knowledge 3.45 .49 11.87 .02
Low 5,265 32 0.38� 0.06 0.27 0.49 0.37� 0.03 0.31 0.43
Medium 1,356 17 0.28� 0.08 0.12 0.45 0.27� 0.06 0.16 0.38
High 77 2 0.51 0.29 �0.06 1.07 0.53� 0.23 0.07 0.98
Varied 2,699 22 0.48� 0.12 0.25 0.71 0.27� 0.04 0.19 0.34
Not reported 4,924 34 0.46� 0.06 0.34 0.58 0.41� 0.03 0.35 0.47

Note. CI � confidence interval.
� p � .05.
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Studies with students from kindergarten through grade 5 were
grouped together underelementary school. Studies with students
from grades 6 through 8 were categorized asmiddle schoolwhile
grades 9 through 12 were categorized ashigh school. Studies
conducted with university and college students were categorized as
postsecondary. Three studies cut across these grade bands and
were separately categorized asmixed grades. The use of ITS

produced moderate statistically significant mean effect sizes at all
grade levels under both the fixed and random-effects models.
Table 3 further shows that the between-levels difference was not
statistically significant under a random-effects model but statisti-
cally significant under a fixed-effect model,QB(5) � 25.74,p �

.001. Post hoc analyses found studies which used ITS with stu-
dents in middle school and postsecondary had significantly higher

Table 4
Weighted Mean Effect Sizes for Outcome Constructs, Test Format, Knowledge Type, and Measuring Tool

Random-effects model Fixed-effect model

Effect size 95% CI Effect size 95% CI

Moderator variables N k g� SE Lower Upper QB p g� SE Lower Upper QB p

Outcome constructs 1.12 .77 3.56 .31
Retention 3,922 33 0.35� 0.07 0.22 0.48 0.35� 0.03 0.28 0.41
Transfer 1,683 18 0.44� 0.09 0.27 0.62 0.43� 0.05 0.33 0.52
Mixed retention and transfer 6,371 32 0.43� 0.08 0.28 0.58 0.33� 0.03 0.28 0.38
Not reported 2,345 24 0.42� 0.06 0.31 0.54 0.39� 0.04 0.30 0.47

Test formats 8.79 .07 108.17 �.001
Multiple choice 1,777 18 0.26� 0.05 0.16 0.36 0.26� 0.05 0.16 0.36
Short answer 1,170 11 0.25� 0.06 0.13 0.36 0.25� 0.06 0.13 0.36
Mixed items 1,701 10 0.06 0.05 �0.03 0.16 0.06 0.05 �0.03 0.16
Other 972 10 0.91� 0.07 0.77 1.05 0.91� 0.07 0.77 1.05
Not reported 8,701 58 0.40� 0.02 0.35 0.44 0.40� 0.02 0.35 0.44

Knowledge type 1.18 .76 30.33 �.001
Procedural 6,143 46 0.39� 0.05 0.28 0.49 0.36� 0.03 0.31 0.42
Declarative 4,318 31 0.37� 0.07 0.23 0.51 0.26� 0.03 0.20 0.32
Mixed procedural and declarative 777 6 0.65� 0.29 0.08 1.21 0.70� 0.08 0.55 0.86
Not reported 3,083 24 0.43� 0.06 0.32 0.54 0.40� 0.04 0.33 0.48

Test source 0.71 .87 14.92 �.001
Researcher developed 7,279 62 0.41� 0.05 0.32 0.50 0.40� 0.02 0.36 0.45
Standardized 4,597 19 0.42� 0.10 0.21 0.62 0.27� 0.03 0.21 0.33
Both 1,095 5 0.46� 0.07 0.33 0.59 0.46� 0.07 0.33 0.59
Not reported 1,350 21 0.38� 0.07 0.24 0.52 0.34� 0.06 0.23 0.45

Note. CI � confidence interval.
� p � .05.

Table 5
Weighted Mean Effect Sizes for Contextual Features

Random-effects model Fixed-effect model

Effect size 95% CI Effect size 95% CI

Moderator variables N k g� SE Lower Upper QB p g� SE Lower Upper QB p

Setting 3.30 .07 4.29 .04
Laboratory 1,596 26 0.29� 0.07 0.15 0.43 0.26� 0.05 0.16 0.36
Classroom 12,725 81 0.44� 0.04 0.36 0.52 0.37� 0.02 0.33 0.41

Continent 3.59 .31 12.80 .01
North America 11,065 75 0.38� 0.04 0.29 0.46 0.33� 0.02 0.29 0.37
Europe 1,083 18 0.51� 0.10 0.32 0.71 0.55� 0.06 0.43 0.67
Asia 962 6 0.67� 0.20 0.28 1.06 0.42� 0.07 0.29 0.55
Oceania 1,211 8 0.36� 0.07 0.22 0.51 0.38� 0.06 0.27 0.50

Treatment duration 1.43 .49 4.67 .10
One hour or less 587 9 0.30 0.16 �0.01 0.62 0.18� 0.09 0.02 0.35
Greater than one hour 7,589 59 0.39� 0.05 0.30 0.48 0.35� 0.02 0.30 0.40
Not reported 6,145 39 0.47� 0.07 0.34 0.60 0.38� 0.03 0.33 0.43

Study duration 3.78 .15 32.36 �.001
One month or less 2,044 32 0.34� 0.07 0.22 0.47 0.31� 0.05 0.22 0.40
Greater than one month 9,577 53 0.38� 0.05 0.29 0.47 0.31� 0.02 0.27 0.35
Not reported 2,700 22 0.57� 0.10 0.37 0.76 0.57� 0.04 0.49 0.66

Note. CI � confidence interval.
� p � .05.
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weighted mean effect sizes than those which used ITS in elemen-
tary and high schools.

Table 3 also shows that ITS were associated with positive
moderate to large effect sizes across different subject domains.
Notably, under a random-effects model, the use of ITS produced a
large effect size in learning humanities (g � .63). For domains
such as biology and physiology (g � .59), computer science (g �

.51), physics (g � .38), and mathematics and accounting (g � .35),
ITS produced moderate effect sizes. For chemistry as well as
literacy and language learning, the use of ITS produced small and
moderate mean effect sizes (g � .16 andg � .34, respectively).
The between-levels variance was not statistically significant under
a random-effects model but was significant under a fixed-effect
model,QB(7) � 50.67,p � .001, indicating significant differences
across subject domains. Post hoc analyses found studies which
used ITS in humanities and social sciences had a significantly
higher weighted mean effect size than those which used it math-
ematics and accounting, physics, computer science, language and
literacy, and chemistry.

Many of the participants had low prior domain knowledge (k �

32). Under the random-effects model, all the categories of prior
domain knowledge were associated with statistically significant
effect sizes except high prior domain knowledge. However, the
results revealed no significant differences between students with
low, medium, and high prior domain knowledge. However, the
certainty of this interpretation is limited by at least three factors:
(a) the large number of studies that did not report the prior domain
knowledge of participants (k � 34); (b) the small number of
studies having participants with high prior knowledge (k � 2); and
(c) the significant heterogeneity of the effect size distributions.

Table 4 shows the mean effect sizes for different outcome
assessments, test formats, knowledge types and test source. The
learning outcomes were coded as retention, transfer, and mixed
retention and transfer, and the test formats were coded as objective
format (e.g., multiple choice items), short answer, and mixed
format (e.g., combinations of multiple choice and short answer).

Knowledge type was coded as procedural, declarative and mixed
procedural and declarative while test source was coded as
researcher-developed, standardized or both. Under both the fixed-
and random effects models, the use of ITS was associated with
statistically significant mean effect sizes regardless of the learning
outcome. The between-levels variance was not statistically signif-
icant under both models.

ITS produced statistically significant effect sizes across all test
formats, except for mixed item formats. The between-levels vari-
ance was not statistically significant under the random-effects
model. However, the between-levels variance was statistically
significant under a fixed-effect model,QB(4) � 108.17,p � .001.
Table 4 also shows that ITS are effective for learning all knowl-
edge types. The between-levels variance was not statistically sig-
nificant under a random-effects model but was significant under a
fixed-effect model,QB(3) � 30.33,p � .001, indicating signifi-
cant differences between knowledge types. Post hoc analyses
found studies that used ITS to acquire mixed procedural and
declarative knowledge had a significantly higher weighted mean
effect size than those that used ITS to acquire only procedural, or
only declarative knowledge. Finally, Table 4 shows that moderate,
statistically significant effect sizes were obtained with researcher-
developed tests, standardized tests, and tests that were both
researcher-developed and standardized under both the fixed and
random-effects model. However, the between-levels variance was
only statistically significant under the fixed-effect model,QB(3) �

14.92, p � .001. Post hoc analyses found that researcher-
developed tests had a significantly higher weighted mean effect
size than standardized tests.

Table 5 shows the results of analyses of contextual moderator
variables: the setting where the research was conducted (laboratory
or classroom), the continents where study was conducted, the
treatment duration, and the entire study duration. We coded “class-
room” studies as those which had learning activities that were
reported as part of an academic course of study or were conducted
in a classroom under the supervision of an instructor. Conversely,

Table 6
Weighted Mean Effect Sizes for Different Methodological Features

Random-effects model Fixed-effect model

Effect size 95% CI Effect size 95% CI

Moderator variables N k g� SE Lower Upper QB p g� SE Lower Upper QB p

Random assignment 7.39 .06 65.58 �.001
Yes 5,588 34 0.31� 0.06 0.19 0.43 0.22� 0.03 0.16 0.27
No—prior difference controlled 3,075 23 0.38� 0.07 0.25 0.50 0.35� 0.04 0.27 0.42
No—prior difference not controlled 4,724 34 0.54� 0.06 0.42 0.67 0.55� 0.03 0.49 0.61
Not reported 934 16 0.37� 0.11 0.15 0.58 0.30� 0.07 0.17 0.43

Source 2.36 .50 19.73 �.001
Journal 7,171 72 0.44� 0.04 0.36 0.53 0.42� 0.02 0.37 0.47
Conference proceeding 4,045 23 0.33� 0.08 0.18 0.49 0.29� 0.03 0.23 0.36
Dissertation/thesis 1,419 5 0.27 0.15�0.02 0.57 0.19� 0.05 0.08 0.30
Technical report 1,686 7 0.46� 0.18 0.11 0.81 0.39� 0.05 0.29 0.49

Attrition of participants 4.08 .13 30.29 �.001
None 3,191 36 0.39� 0.07 0.24 0.53 0.26� 0.04 0.19 0.33
Some 4,075 23 0.29� 0.09 0.11 0.47 0.27� 0.03 0.20 0.33
Not reported 7,055 48 0.48� 0.04 0.40 0.56 0.46� 0.03 0.41 0.51

Note. CI � confidence interval.
� p � .05.
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when learning activities were conducted solely for the purpose of
research and learning was not assessed for academic credit, the
setting was coded as “laboratory.” Approximate median splits on
duration of treatment (split at one hour) and duration of study (split
at one month) were used to create two categories for each of these
variables. Table 5 shows that most of the studies were conducted
in the classroom (k � 81). Both the classroom and laboratory
studies produced moderate statistically significant effect sizes,
under both the fixed and random-effects models. The between-
levels variance was not statistically significant under the random-
effects model but marginally significant under the fixed-effect
model, showing that classroom-based studies produced a higher
weighted mean effect size than laboratory studies.

The majority of the studies were conducted in North America
(k � 75). The effectiveness of ITS was evident regardless of the
region where studies were conducted. Under the random-effects
model, the use of ITS was associated with moderate weighted
mean effect sizes in North America (g � .38), Europe (g � .51),
and Oceania (g � .36). The effect size in Asia was larger (g � .67).
The between-levels variance was only statistically significant un-
der the fixed-effect model,QB(3) � 12.80, p � .01. Post hoc
analyses found that the weighted mean effect size associated with
studies conducted in Europe was larger than for studies conducted
in North America.

We observed a pattern showing higher mean effect sizes for
longer treatment and study durations. Results from a random-
effects model showed that treatments which were less than or
equal to one hour in length produced a statistically significant
mean effect size (g � .30), as did those greater than one hour (g �

.39). However, neither the fixed- nor random-effects model
showed statistically significant, between-levels variance. Under
the random-effects model, studies conducted for a month or less
and those conducted for over a month were also associated with
statistically significant, weighted mean effect sizes (g � .34 and
g � .38). These results should be interpreted with caution because
of the large number of studies that did not report the treatment and
study durations.

Research Question 4: Do the Effects Associated With
ITS Vary With the Methodological Features of the
Research?

Table 6 shows how effect sizes varied with the methodological
features of studies included in this meta-analysis. The studies were
categorized according to research design, source of publication and
attrition. Under both fixed- and random-effects models, learning
with ITS produced moderate, statistically significant effect sizes
regardless of research design. The between-levels variance was
statistically significant only under the fixed-effect model,QB(3) �

65.68,p � .001. Post hoc analyses found that a larger mean effect
size was associated with quasi-experimental designs in which prior
differences were not controlled. Again, we call for caution in
interpreting this result because of the high number of studies that
did not explicitly report research designs.

Studies published in journals often have higher methodological
quality than those presented at conferences or as dissertations.
Table 6 also shows that, under a random-effects model, mean
effect sizes were statistically significant for studies published in
journals, conference proceedings, as well as technical reports.

However, dissertation studies did not produce a statistically sig-
nificant effect size. The between-levels variance was not statisti-
cally significant under random-effects model. However, it was
statistically significant,QB(3) � 19.73,p � .001, under a fixed-
effect model showing that studies published in journals had a
moderate mean effect size that was significantly different from
studies in conference proceedings and dissertations or theses.
Finally, under both the fixed- and random-effects models, studies
without attrition of participants and those with some attrition
produced moderate, statistically significant effect sizes.

Are These Results Valid?

To determine whether the results reported in this meta-analysis
can be regarded as valid we investigated the potential impact of
publication bias. Publication bias is a plausible threat to the valid-
ity of meta-analyses because statistically significant results are
more likely to be published and accessible for inclusion in meta-
analyses than non-statistically significant results which may either
not be reported or reported in less accessible outlets (Orwin, 1983;
Rosenthal, 1979). This is often called the “file-drawer” effect.
Further analysis of publication bias is particularly crucial in this
meta-analysis considering that the between-levels variance of
source of publication was statistically significant under a fixed-
effect model showing that studies published in journals had a
moderate mean effect size that was significantly different from
studies in conference proceedings and dissertations or theses (see
Table 6).

Two statistical tests were computed with Comprehensive Meta-
Analysis to further examine the potential for publication bias.
First, a “Classic Fail-SafeN” test was computed to determine the
number of null effect studies needed to raise thep value associated
with the average effect above an arbitrary alpha level (set at� �

.05). This test revealed that 871 additional studies would be
required to invalidate the overall effect found in this meta-analysis.
Orwin’s Fail-SafeN, a more stringent publication bias test, re-
vealed that 656 missing null studies would be required to bring the
mean effect size found in this meta-analysis to a trivial level of .05.
Taken together, these tests show that, with 107 analyzed studies,
the number of null studies required to invalidate the overall effect
size found in this meta-analysis is larger than the 5k � 10 limit
suggested by Rosenthal (1995). Hence, although there is potential
for publication bias in this meta-analysis, the results of these two
tests suggest that publication bias does not pose a significant threat
to the validity of the findings reported in this meta-analysis.

Discussion

Summary of the Results

The overall result of our meta-analysis is that ITS outperformed,
in aggregate, the other modes of instruction to which it was
compared in evaluative studies. Moderator analysis found that
using ITS was associated with significantly higher achievement
outcomes than using each of the other modes of instruction except
small-group human tutoring and individual human tutoring, and
the difference in learning outcomes between ITS and these two
forms of human tutoring was not statistically significant. ITS was
also associated with greater achievement regardless of whether it
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was used as the principal means of instruction, as an integral part
of classroom instruction, to support in-class activities such as
laboratory exercises, for supplementary after-class instruction, or
as part of assigned homework. In analyzing 18 other moderator
variables related to characteristics of the ITS, students, research
setting, outcome assessments, and research methods, we found no
substantive, significant differences among levels of the moderators
under a random-effects model.

Comparison With Previous Quantitative Reviews

In broad terms, our results agree with prior reviews by VanLehn
(2011), who investigated the relative effectiveness of ITS in STEM
subjects, and Steenbergen-Hu and Cooper (2014), who investi-
gated its use in all college-level subjects. Our mean effect size for
postsecondary education (g � .43) was only slightly greater than
the mean effect size (g � .37) reported by Steenbergen-Hu and
Cooper (2014). However, our mean effect sizes for levels of K–12
education were all markedly greater than those reported in the
meta-analysis of ITS effects in K–12 mathematics by
Steenbergen-Hu and Cooper (2013). In discussing the contrasting
results of their meta-analyses on the use of ITS by K–12 mathe-
matics students and college students, Steenbergen-Hu and Cooper
(2014) speculated that “ITS may function better for more mature
students who have sufficient prior knowledge, self-regulation
skills, learning motivation, and experiences with computers” (p.
342). Our analysis, which directly compared ITS effect sizes at
four levels of schooling found no evidence for that hypothesis.

Our comparison of ITS with one-to-one human tutoring pro-
duced a non-significant mean effect size (g � –.11) similar to the
effect sizes reported by VanLehn (2011) and Steenbergen-Hu and
Cooper (2014) for human tutoring as a control condition. Unlike
the previous reviews, our meta-analysis coded small-group human
tutoring as a separate category of control treatment for which we
found a nonsignificant mean effect size ofg � .05 under a
random-effects model.

Unlike Steenbergen-Hu and Cooper (2014), we separated from
the main analysis studies with no-treatment control conditions.
Whereas we foundg � 1.23 relative to no-treatment controls,
Steenbergen-Hu and Cooper foundg � .90, and VanLehn (2011)
found .40 and .76 for differing levels of interaction granularity.
Although these discrepancies could be cause for concern, the
important fact which serves as a reality check on the ITS evalua-
tion enterprise is that in every review the mean effect sizes which
compare ITS to no-treatment controls are greater or equal to the
largest mean effect sizes which compare ITS to an alternate form
of instruction.

Quality of Reporting

We found considerable room for improvement in how funda-
mental features of the primary research were reported. Basic
statistics such as means and standard deviations were not reported
in about a third of the studies, and reliabilities of outcome mea-
sures were reported in only a few cases. In many studies, reporting
was also insufficient for methodological features such as attrition,
whether participants were randomly assigned to treatments, format
and provenance of achievement tests, and duration of treatment.
The challenge in raising the quality of research reporting in an

inter-disciplinary field such as ITS can be attributed to the lack of
a shared understanding of methodological standards among re-
searchers and editors, and the dissemination of ITS evaluation
research in a remarkably eclectic body of journals includingIssues
in Accounting Education, Thinking Skills and Creativity, and
Methods of Information in Medicine. This challenge, inherent to
interdisciplinary research reporting, is reflected in the statement of
scope and standards of theInternational Journal of Artificial
Intelligence in Education, which remarks

if a paper presents a behavioural study of students using some system
to support claims about improved learning, then it must conform to the
standards developed in behavioural science. . . . On the other hand, it
is not reasonable to expect that authors will meet all the standards of
all disciplines outside their main focus. (International Journal of
Artificial Intelligence in Education, n.d., para. 5)

We advocate that journal editors specify their requirements for
reporting research design, sample size, attrition, score reliabilities,
means and standard deviations for quantitative educational re-
search and also publish articles that inform their readership on how
contemporary methodological practices such as “the new statis-
tics” (Cumming, 2012) relate to their discipline.

One difficulty we encountered in conducting this meta-analysis
was the lack of common terminology for describing and reporting
the designs of individual ITS as well as inconsistent practices in
selecting which ITS features should be described in an evaluation
report. For example, some researchers reported that their ITS used
model tracing but not did indicate whether misconceptions were
modeled, whether knowledge tracing was used, and whether the
ITS adaptively selected problems. Often, the method used for
student modeling was not described in relation to other ITS and
important features of the system’s design and behavior were not
reported. We speculate that developing a taxonomy of ITS design
that could underpin a reporting standard would accelerate ad-
vances in ITS research. Certainly, more precise reporting of ITS
design that draws from a common conceptual framework and
terminology would greatly assist meta-analysts to pick apart de-
sign features and compare their effects on learning outcomes.

Can Evaluation Research Contribute to a Theory of
ITS Design?

Each of the studies we examined evaluated a single ITS con-
sisting of a complex set of inter-related features, many of which
were necessarily unreported by or even unknown to the primary
authors. In most cases the evaluations were performed to bear on
the decision of whether to deploy the ITS or as a holistic evalua-
tion of a software engineering project. Rarely were the studies we
analyzed conceived as research into a theoretical question about
the relationship between ITS and learning outcomes. Nevertheless,
a meta-analysis of evaluation studies can categorize the primary
studies according to theoretically significant features and observe
relationships between the features and learning outcomes that were
not considered in the primary work. Although none of the primary
studies we analyzed compared a version of their ITS that modeled
student misconceptions with another version that did not, we were
able to code for misconception modeling as a moderator variable
and assess its influence on effect size. As it turned out, none of the
ITS characteristics we coded including type of ITS, misconception
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modeling and feedback, were found to reliably influence effect
size under a random-effects model (although a fixed-effect model
found that one type of ITS, Bayesian network modeling, had a
significantly greater influence on effect size). It is notable that
when we reread the studies in which the ITS did not provide
response feedback we found that in each case the primary adaptive
feature was individualized task selection, an observation that sug-
gests individualized task selection may offer benefits comparable
to the well-established, positive effects of feedback on learning
(Hattie & Timperley, 2007).

Most of the research we analyzed reported independent and
dependent variables, but not intervening process variables (i.e.,
measures observed during the learning process) that might help to
explain observed effects or lack thereof. Although recent work in
educational data mining indicates that process variables are gain-
ing a more prominent position in the study of ITS (Winne & Baker,
2013), such variables are rarely reported in empirical evaluations
of ITS effectiveness. When a process variable was reported in the
studies we analyzed, it was often only meaningful in the context of
the particular learning task of the study that reported it. As a
consequence, when we determine that ITS outperformed other
methods of computer-based instruction there is little we can do in
a meta-analysis to account for the effect at the level of computer-
student interaction. Similarly, if we seek an explanation for how
Bayesian network modeling might outperform other ITS designs,
there are no common, interface-level data that could show whether
the technical distinctions among the major types of ITS are man-
ifested across the research base in consistent, differentiated pat-
terns of interaction with students.

What Meta-Analysis Can Tell Us About ITS

Despite the great variety of conditions under which ITS were
found to be more effective than other modes of instruction, these
results do not support the direct inference that ITS should replace
other modes currently in use. In the studies we reviewed there was
the rational tendency to evaluate an ITS relative to the goals and
scope of the project which created it. Because a project’s goals
were determined by what might feasibly be accomplished by an
ITS, the studies had an inbuilt bias toward instructional conditions
and roles in which ITS could compete favorably with other modes.
Another possible source of bias is that the development of an ITS,
like any major instructional design project, typically involves more
detailed attention to learning goals, materials and activities than
the more typical instructional practices represented by the control
conditions in the analyzed evaluations. It may be that the signifi-
cant effect sizes we found were due as much the kind of intensive
instructional planning and analysis that can enhance any instruc-
tional approach than to the particular features of ITS.

What the results of this meta-analysis do provide is strong
evidence that in some situations ITS can successfully complement
and substitute for other instructional modes, and that these situa-
tions exist at all educational levels and in many common academic
subjects. The results do not reliably support any specific explana-
tions for the effectiveness of ITS, but they are consistent with an
attribution to the most frequently implemented ITS features en-
abled by student modeling, namely highly individualized task
selection, prompting and response feedback. That ITS were found
to be relatively effective whether or not they modeled frequent

student misconceptions suggests the need for comparative research
on the conditions under which misconception modeling adds value
to individualized instruction.

This meta-analysis and previous reviews by Steenbergen-Hu
and Cooper (2013, 2014) examined evaluation research in which
the use of ITS was compared to a variety of other modes of
instruction. While reviews of this type are useful in marking
general progress in the capabilities of ITS, a more powerful use of
meta-analysis to drive those capabilities forward may be to review
comparisons between ITS. This strategy would be especially in-
formative when analyzing studies that compare two or more ver-
sions of the same ITS such that each version represents a theoret-
ically informed design variation. VanLehn (2011) adopted
elements of this strategy to investigate the effects of interaction
granularity on learning outcomes, and full meta-analyses compar-
ing different versions of the same systems could be used to
investigate many other potentially effective ITS features such as
animated pedagogical agents (Baker et al., 2006), misconception
modeling (Myneni, Narayanan, Rebello, Rouinfar, & Pumtam-
bekar, 2013) and metacognitive prompts (Wu & Looi, 2012). We
believe that such strategic application of meta-analysis to the end
products of ITS research, development, and evaluation can inform
and advance the design science of ITS.
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