
9

Translation

The purpose of the translation component is to transform the input planning
task, specified in the (first-order) PDDL formalism [38], into a fully instanti-
ated multi-valued representation based on the SAS+ formalism [10,72].

PDDL and multi-valued planning tasks are introduced in Sect. 9.1, fol-
lowed by an overview of the translation algorithm in Sect. 9.2. Translation
is performed in four stages: normalization (Sect. 9.3), invariant synthesis
(Sect. 9.4), grounding (Sect. 9.5), and multi-valued planning task generation
(Sect. 9.6). The chapter ends with some notes on the performance of the
translation component (Sect. 9.7).

9.1 PDDL and Multi-valued Planning Tasks

PDDL is the language in which the standard benchmarks discussed in Part
I are usually expressed. In particular, the planning tasks of the international
planning competitions are expressed in PDDL, so a planning system must be
able to deal with this language in order to participate.

Like most current planning systems, Fast Downward is limited in scope
to the non-numerical fragment of PDDL2.2, or what is called “level 1” of
the PDDL language [42]. In other words, it does not accept PDDL tasks
involving numerical state variables (introduced in PDDL level 2) or “durative
actions”, which allow specifying tasks that can only be solved by concurrent
plans (introduced in PDDL level 3 and refined in PDDL level 4).

On the other hand, Fast Downward can deal with all “purely logical” as-
pects of the language, including arbitrary first-order formulae in action con-
ditions and goals, universal and conditional effects, and derived predicates
(axioms) introduced in PDDL2.2 [38]. To make these notions somewhat more
precise, we now formally introduce the class of PDDL tasks which the planner
can handle.

M. Helmert: Understanding Planning Tasks, LNAI 4929, pp. 171–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 9 Translation

Definition 9.1.1. PDDL Tasks
A (non-numeric, non-temporal) PDDL task is given by a 5-tuple Π =
〈L, χ0, χ�,A,O〉 with the following components:

– L is a finite first-order language, consisting of constant symbols (objects),
relation symbols (predicates) and variable symbols. Predicates are parti-
tioned into fluent predicates (affected by operators) and derived pred-
icates (computed by evaluating axioms).

– χ0 is a conjunction of ground atoms over objects and fluent predicates
called the initial state.

– χ� is a closed first-order formula over L called the goal formula.
– A is a set of schematic axioms, which are pairs 〈ϕ, ψ〉 such that ϕ is

an atom over L whose predicate symbol is a derived predicate and ψ is
a formula over L with free(ψ) ⊆ free(ϕ). We write the axiom 〈ϕ, ψ〉 as
ϕ ← ψ and call ϕ the head and ψ the body of the axiom.
We require that A is stratifiable, i. e., there exists a total preorder � on the
set of derived predicates such that for each axiom where Q occurs in the
head, we must have P � Q for all derived predicates P occurring in the
body, and P ≺ Q for all derived predicates P occurring in a negative literal
in the translation of the body to negation normal form. Intuitively, P ≺ Q
means that the truth value of atoms over P must be computed before the
truth value of atoms over Q.

– O is a finite set of schematic operators over L. A schematic operator
〈χ, e〉 consists of a first-order formula χ over L called its precondition
and its effect e. Effects are recursively defined by finite application of the
following rules:
– A literal l over L, excluding derived predicates, is an effect called a

simple effect.
– If e1, . . . , en are effects, then e1∧· · ·∧en is an effect called a conjunc-

tive effect.
– If χ is a first-order formula over L and e is an effect, then χ � e is an

effect called a conditional effect.
– If v1, . . . , vk are variable symbols in L and e is an effect, then ∀v1 . . . vk :

e is an effect called a universally quantified effect or universal
effect.

Free variables of an effect are defined recursively as in first-order logic,
where the set of free variables of a conditional effect is defined as free(χ �
e) = free(χ) ∪ free(e).
The set of free variables of a schematic operator is defined as free(〈χ, e〉) =
free(χ) ∪ free(e). Free variables are also referred to as the parameters of
the schematic operator.

We assume that the reader is already familiar with PDDL semantics and
point to the language definition [38, 42] for more information. Our definition
allows general first-order conditions as well as (possibly nested) conditional
and quantified effects and axioms. The stratifiability condition for axioms

9.1 PDDL and Multi-valued Planning Tasks 173

ensures that the interpretation of derived predicates is well-defined. Without
this condition, there could be rules of the form “P (x) is true whenever P (x)
is false.”

Apart from syntactic differences, there are three aspects of non-numerical,
non-temporal PDDL2.2 not captured by our definition:

– There are no operator names. The translator deals with operator names in
such a way that the translated operators are referred to by the same name
as its PDDL2.2 counterpart, so that the plans generated by the planner
need not undergo any form of post-processing. This is all fairly simple,
and we will not discuss this matter further.

– There is no distinction between domain constants and objects of the prob-
lem instance, or indeed between the domain and problem instance speci-
fication in general. At the level of individual problem instances at which
the translator works, there is no need for such a distinction.

– There are no types. The translator compiles away types into unary pred-
icates straight away, so a PDDL specification stating that a is an ob-
ject of type vehicle is treated equivalently to an untyped specifica-
tion stating that (vehicle a) is true in the initial state. Types occur-
ring in quantified conditions or effects are translated accordingly; e. g.
a precondition (exists (?v - vehicle) (empty ?v)) is translated to
∃v : vehicle(v) ∧ empty(v), and an effect (forall (?v - vehicle)
(empty ?v)) is translated to ∀v : (vehicle(v) � empty(v)).

With PDDL as a starting point, let us now introduce the kinds of planning
tasks we want the translator to generate. These are based on the SAS+ plan-
ning model [10, 72], extended to allow for derived predicates and conditional
effects.

The definition will exhibit a number of similarities, but also a few differ-
ences between PDDL tasks and our planning model. Most notably, PDDL
tasks use first-order concepts such as schematic operators whose variables
can be instantiated in many different ways, while our formalism is grounded.
Moreover, our formalism only allows simple conjunctions in goals, axioms and
operators, and conditional effects cannot be nested. The former difference ne-
cessitates operator instantiation as part of the translation process, while the
others require normalization of conditions.

Definition 9.1.2. Multi-valued Planning Tasks (MPTs)
A multi-valued planning task (MPT) is given by a 5-tuple Π = 〈V , s0, s�,
A,O〉 with the following components:

– V is a finite set of state variables, each with an associated finite domain
Dv. State variables are partitioned into fluents (affected by operators)
and derived variables (computed by evaluating axioms). The domains
of derived variables must contain the default value ⊥.
A partial variable assignment or partial state over V is a function
s on some subset of V such that s(v) ∈ Dv wherever s(v) is defined. A

174 9 Translation

partial state is called an extended state if it is defined for all variables in
V and a reduced state or state if it is defined for all fluents in V. In the
context of partial variable assignments, we write v = d for the variable-
value pairing 〈v, d〉 or v 	→ d.

– s0 is a state over V called the initial state.
– s� is a partial variable assignment over V called the goal.
– A is a finite set of (MPT) axioms over V. Axioms are triples of the

form 〈cond, v, d〉, where cond is a partial variable assignment called the
condition or body of the axiom, v is a derived variable called the affected
variable, and d ∈ Dv is called the derived value for v. The pair 〈v, d〉
is called the head of the axiom and can be written as v := d.
The axiom set A is partitioned into a totally ordered set of axiom layers
A1 ≺ · · · ≺ Ak such that within the same layer, each affected variable
may only be associated with a single value in axiom heads and bodies. In
other words, within the same layer, axioms with the same affected variable
but different derived values are forbidden, and if a variable appears in an
axiom head, then it may not appear with a different value in a body. This
is called the layering property.

– O is a finite set of (MPT) operators over V. An operator 〈pre, eff〉 consists
of a partial variable assignment pre over V called its precondition, and
a finite set of effects eff. Effects are triples 〈cond, v, d〉, where cond is a
(possibly empty) partial variable assignment called the effect condition,
v is a fluent called the affected variable, and d ∈ Dv is called the new
value for v.

For axioms and effects, we also use the notation cond → v := d in place
of 〈cond, v, d〉.
To provide a formal semantics for MPT planning, we first need to formalize
the semantics of axioms.

Definition 9.1.3. Extended States Defined by a State
Let s be a state of an MPT Π with axioms A, layered as A1 ≺ · · · ≺ Ak.
The extended state defined by s, written as A(s), is the result s′ of the
following algorithm:
algorithm evaluate-axioms(A1, . . . , Ak, s):

for each variable v:

s′(v) :=

{
s(v) if v is a fluent variable
⊥ if v is a derived variable

for i ∈ {1, . . . , k}:
while there exists an axiom (cond → v := d) ∈ Ai

with cond ⊆ s′ and s′(v) �= d:
Choose such an axiom cond → v := d.
s′(v) := d

In other words, axioms are evaluated in a layer-by-layer fashion using fixed
point computations, which is very similar to the semantics of stratified logic

9.2 Translation Overview 175

programs. It is easy to see that the layering property from Definition 9.1.2
guarantees that the algorithm terminates and produces a deterministic result.
Having defined the semantics of axioms, we can now define the state space of
an MPT.

Definition 9.1.4. MPT State Transition Graph
The state transition graph of an MPT Π = 〈V , s0, s�,A,O〉, denoted as
S(Π), is a directed graph. Its vertex set is the set of states of V, and it contains
an arc 〈s, s′〉 iff there exists some operator 〈pre, eff〉 ∈ O such that:

– pre ⊆ A(s),
– s′(v) = d for all effects cond → v := d ∈ eff such that cond ⊆ A(s), and
– s′(v) = s(v) for all other fluents.

Having defined state transition graphs for MPT tasks, we can introduce MPT
plans, the MPT planning problem Plan-MPT, the MPT plan existence
PlanEx-MPT and the MPT bounded plan existence problem PlanLen-

MPT in a similar way to the definitions in Chap. 2. Indeed, we can consider
the set of all MPTs a (very general) planning domain in the sense of Defini-
tion 2.2.2, and thus no further definitions of these minimization and decision
problems are required.

The plan existence and bounded plan existence problems for MPTs are
easily shown to be PSPACE-hard because they generalize the corresponding
problems for propositional STRIPS, which are known to be PSPACE-complete
[19]. Moreover, from Theorems 2.3.2 and 2.3.4, we know that they belong
to PSPACE, so they are PSPACE-complete. Similarly, it is easy to see from
Theorem 2.3.1 that Plan-MPT belongs to EXPO\NPS because plans may be
exponentially long (but not longer), and explicit search in the state transition
graph can be implemented to run in exponential time.

This concludes our formal introduction of MPT planning. In the following
section, we turn to the issue of generating multi-valued planning tasks from
PDDL planning tasks.

9.2 Translation Overview

Translation is performed in a sequence of transformation steps. Starting from
a PDDL specification, we apply some well-known logical equivalences to com-
pile away types and simplify conditions and effects in the normalization step.
Next, the invariant synthesis step computes mutual exclusion relations be-
tween atoms, which are later used for synthesizing the MPT variables. The
grounding step performs a relaxed reachability analysis to compute the set
of ground atoms, axioms and operators that are considered relevant for the
planning task and computes a grounded PDDL representation. Invariant syn-
thesis and grounding are not related to one another and could just as well be
performed in the opposite order. Finally, the MPT generation step chooses

176 9 Translation

PDDL2.2 task

Normalized PDDL2.2 task

Normalized PDDL2.2 task
+ invariants

Grounded PDDL2.2 task
+ invariants

Multi-valued planning task

Normalization

Invariant synthesis

Grounding

MPT generation

Fig. 9.1. Overview of the translation algorithm

the final set of state variables by using the information from invariants and
grounding and produces the MPT output.

The translation process in outlined in Fig. 9.1. In the following sections,
we will discuss the various transformation steps in sequence.

However, before we do so, we should point out that of these four steps,
only three are necessary to convert a PDDL task to an MPT: the invariant
synthesis step can be omitted. However, without the use of invariants, there
would be a 1:1 correspondence between (relevant) ground atoms of the PDDL
task and state variables of the MPT; in particular, all state variables in the
generated MPT would be binary. Recalling the motivating example from the
previous chapter, this would imply that the causal graph of the resulting MPT
would have the undesirable form shown in Fig. 8.7, rather than the much more
structured form shown in Fig. 8.6.

9.3 Normalization

The normalization step has three responsibilities: Compiling away types, sim-
plifying conditions, and simplifying effects. The current implementation of

9.3 Normalization 177

the translator cannot handle PDDL types in their full generality: Type inher-
itance and the either construct are not supported. It would not be difficult
to add these to the mix, but these seem to be unused language features, and
we did not want to waste implementation effort on them. So we only deal with
primitive types and the built-in standard type object, to which all objects
belong.

9.3.1 Compiling Away Types

As indicated earlier, types are compiled away as soon as the planning task is
read in. For each type occurring in the input, and for the type object, we
introduce a new unary predicate with the same name. Typed constructs occur
in PDDL2.2 specifications in a semantically meaningful way in three places:

1. Definition of domain constants and objects of the task (typed objects).
2. Definition of formal parameters of schematic operators (typed operators).
3. Definition of quantified variables in existential and universal conditions

and universal effects (typed quantifiers).

Typed objects are translated into new atoms for the initial state. For
example, the specification someobj - sometype leads to a new initial atom
(sometype someobj). Moreover, for each object someobj, we introduce an
initial atom (object someobj).

Typed operators are transformed by introducing new preconditions. For
example, for an operator with parameter specification :parameters (?par1
- type1 ?par2 - type2) and precondition ϕ, the parameter specification is
replaced by :parameters (?par1 ?par2) and the precondition is replaced
by (and (type1 ?par1) (type2 ?par2) ϕ).

Typed quantifiers in conditions are compiled away with the usual first-
order logic idioms, so that condition (exists (?v - type) ϕ) translates to
(exists (?v) (and (type ?v) ϕ)) and condition (forall (?v - type)
ϕ) translates to (forall (?v) (imply (type ?v) ϕ)).

Similarly, typed quantifiers in effects are compiled into conditional effects,
so that the effect (forall (?v - type) e) becomes (forall (?v) (when
(type ?v) e)).

After types have been eliminated, we are left with a PDDL task in the
sense of Definition 9.1.1. We will thus use the more concise logical notation
from that definition in the following, rather than the more lengthy PDDL
syntax. For example, we will write ϕ ∨ ψ instead of (or ϕ ψ) and ϕ � e
instead of (when ϕ e).

9.3.2 Simplifying Conditions

In PDDL tasks, general first-order formulae may occur in many places: goal
formula, axiom bodies, operator preconditions and conditions of conditional
effects. Our aim is to replace all these with simple conjunctions of literals.

178 9 Translation

Towards this goal, we first eliminate implications with the equivalence
ϕ → ψ ≡ ¬ϕ∨ψ and translate the resulting conditions into first-order negation
normal form using de Morgan’s laws for first-order logic.

The next step is slightly tricky. If there are any universally quantified con-
ditions, we rewrite the outermost universal quantification in all conditions
with the equivalence ∀xϕ ≡ ¬∃x¬ϕ. This might seem somewhat silly because
this transformation destroys negation normal form, so after the rewrite, we
introduce a new axiom for the subformula that violates the normal form prop-
erty, ∃x¬ϕ. Formally, if free(∃x¬ϕ) = {v1, . . . , vk}, we introduce a new derived
predicate new-pred of arity k, defined by the axiom new-pred(v1, . . . , vk) ←
ψ, where ψ is the translation of ∃x¬ϕ to negation normal form. We can then re-
place the original condition ∀xϕ by ¬new-pred(v1, . . . , vk). If several variables
are universally quantified together within the same expression, we transform
them together, introducing only one new derived predicate for the quanti-
fier group. We repeat this step until there are no more universally quantified
conditions. Note that only universally quantified conditions are translated,
not universal effects, which also use the ∀ notation. Universal effects cannot
simply be compiled away, so we deal with them separately in a later stage.

If after elimination of universal quantifiers the goal condition is not a
simple conjunction, we replace it by a new axiom, since the following trans-
formations sometimes require splitting several conditions into two, which is
easy to do for axiom bodies, operator preconditions and effect conditions, but
not possible in our formalism for goal conditions, of which there can be only
one. So for example, if the goal is ϕ ∨ ψ, we introduce a new parameter-less
derived predicate goal-pred and a new axiom goal-pred← ϕ∨ψ, replacing
the original goal with the atom goal-pred.

The next step is the elimination of disjunctions. We move disjunctions to
the roots of conditions by applying the equivalences ∃x(ϕ ∨ ψ) ≡ ∃xϕ ∨ ∃xψ
and ϕ ∧ (ψ ∨ ψ′) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ ψ′) and the laws of associativity and
commutativity. In theory, moving disjunctions over conjunctions can lead to
an exponential increase in formula size, which we could avoid by introducing
new axioms for component formulae. In practice, the conditions encountered
in actual planning domains are not problematic in this regard, and we decided
that the potential savings in the size of the representation were not worth the
overhead of maintaining the state of another derived variable during search.

After disjunctions have been moved to the root of all formulae, we can
eliminate them by splitting the surrounding structures: If the disjunction ϕ∨ψ
is part of an axiom body, we generate two axioms with identical head, one
with body ϕ and one with body ψ. If the disjunction is part of an operator
precondition, we replace the operator by two copies of the original, one with
precondition ϕ and one with precondition ψ. Finally, if the disjunction is
part of an effect condition, we replace the conditional effect (ϕ ∨ ψ) � e by
(ϕ � e) ∧ (ψ � e).

Next, we move existential quantifiers out of conjunctions by applying the
equivalence (∃xϕ) ∧ ψ ≡ ∃x(ϕ ∧ ψ). The equivalence only holds when x /∈

9.3 Normalization 179

free(ψ), so to avoid trouble here and later, we first rename all variables bound
by quantifiers to some unique name.

Having moved existential quantifiers to the root of conditions, we eliminate
them as follows: For axioms, we simply drop them, following the PROLOG
convention that all free variables in the body that are not part of the head are
implicitly existentially quantified. For operator preconditions, we also drop
them, adding the existentially quantified variables to the parameter list of the
schematic operator. For effect conditions, we replace (∃xϕ)�e by ∀x : (ϕ�e).

9.3.3 Simplifying Effects

After the somewhat laborious simplification of conditions, effect simplification
is conceptually very simple. First, universal and conditional effects are moved
into conjunctive effects by the equivalences ∀x : (e ∧ e′) ≡ (∀x : e) ∧ (∀x : e′)
and ϕ � (e ∧ e′) ≡ (ϕ � e) ∧ (ϕ � e′). Second, conditional effects are moved
into universal effects by the equivalence ϕ � (∀x : e) ≡ ∀x : (ϕ � e). Finally,
nested effects of the same type are flattened, i. e., conjunctive effects containing
conjunctive effects are collapsed into a single conjunctive effects with more
conjuncts, universal effects containing universal effects are collapsed into a
single universal effect quantifying over more variables, and nested conditional
effects of the type ϕ � (ψ � e) are transformed to (ϕ ∧ ψ) � e. Note that this
latter modification preserves the previously generated normal form for effect
conditions.

After these transformations, the possible nesting of effects is thus restricted
to the simple chain conjunctive effect " universal effect " conditional effect
" simple effect. However, not all effect types must necessarily be present, e. g.
conditional effects need not occur within universal effects, etc. To enforce a
regular effect structure, we replace simple effects e not surrounded by condi-
tional effects by #� e (# is seen as the empty conjunction, so this condition
is in normal form), conditional effects e not surrounded by universal effects by
∀ : e (quantifying over zero variables), and universal effects e not surrounded
by conjunctive effects by a conjunctive effect containing the singleton e.

As a result, after normalization each operator has a list (conjunction) of
effects, each a simple effect with an associated set of universal quantifiers
and an associated condition, both of which can be trivial. Thus it is not
necessary to store normalized operator effects in a tree structure; a flat vector
is sufficient.

9.3.4 Normalization Result

This concludes the normalization step. In Fig. 9.1, we referred to the output
of the normalization phase as a normalized PDDL2.2 task. Let us formalize
this notion here for the benefit of further discussion:

180 9 Translation

Definition 9.3.1. Normalized PDDL Tasks
A normalized PDDL task is a PDDL task that satisfies the following struc-
tural restrictions:

– The goal formula is a conjunction of literals.
– All axiom bodies are conjunctions of literals (except for the possible implicit

existential quantification of free variables not occurring in the axiom head).
– All operator preconditions are conjunctions of literals.
– All effect conditions are conjunctions of literals.
– All operator effects are conjunctions of universally quantified conditional

simple effects.

In the following, we will refer to the individual simple effects of an operator
in a normalized PDDL task as being arranged in an effect list. For the simple
effect e occurring within the universal conditional effect ∀vars : ϕ � e, we will
refer to vars as the set of bound variables of e and to ϕ as the condition of e.
If e is a positive literal, we will call it an add effect, otherwise a delete effect.

9.4 Invariant Synthesis

An invariant is a property of a world state in a planning task which is satisfied
by all world states that are reachable from the initial state. Many invariants
are uninteresting; for example, the property “At least five state variables are
true” is an invariant in most propositional STRIPS planning tasks, but does
not seem to entail a useful piece of information for a planner. Other invariants
would be useful to know but are too difficult to verify. For example, “This
state is not a goal state” is an invariant iff the planning task is not solvable,
so confirming the invariance of that state property is PSPACE-hard.

Nevertheless, invariants are a useful tool for many planning systems, which
is why they have been studied by many researchers in a variety of con-
texts [41, 45, 100, 101], often involving SAT-based planning. For the purposes
of translating propositional planning tasks to a multi-valued formalism, mu-
tual exclusion (mutex) invariants are especially interesting. A mutex invariant
states that certain propositions can never be true at the same time. This af-
fects translation because a set of propositions which are pairwise mutually
exclusive can be easily encoded as a single state variable whose value specifies
which of the propositions is true (if any is true at all), rather than as a number
of state variables encoding the truth value for each proposition individually.

Invariance is usually proven inductively: First, one shows that a hypothe-
sized property is true in the initial state. Then, one shows that if the property
is true in some state, it must also be true in all successor states. Together, this
implies that the property is true in all reachable states, and thus an invariant.

As mentioned before, the automatic discovery of invariants is a hard prob-
lem in general, but for many relevant types of state properties, sufficient condi-
tions exist that can be checked quickly. Still, synthesizing invariants is costly,

9.4 Invariant Synthesis 181

and for this reason, we are interested in algorithms working directly with the
first-order PDDL description of a planning task, not on a grounded repre-
sentation. Indeed, our algorithm goes beyond this requirement by not relying
on the information in the task file of the PDDL input at all, solely exploit-
ing information present in the domain file. This is a valuable feature, but it
rules out the possibility of proving mutex conditions, because a mutex can-
not be established without checking the initial state. Instead, we use a slight
generalization of mutexes.

Definition 9.4.1. Monotonicity Invariant Candidates
A monotonicity invariant candidate for a PDDL task Π is given by a pair
P = 〈V, Φ〉, where V is a set of first-order variables called the parameters of
the candidate, and Φ is a set of atoms. Variables occurring freely in Φ which
are not parameters are called counted variables of the candidate.

For V = {v1, . . . , vm} and Φ = {ϕ1, . . . , ϕk}, we write P symbolically as
∀v1 . . . vm ϕ1+· · ·+ϕk ↓. In the special case V = ∅, we write ∀· ϕ1+· · ·+ϕk ↓.
In the following, we will mostly refer to monotonicity invariant candidates as
invariant candidates or simply candidates ; we do not consider other kinds of
invariant candidates.

The preceding definition defines the syntax for invariant candidates; we
now have to provide the semantics. Since this is somewhat involved, we pro-
vide an example from a transportation domain first. Consider the invariant
candidate 〈{p}, {at(p, l), in(p, v)}〉, where p, l and v are variable symbols. We
write this as ∀p at(p, l)+in(p, v) ↓ and read it as “For all packages p, the num-
ber of locations l such that at(p, l) is true plus the number of vehicles v such
that in(p, v) is true, is non-increasing.” In our terminology, p is the parame-
ter of the candidate, while l and v are the counted variables. This invariant
candidate is an actual invariant – it does hold in all reachable states – and it
is one of the invariants found by our algorithm in a Logistics-like domain.
Let us now formalize what it means for a candidate to be an invariant.

Definition 9.4.2. Monotonicity Invariants
Let Π be a PDDL task and let P = 〈V, Φ〉 be a monotonicity invariant candi-
date for Π.

An instance of P is a function α mapping the variables in V to objects
of the planning task Π.

The set of covered facts of an instance α is the set of all ground atoms
of the planning task Π which unify with some ϕ ∈ Φ under α, i. e., the set of
all ground atoms ϕ0 of Π for which there exists a variable map β ⊇ α such
that β(ϕ) = ϕ0 for some ϕ ∈ Φ.

The weight of an instance α in a state s is the number of covered facts of
α which are true in s.

The monotonicity invariant candidate P is called a monotonicity in-
variant iff for all instances α of P, all states s reachable from the initial
state of Π and all successor states s′ of s, the weight of α in s′ is no greater
than the weight of α in s.

182 9 Translation

The definition is probably best understood by considering the previously dis-
cussed example invariant. Similar to our convention for invariant candidates,
we usually refer to monotonicity invariants simply as invariants.

As hinted before, monotonicity invariants are useful for grouping a number
of related propositions into a single multi-valued variable: If we have found an
invariant for a planning task and a given instance of that invariant has weight
1 in the initial state, then the facts covered by that instance are pairwise
mutually exclusive. This is how the synthesized invariants are utilized during
the later stages of translation.

So how do we generate invariants? Since the number of feasible candidates
is too high for a guess-and-check algorithm, we follow a guess, check and repair
approach: Starting from a set of a few simple initial elements, we try to prove
that the candidates are indeed invariants. Whenever this is the case, we keep
the invariant and do not consider it further. However, when the proof fails,
we try to detect why this is the case and refine the candidate to generate
more candidates that do not fail for the same reason (although they might
fail for other reasons). From a high-level perspective, this is basically a search
problem, and indeed we solve it using standard breadth-first search with a
closed list. What remains to be said is how the search space of the algorithm
is defined:

– Initial states: What are the initial candidates?
– Termination test: How do we prove that a candidate is an invariant?
– Successor set: How do we refine a candidate for which this proof fails?

We will deal with these questions in the following.

9.4.1 Initial Candidates

Before starting the actual invariant synthesis algorithm, we check which pred-
icates are affected by operators at all: Some predicates, including but not lim-
ited to those representing types, are constant in the sense that atoms over
these predicates have the same truth values in all states. Such predicates are
no longer needed after grounding, so we need not consider them for invariant
candidates. Of course, a constant predicate trivially satisfies a monotonicity
invariant, but these are not very useful.

Therefore, we limit the set of interesting predicates to all modifiable fluent
predicates, i. e., predicates which occur within operator effects (as part of a
simple effect, not merely as part of an effect condition). Note that this also
excludes derived predicates. In theory, there is no reason why there should
be no monotonicity invariants involving derived predicates, but in practice
we have not seen examples of this, and detecting them would require a more
global view of the task definition and hence more effort than we would like to
spend. We will come back to the issue of derived predicates when discussing
our method for proving invariance.

9.4 Invariant Synthesis 183

The set of initial invariant candidates consists of all those candidates
(up to isomorphism, i. e., renaming of variables) which contain at most one
counted variable and exactly one atom, over a modifiable fluent predicate,
whose parameters are distinct variables. In our experience, invariants with
several counted variables per atom are exceedingly rare; in fact, we have not
seen an example in practice.

To illustrate the initialization of invariant candidates, we show the three
candidates generated for the binary at predicate in the Logistics domain:

∀x at(x, l) ↓ (9.1)
∀l at(x, l) ↓ (9.2)

∀x, l at(x, l) ↓ (9.3)

Similar candidates are introduced for the in predicate. Intuitively, the first
candidate states that no object can be at more locations in the successor state
than in the current state, the second candidate states that no location can be
occupied by more objects in the successor state than in the current state, and
the third candidate states that a given object cannot occupy a given location
in the successor state if this is not the case in the current state.

Candidates (9.2) and (9.3) are obviously not invariants. Candidate (9.1)
is not an invariant either because an object which is currently inside a vehicle
can be at some location in the successor state while being at no location in the
current state. However, we will see that we can refine (9.1) into an invariant.

9.4.2 Proving Invariance

When is an invariant candidate an invariant? We stated that invariants are
usually proved by establishing their truth in the initial state and using in-
ductive arguments for the effects of operator application. For monotonicity
invariants, only the inductive step is necessary; there is nothing special to
prove about the initial state. So in order to prove that a given invariant can-
didate is an invariant, we must show that no operator can increase the weight
of any of its instances. An operator increases the weight of some instance of
an invariant candidate iff the number of covered facts that it makes true is
greater than the number of covered facts that it makes false. If an operator
does not increase the weight of any instance, then we say that it is balanced
with regard to the invariant.

Ultimately, we are interested in instances of monotonicity invariants that
give rise to mutexes, so that only instances of weight 1 are relevant for us.
For this reason, we use the following condition which is slightly stronger than
balance.

Definition 9.4.3. Threatened Invariant Candidates
An invariant candidate P is threatened by a schematic operator iff one of
the following two conditions holds:

184 9 Translation

– The operator has an add effect that can increase the weight of an instance
of P in some state, but no delete effect that is guaranteed to decrease the
weight of the same instance in the same state. In this case, we say that
the operator is unbalanced with regard to P.

– When ignoring delete effects, the operator can increase the weight of some
instance of P in some state by at least 2. In this case, we say that the
operator is too heavy for P.

Clearly, not being threatened by any schematic operator is a sufficient con-
dition for being a monotonicity invariant. The definition gives rise to the
algorithm shown in Fig. 9.2. Most of the actual work is in unifying opera-
tor parameters and quantified variables of universal conditions; the algorithm
simplifies significantly in STRIPS domains. We do not want to discuss the
algorithm in all detail, instead focusing on two points that require some ex-
planation, namely the satisfiability and entailment tests that occur towards
the end of algorithms check-operator-too-heavy and check-operator-unbalanced.

For the heaviness test, two add effects can only lead to an operator being
too heavy if the operator is actually applicable (o′.precondition is true), both
add effects apply (e.condition and e′.condition are true) and the add effects
actually add propositions that were not true previously (e.atom and e′.atom
are false). For the imbalance test, an add effect is unbalanced by default.
However, it becomes balanced if whenever the operator is actually applica-
ble (o′.precondition is true), the add effect triggers (e.condition is true) and
actually adds something (e.atom is false), then something is deleted at the
same time, which means that the delete effect triggers (e′.condition is true)
and deletes something that was previously true (e′.atom is true).

Coming back to the earlier Logistics example, all three initial candidates
are threatened by the same operator unload-truck, whose add effect at(x, l)
is not balanced. Thus, as indicated before, none of (9.1)–(9.3) is an invariant.

There are a few subtleties about the algorithm which we want to point
out briefly:

– We duplicate universal effects at the beginning of check-operator-too-heavy
so that we can detect if two different instantiations of the same univer-
sal effect can simultaneously increase the weight of some instance of the
invariant candidate.

– Where Fig. 9.2 contains statements like “Let o′ be a copy of o where vari-
ables are renamed so that. . . ”, the question arises whether such a renam-
ing is uniquely determined, and what to do if it is not. Indeed, renamings
are unique (and easy to compute) as long as all atoms of the candidate
refer to different predicates, which is usually the case. However, the algo-
rithm generalizes to invariant candidates with several occurrences of the
same predicate, like ∀x at(x, y)+at(y, x) ↓. This requires that all possible
(non-isomorphic) renamings must be considered for o′ in algorithm check-
operator-unbalanced. In our experience, invariants of this type are not very
useful, although Fast Downward implements them correctly.

9.4 Invariant Synthesis 185

algorithm prove-invariant(V , Φ):
for each schematic operator o with add effect for some predicate in Φ:

call check-operator-too-heavy(o, V , Φ).
call check-operator-unbalanced(o, V , Φ).

accept candidate as an invariant.

{ In the following, the variables of an operator include both its operator
parameters and quantified variables of its effects. We assume that all variable
names are unique, and that whenever a variable is renamed, the change is
immediately reflected in program variables referring to effects of the operator.
For example, if e = at(p, l) is an effect of operator o and p is renamed to v
within o, then e becomes at(v, l). }

algorithm check-operator-too-heavy(o, V , Φ):
Let o′ be a copy of o.
Duplicate all (non-trivially) quantified effects of o′.
Assign unique names to all quantified variables in effects of o and o′.
for each pair (e, e′) of add effects of o′ that affect a predicate in Φ:

if the variables of operator o′ can be renamed so that
(e.atom �= e′.atom and
covers(V , Φ, e.atom) and covers(V , Φ, e′.atom) and
o′.precondition∧e.condition∧e′.condition∧¬e.atom∧¬e′.atom
is satisfiable):

reject candidate. { The operator is too heavy. }

algorithm check-operator-unbalanced(o, V , Φ):
for each add effect e of o that affects a predicate in Φ:

Let o′ be a copy of o where the variables are renamed so that
covers(V , Φ, e.atom) is true. Do not rename two variables
to the same variable except when forced.

for each delete effect e′ of o′ that affects a predicate in Φ:
if the quantified variables of e′ can be renamed in o′

so that (covers(V , Φ, e′.atom) and
o′.precondition ∧ e.condition ∧ ¬e.atom |=

o′.precondition ∧ e′.condition ∧ e′.atom):
continue with next add effect e.

{ This add effect is balanced. }
reject candidate. { The operator is unbalanced. }

function covers(V , Φ, ψ):
for each ϕ ∈ Φ:

if the counted variables in ϕ (those not in V)
can be renamed so that ϕ = ψ:

return true.
return false.

Fig. 9.2. Algorithm for proving that an invariant candidate 〈V, Φ〉 is an invariant

186 9 Translation

– We have noted before that we do not consider invariants involving derived
predicates. This is because axioms correspond to operators that have a
single add effect, but no delete effect. Invariant candidates including de-
rived predicates can thus never be balanced, except if the axiom body is
unsatisfiable, which is not a very interesting case. Since we do not consider
derived predicates within invariants, we can ignore axioms completely dur-
ing invariant synthesis.

– Instead of using full-blown satisfiability and entailment tests, more lim-
ited tests are possible if they only err in the “conservative” direction. In
practice, Fast Downward only employs simple structural entailment tests.
However, this is due to scarcity of development time, not to conserve run-
time, and we intend to extend the test to more complete logical reasoning.

One final subtlety concerns the semantics of PDDL operators with conflict-
ing effects. Note that our balance test does not special-case the possibility that
e.atom equals e′.atom, i. e., that the same atom is added and deleted. For the
PDDL semantics that we adhere to, an operator which would add and delete
the same atom would be invalid and thus inapplicable, not threatening any
invariant candidates. We call this the consistent effect semantics. However,
under another commonly accepted semantics, the add effect would “win” in
such a case. We call this the add-after-delete semantics. Using the add-after-
delete semantics, we would need to add the condition e.atom �= e′.atom before
the entailment test in check-operator-unbalanced. We believe that there is no
commonly agreed “correct” semantics for PDDL with regard to this issue:
For some standard benchmarks, such as MysteryPrime, only the consistent
effect semantics are reasonable, while for others, such as Rovers, only the
add-after-delete semantics make sense. Without going into further details, we
note that it is not too difficult to adjust the algorithm to use the add-after-
delete semantics.

9.4.3 Refining Failed Candidates

As indicated in the overview of the invariant synthesis algorithm, we do not
give up immediately if we cannot prove a given candidate to be an invariant.
Instead, we try to refine it by adding atoms that can restore balance. In
algorithmic terms, whenever we reject an invariant candidate 〈V, Φ〉, we try
to generate a set of new candidates of the form 〈V, Φ ∪ {ϕ′}〉.

Whether or not this is promising depends on the reason why the candi-
date was rejected. If it was rejected because an operator is too heavy, then
no possible refinement that adds an atom to the candidate can change this
fact, and we give up on the candidate completely. If, however, it was rejected
because of unbalanced operators, there is hope that we can deal with the
flaw by adding an atom that can match some delete effect of the threatening
operator, balancing the unbalanced add effect.

The refinement algorithm is shown in Fig. 9.3. The actual implementation
in Fast Downward does not generate all possible refining atoms ϕ′ näıvely,

9.4 Invariant Synthesis 187

algorithm refine-candidate(V , Φ):
Select some schematic operator o such that

check-operator-unbalanced(o, V , Φ) fails.
for each atom ϕ′ over variables from V and at most one other variable

for which covers(V , Φ, ϕ′) is not true:
Φ′ := Φ ∪ {ϕ′}
Simplify Φ′ by removing atoms from Φ that are covered by ϕ′.
(These cannot contribute to the weight of an instance of 〈V, Φ′〉.)
Simplify Φ′ by removing unused parameters.
if check-operator-too-heavy(o, V , Φ′) does not fail:

Add 〈V, Φ′〉 to the set of invariant candidates.

Fig. 9.3. Algorithm for refining an unbalanced invariant candidate 〈V, Φ〉

but rather uses information from the set of delete effects of the threatening
operator o and the failed call to check-operator-unbalanced to only create
candidates for ϕ′ for which there is a chance that the new balance check will
succeed. Since this is conceptually straight-forward, we do not go into more
detail about this technique.

Instead, let us return to the Logistics example. Recall that candidate
(9.1), ∀x at(x, l) ↓, is threatened by the operator unload-truck, whose add
effect at(x, l) is unbalanced. The operator has only one delete effect, namely
¬in(x, t). Indeed, in(x, t) is a suitable refinement atom for ϕ′ without further
variable renaming, since the unload-truck operator is balanced with regard
to the refined candidate ∀x at(x, l)+in(x, t) ↓. So we add this candidate to the
set of currently considered candidates. At a later stage, it will be considered
by prove-invariant, which will show that it is indeed an invariant.

By contrast, the other two candidates cannot be suitably refined. In or-
der to refine (9.3), ∀x, l at(x, l) ↓ to balance the drive-truck operator, we
would need to add the atom at(x, l′), which is the only delete effect of that
operator. However, this atom covers the original atom at(x, l) (note that the
converse is not true, because only l′ is a counted variable), leading to the
candidate ∀x, l at(x, l′) where parameter l is unnecessary, so that it simplifies
to ∀x at(x, l′). This candidate is isomorphic to (9.2) and hence not considered
again.

Considering candidate (9.2) and the drive-truck operator, the only pos-
sible refinement is ∀ · at(x, l′) ↓ (“The total number of at propositions is
non-increasing”), which turns out to be violated by the unload-truck opera-
tor, but can be further refined to ∀ · at(x, l′)+ in(x, l′) ↓ (“The total number
of at and in propositions is non-increasing”). This latter candidate is actually
an invariant. However, its only instance clearly has a weight greater than 1 in
the initial state of any non-trivial Logistics task and thus turns out not to
provide any mutex information.

188 9 Translation

Logistics ∀x at(x, l) + in(x, t) ↓

Blocksworld ∀ · handempty() + holding(b) ↓
∀b holding(b) + clear(b) + on(b′, b) ↓
∀b holding(b) + ontable(b) + on(b, b′) ↓

Grid ∀ · armempty() + holding(k) ↓
∀ · at-robot(l) ↓
∀ · open(d) + locked(d) ↓
∀ · locked(d) ↓
∀d open(d) + locked(d) ↓
∀d locked(d) ↓
∀k holding(k) + at(k,l) ↓

Fig. 9.4. Invariants found in some standard benchmark domains

9.4.4 Examples

This concludes our description of the invariant synthesis algorithm. To give
an impression of the kind of invariants it generates, Fig. 9.4 shows some of the
results obtained on IPC domains. The invariants found in the Grid domain
are most interesting, as they include some monotonicity information that is
not a mutex: The third Grid invariant states that the total number of open
and locked doors never increases, the fourth invariant states that the number
of locked doors never increases, and the sixth invariant states that a door
which is not locked can never become locked.

9.4.5 Related Work

Before moving on to the next translation step, we should point out that the
algorithm described in this section is not the only approach to invariant syn-
thesis proposed in the literature. Therefore, we now provide a brief comparison
to four other approaches, sorted in decreasing order of relatedness:

– Edelkamp and Helmert’s algorithm [34] proposed for the MIPS planner
[35, 36],

– Gerevini and Schubert’s DISCOPLAN [45,46],
– Rintanen’s invariant synthesis algorithm [101], and
– Fox and Long’s TIM [27,41].

We point out that apart from the first algorithm in the list, all of these
were developed independently from ours, although all but the last one follow
very similar ideas.

Edelkamp and Helmert’s algorithm is the most closely related approach.
In fact, Fast Downward’s algorithm can be considered as the extension of
the MIPS algorithm to non-STRIPS domains. Compared to the original algo-
rithm, Fast Downward’s invariant synthesis incorporates some cosmetic and

9.4 Invariant Synthesis 189

performance improvements, but the main difference is the coverage of univer-
sal and conditional effects. On STRIPS domains, both algorithms generate
the same set of invariants.

DISCOPLAN uses a very similar guess, check and repair approach. How-
ever, the method for refining invariant candidates appears to be quite different,
although this is somewhat difficult to assess because the algorithm is not com-
pletely described in the literature and source code of an implementation is not
available. One major difference is that Fast Downward’s algorithm immedi-
ately refines an invariant as soon as an operator is discovered which threatens
it. DISCOPLAN, on the other hand, first collects all threats to an invariant for
all operators, and only then generates refinements, which attempt to address
all these threats at the same time. On the one hand, collecting threats across
operators allows making more informed choices in invariant refinement. On
the other hand, it appears that this approach incurs a performance penalty.
For example, while Fast Downward’s invariant synthesis algorithm always ter-
minates in very short time for all IPC benchmark tasks, DISCOPLAN fails on
46 of the 50 IPC4 Airport tasks by running out of time. Another drawback
of DISCOPLAN is that, although it is not limited to STRIPS, it can only deal
with a subset of ADL features, which is not sufficient for the IPC benchmarks.
Finally, also for STRIPS domains, there are some invariants important for
an efficient MPT encoding which our algorithm discovers but DISCOPLAN
misses. For example, in the Driverlog domain, our approach can prove that
a given driver can only be at one place or inside one truck at the same time,
which allows encoding driver location in a single variable. An encoding based
on the invariants found by DISCOPLAN would need to introduce a separate
state variable for each driver-location and driver-truck pair. On the positive
side, DISCOPLAN can generate many classes of invariants beside mutexes;
however, these are not relevant to PDDL-to-MPT translation.

Rintanen’s algorithm follows the same guess-check-repair structure as our
algorithm and DISCOPLAN. One main difference (and advantage) of Rinta-
nen’s algorithm is that its “check” step uses the information from all current
invariant candidates, rather than just the one currently being considered, to
strengthen the induction hypothesis. An interesting difference is that, unlike
our algorithm, it always proceeds from stronger invariant candidates to weaker
ones. Note that for inductive proofs, both strengthening and weakening an in-
variant candidate can be a promising refinement strategy. In particular, weaker
statements are not necessarily easier to prove than stronger ones because the
induction hypothesis is also weaker. A problem of Rintanen’s algorithm is that
it is limited to STRIPS and that it is not sufficiently efficient for many of the
IPC benchmarks. For this reason, we have not made a detailed comparison
regarding the kinds of invariants it can or cannot find; from our limited ex-
perience, we believe the approaches to be comparable in this respect, at least
for the mutexes we are interested in. Like DISCOPLAN, Rintanen’s approach
can find more general classes of invariants.

190 9 Translation

Finally, Fox and Long’s TIM (for type inference module) is (or can be
interpreted as) an invariant synthesis algorithm which follows a conceptually
very different approach to the other algorithms described here, focusing on
the notion of property spaces which are generated from the type structure of
the task, which is in turn based on a type inference technique which gives
the system its name. TIM was originally [41] limited to STRIPS and thus not
directly usable for us. It has since been extended to handle ADL constructs [27]
in parallel to the development of our invariant synthesis algorithm.

9.5 Grounding

Having computed monotonicity invariants, the next translation step is to ob-
tain a grounded representation of the normalized PDDL task.

Definition 9.5.1. Grounded PDDL Tasks
A grounded PDDL task is a PDDL task such that all literals occurring in
the goal formula, axioms and operators are ground literals.

Before performing the actual axiom and operator instantiation that yields
the grounded representation, we try to determine which ground atoms of
the PDDL task can actually become true. In a typical planning task, most
ground atoms can never be true, either because they are not type-correct
(for example, at(vehicle1, vehicle2)), or for more subtle reasons (for ex-
ample, at(vehicle1, loc1) where there is no path from the initial location of
vehicle1 to loc1). Instantiating operators or axioms in such a way that their
preconditions or bodies are necessarily false in every reachable state would be
wasteful.

Determining whether or not a given atom can ever be true is as difficult
as planning itself, but an over-approximation of the set of reachable atoms
can be computed efficiently based on the idea of relaxed planning tasks in the
sense of HSP and FF [16,68]. Instead of computing the set of reachable atoms
of a PDDL task Π itself, we thus compute the reachable atoms of a relaxed
planning task R(Π), which differs from Π as follows:

– Negative literals in axiom bodies, operator preconditions, effect conditions
and goal condition are assumed to be always true.

– Delete effects of operators are ignored.

It is easy to see that the set of reachable atoms of R(Π) is a superset of
the set of reachable atoms of Π , so any ground atoms not reachable in R(Π)
need not be represented in the grounded version of Π .

The nice property of relaxed planning tasks is that computing their reach-
able atoms is conceptually simple. Nevertheless, this step is the most time-
critical part of the whole translation component, because the set of reachable
atoms can be huge in some of the benchmark domains, especially those with a

9.5 Grounding 191

comparatively simple logical structure like Logistics or Satellite. There-
fore, it is important to compute reachable atoms efficiently. This is what the
Horn exploration algorithm is designed for.

9.5.1 Overview of Horn Exploration

The idea of Horn Exploration is to encode the atom reachability problem
for relaxed planning tasks as a set of logical facts and rules, i. e., as a logic
program. This allows us to efficiently compute the set of reachable atoms
by computing the canonical model of that logic program, which is the set
of ground atoms implied by the program. The algorithm consists of three
steps: Generating the logic program, translating it into a normal form, and
computing its canonical model. Before going into detail for each of these steps,
let us formally define what we mean by a logic program:

Definition 9.5.2. Positive Logic Programs
Let L be a first-order language.

A positive Horn clause over L is a formula of the form ϕ1∧· · ·∧ϕk → ψ
(k ≥ 0), where ϕi and ψ are (usually not ground) atoms over L. It can be
written as ψ ← ϕ1, . . . , ϕk. Using this notation, ψ is called the head and
ϕ1, . . . , ϕk is called the body of the clause. Positive Horn clauses are usually
assumed to be universally quantified. For a given positive Horn clause χ with
free(χ) = {v1, . . . , vk}, we define χ∀ = (∀v1 . . . vk : χ). Similarly, for a set of
positive Horn clauses R, we define R∀ = { χ∀ | χ ∈ R }.

A positive logic program over L is a pair 〈F ,R〉, where F is a set of
ground atoms over L called the set of facts and R is a set of positive Horn
clauses over L called rules.

The canonical model of a positive logic program 〈F ,R〉 is the set of all
ground atoms ϕ with F ∪R∀ |= ϕ.

Next, we show how to translate the reachability problem into a positive logic
program. Afterwards, we demonstrate how to translate this logic program into
a particularly simple form and how to compute the canonical model of the
simplified logic program efficiently.

9.5.2 Generating the Logic Program

Due to the fact that the PDDL task has been normalized, generating the
logic program is conceptually easy. A ground atom is reachable in the relaxed
task iff it is true in the initial state or there exists some axiom or operator
of the relaxed task that can make it true. Therefore, the set of facts of the
logic program is formed by the atoms in the initial state of the planning
task, and the set of rules is derived from the axiom and operator definitions.
Additionally, we introduce a rule for the goal of the planning task to detect
solvability of the relaxed task; if it is unsolvable, the original task is unsolvable
too, which we can report immediately and stop planner execution.

192 9 Translation

Recall from Sect. 9.3 that at this stage, all conditions occurring in the
PDDL task are conjunctions of literals. For such conjunctions ϕ, we denote
the conjunction of all positive literals of ϕ by ϕ+. In the context of logic
programs, we follow the PROLOG convention of using uppercase letters for
first-order variables and lower-case letters for constants. The exploration rules
for a normalized PDDL tasks are generated as follows:

– Axioms: For schematic axioms a = ϕ ← ψ with ψ+ = ψ+
1 ∧ · · · ∧ ψ+

m and
free(ϕ)∪ free(ψ) = {X1, . . . , Xk}, we generate the axiom applicability rule

a-applicable(X1, . . . , Xk) ← ψ+
1 , . . . , ψ+

m.
and the axiom effect rule

ϕ ← a-applicable(X1, . . . , Xk).
– Operators: For schematic operators o with parameters {X1, . . . , Xk} and

precondition ϕ with ϕ+ = ϕ+
1 ∧ · · · ∧ ϕ+

m, we generate the operator appli-
cability rule

o-applicable(X1, . . . , Xk) ← ϕ+
1 , . . . , ϕ+

m.
and for each add effect e of o adding the atom ψ with quantified variables
{Y1, . . . , Yl} and effect condition ϕ with ϕ+ = ϕ+

1 ∧ · · · ∧ ϕ+
m, we generate

the effect trigger rule
e-triggered(X1, . . . , Xk, Y1, . . . , Yl)
← o-applicable(X1, . . . , Xk), ϕ+

1 , . . . , ϕ+
m.

and effect rule
ψ ← e-triggered(X1, . . . , Xk, Y1, . . . , Yl).

– Goal rule: For the goal ϕ with ϕ+ = ϕ+
1 ∧ · · · ∧ ϕ+

m, we generate the goal
rule

goal-reachable() ← ϕ+
1 , . . . , ϕ+

m.

The correctness of these rules should be evident. The reader might won-
der why we sometimes introduce new predicates that do not seem nec-
essary. For example, axiom applicability rule and axiom effect rule could
be combined into a single rule without introducing the auxiliary predicate
a-applicable. The purpose of these predicates is to track which axioms
and operators must be instantiated when grounding the PDDL task. For
example, in the Logistics domain, we will not generate a ground opera-
tor (fly-airplane plane1 loc1 loc3) if loc3 is not an airport location,
since in this case the canonical model of the logic program does not include
the atom fly-airplane-applicable(plane1, loc1, loc3). The operator ap-
plicability predicates serve the additional purpose of “factoring out” common
subexpressions. Without them, all operator preconditions would need to be
repeated in each effect trigger rule (or effect rule, if effect trigger rules were
similarly eliminated).

9.5 Grounding 193

9.5.3 Translating the Logic Program to Normal Form

After the logic program has been generated, it is translated into the following
normal form:

Definition 9.5.3. Normal Form for Positive Logic Programs
An atom in first-order logic is called variable-unique if it does not contain
two occurrences of the same variable. (For example, an atoms like P (X, Y, X)
is not variable-unique because variable X occurs twice. Repetitions of constants
are allowed.)

A rule of a positive logic program is called variable-unique if the head
and all atoms of the body are variable-unique.

A rule of a positive logic program is called a projection rule if it is
variable-unique and it is of the form ϕ ← ϕ1 with free(ϕ) ⊆ free(ϕ1). In other
words, projection rules are unary rules where all variables in the head occur
in the body.

A rule of a positive logic program is called a join rule if it is variable-
unique and it is of the form ϕ ← ϕ1, ϕ2 with free(ϕ1) ∪ free(ϕ2) = free(ϕ) ∪
(free(ϕ1) ∩ free(ϕ2)). In other words, join rules are binary rules where all
variables occurring in the head occur in the body, and all variables occurring
in the body but not in the head occur in both atoms of the body.

A positive logic program is in normal form if all rules are either projec-
tion rules or join rules.

The names of the rule types in Definition 9.5.3 are reminiscent of the related
database-theoretic operations from relational algebra: Projection rules corre-
spond to the projection operator π and join rules correspond to the natural
join operator �� (or strictly speaking, a combination of natural join and pro-
jection). We will now describe how to convert the positive logic program from
the previous section into normal form.

First, we eliminate duplicate variable occurrences as follows: If any rule
contains atoms with duplicate occurrences of the same variable X , we change
one occurrence of X in any such atom into a new variable X ′ and add the
atom equals(X, X ′) to the body of the rule. We repeat until no further such
transformations are possible. If we needed to introduce any equals atoms, we
add the fact equals(o, o) to the initial state for each object o of the planning
task.

Second, for any variable X that occurs in the head but not in the body
of a rule, we add the atom object(X) to the rule body. (Remember from
Sect. 9.3.1 that object(o) is true for any object o of the planning task.)

Third, all rules with an empty body are converted into facts. Their heads
must be ground atoms because all variables occurring in the head must occur
in the (in this case, empty) body after the previous transformation.

After these transformations, all remaining unary rules are projection rules;
we still need to normalize rules with two or more atoms in the body. As a first
step towards this goal, we determine if the body of such a rule contains any

194 9 Translation

algorithm greedy-join(rule):
while |rule.body| > 2:

Choose ϕ, ϕ′ ∈ rule.body such that ϕ �= ϕ′ and
join-cost(rule, ϕ, ϕ′) is minimal.

X1, . . . , Xk := join-vars(rule, ϕ, ϕ′)
Generate a new predicate symbol p with arity k.
Generate a new join rule p(X1, . . . , Xk) ← ϕ, ϕ′.
rule.body := rule.body \ {ϕ, ϕ′} ∪ {p(X1, . . . , Xk)}

function join-vars(rule, ϕ, ϕ′):
{ Compute the relevant variables for the predicate generated

by joining ϕ and ϕ′. }
return free({ϕ, ϕ′}) ∩ free({rule.head} ∪ rule.body \ {ϕ, ϕ′}).

function join-cost(rule, ϕ, ϕ′):
new-arity := |join-vars(rule, ϕ, ϕ′)|
max-old-arity := max(|free(ϕ)|, |free(ϕ′)|)
min-old-arity := min(|free(ϕ)|, |free(ϕ′)|)
return (new-arity−max-old-arity, new-arity−min-old-arity, new-arity).
{ Cost estimates are triples which are compared lexicographically.

We prefer joins where “new arity” − “max old arity” (the increase
in arity) is small and consider the other criteria only in case of ties. }

Fig. 9.5. The greedy join algorithm for decomposing a rule into join rules

variables that occur in no other atom of the rule, neither in the body nor in
the head. If this is the case, such variables are projected away as follows: We
are given the rule ϕ ← ϕ1, . . . , ϕk, where free(ϕi) = {X1, . . . , Xk} contains
variables not present in any of the other atoms, say {Xj+1, . . . , Xk}. Then
we introduce a new predicate p and replace the original rule by the two rules
ϕ ← ϕ1, . . . , ϕi−1, p(X1, . . . , Xj), ϕi+1, . . . , ϕk and p(X1, . . . , Xj) ← ϕi.

After this transformation, all binary rules are valid join rules. In the last
normalization step, we split rules with m > 2 atoms in the body into m − 1
join rules by applying the greedy join algorithm, illustrated in Fig. 9.5. The
algorithm iteratively picks two atoms from the rule body and joins them,
introducing a new predicate for the result of the join and replacing the two
atoms in the rule body by an instance of that new predicate. This process is
repeated until the body of the rule no longer contains more than two atoms.

The order in which atoms are joined is critical for the speed of evaluating
the join rules. To see this, consider the rule p(X) ← q(X), s(X, Y), t(Y). One
possible decomposition into join rules yields the rules u(X) ← s(X, Y), t(Y)
and p(X) ← q(X), u(X). Another possible decomposition yields the rules
v(X, Y) ← q(X), t(Y) and p(X) ← s(X, Y), v(X, Y). We can expect that the
canonical model of the first decomposition contains relatively few instances of
the intermediate predicate u, maybe about as many as it contains instances

9.5 Grounding 195

of t. On the other hand, the canonical model of the second decomposition
contains as many instances of the intermediate predicate v as the product of
the number of instances of q and t, which can be much higher.

Since the performance of our algorithm for computing the canonical model
of a logic program is closely related to the model size, we prefer to generate
smaller intermediate results. The greedy join algorithm tries to achieve this
goal by preferring to join atoms that contain many common variables and
lead to intermediate predicates of low arity.

9.5.4 Computing the Canonical Model

Having translated the logic program into normal form, we are ready to com-
pute the canonical model. We use a queue-based approach, distinguishing
between reachable atoms that have already been processed, which means that
the consequences of their being reachable have already been evaluated (closed
atoms), and reachable atoms that still need to be processed (open atoms).
Open atoms are those that are currently stored in the queue, while closed
atoms are those that were enqueued once, but no longer are.

Our algorithm, shown in Fig. 9.6, stores open atoms in the queue variable,
while both open and closed atoms are stored in the result variable canonical-
model. Additionally, it uses the following data structures:

– Rule matcher : A rule matcher is an indexing structure that supports ef-
ficient unification queries on the bodies of logic programs. When given a
ground atom a, the rule matcher determines all projection rules ϕ ← ϕ1

and join rules ϕ ← ϕ1, ϕ2 such that ϕ1 or ϕ2 unifies with a, i. e., such
that it is possible to substitute objects for variables in ϕ1 or ϕ2 in such a
way that a is obtained. The rule matcher reports the matched rules and
whether ϕ1 or ϕ2 was matched (if both unify with a, two matches are
generated).
Note that matching ground atoms to the rules they can trigger is simple if
the rules do not contain constants in the body. Unfortunately, some of the
IPC4 benchmarks contain a huge number of operator schemas involving
constants (most importantly, the STRIPS formulation of the Airport

domain), and an efficient indexing structure is important for those. Rule
matchers are implemented as decision-tree like data structures very similar
to successor generators, which are discussed in Chap. 10. Because of that
similarity and because they are not central to the instantiation algorithm,
we do not discuss rule matchers further.

– Join rule indices: Each join rule r = ϕ ← ϕ1, ϕ2 maintains two hash tables
r.index1 and r.index2 that map instantiations of the common variables of
ϕ1 and ϕ2 to instantiations of the variables of ϕ1 and ϕ2, respectively.
At any time (except during updates) and for any assignment key to the
common variables of ϕ1 and ϕ2, r.index1[key] contains those variable map-
pings α ⊇ key for the variables of ϕ1 for which α(ϕ1) belongs to the closed

196 9 Translation

algorithm calculate-canonical-model(F , R):
for each join rule r ∈ R:

r.index1 := make-empty-hashtable()
r.index2 := make-empty-hashtable()

rule-matcher := build-rule-matcher(R)
queue := make-queue(F)
canonical-model := F
{ In the following, enqueuing a fact means adding it to queue and

canonical-model if it is not yet an element of canonical-model. }
while queue is not empty:

current-fact := queue.pop()
for each match m ∈ rule-matcher.match(current-fact):

if m refers to ϕ1 in a projection rule r = ϕ ← ϕ1:
Let α be the variable assignment

for which α(ϕ1) = current-fact.
Enqueue α(ϕ).

else if m refers to ϕ1 in a join rule r = ϕ ← ϕ1, ϕ2:
Let α be the variable assignment

for which α(ϕ1) = current-fact.
key := α restricted to free(ϕ1) ∩ free(ϕ2)
Add α to r.index1[key].
Enqueue (α ∪ β)(ϕ) for each β ∈ r.index2[key].

else if m refers to ϕ2 in a join rule r = ϕ ← ϕ1, ϕ2:
{ Handled analogously to the previous case. }

Fig. 9.6. Computing the canonical model of a positive logic program 〈F ,R〉 in
normal form

set. Similarly, r.index2[key] contains those variable mappings β ⊇ key for
the variables of ϕ2 for which β(ϕ2) belongs to the closed set.
This information can be exploited for quickly determining all possible in-
stantiations of ϕ2 that match a given instantiation of ϕ1, or vice versa,
as is done in the algorithm. Note that the variable assignment α ∪ β con-
sidered in the algorithm is indeed a function, since α and β agree on all
variables for which they are both defined.

To motivate the soundness of compute-canonical-model, we state an im-
portant invariant which holds before and after each iteration of the while
loop: All non-closed atoms which can be derived in one step from the closed
atoms using the rules of the logic program 〈F ,R〉 are open atoms. This implies
that upon termination of the algorithm, when there are no more open atoms
and hence canonical-model holds exactly the set of closed atoms, the model is
closed under application of R. Because it also contains all facts from F and
only contains facts that can be derived from F , it thus contains exactly the
canonical model of 〈F ,R〉.

9.6 Multi-valued Planning Task Generation 197

The invariant is obviously true initially, since there are no closed atoms at
the beginning of the algorithm. With our descriptions of the data structures
of compute-canonical-model, the reader should have no trouble verifying that
it remains true after each iteration of the while loop.

This concludes our discussion of the Horn exploration algorithm. One fi-
nal word on performance: If we assume that the arity of predicates in the
logic program is bounded by a constant, then all basic operations of calculate-
canonical-model can be performed in constant time. The runtime of the algo-
rithm then typically scales roughly linearly in the combined size of its input
and output (the computed canonical model). However, runtime can be worse
if there are many situations where the algorithm tries to enqueue an atom
that is already part of the canonical model.

9.5.5 Axiom and Operator Instantiation

With the help of the canonical model, instantiating axioms and operators
is very straight-forward. To compute the grounded representation, we scan
through the set of ground atoms in the canonical model in the order in which
they were generated, creating axiom and operator instances as follows:

– When encountering atoms of the form a-applicable(x1, . . . , xk) where a
is a schematic axiom, we generate a ground instance of a with the param-
eters substituted with x1, . . . , xk.

– When encountering atoms of the form o-applicable(x1, . . . , xk) where o
is a schematic operator, we generate a ground instance of o without effects.
Like in the case of axioms, the parameters of the operator are substituted
with x1, . . . , xk, and the precondition is instantiated accordingly.

– When encountering atoms of the form e-triggered(x1, . . . , xk, y1, . . . , yl)
where e is an effect of some operator o, we look up the set of already gen-
erated ground operators to find the operator o(x1, . . . , xk). This operator
must have been generated previously because an e-triggered atom can
only be derived after the corresponding o-applicable atom. Having found
the ground operator, we attach to it the effect obtained by instantiating
the variables in e with y1, . . . , yl.

After a single pass through the canonical model, we have thus generated
a grounded PDDL task which is equivalent to the normalized PDDL task we
started with.

9.6 Multi-valued Planning Task Generation

Together with the invariants synthesized earlier, the grounded PDDL task
generated in the previous stage provides all the information we need for trans-
forming the STRIPS task into a multi-valued planning representation, which
constitutes the final translation step.

198 9 Translation

algorithm compute-mutex-groups(invariants, Pf , s0):
for each invariant I ∈ invariants:

for each instance α of I:
if weight(α, s0) = 1:

Create a mutex group containing all atoms in Pf

covered by α.

Fig. 9.7. Computing mutex groups from the set of monotonicity invariants invari-
ants, the set of reachable atoms Pf and the initial state s0

Recall from Definition 9.1.2 that a multi-valued planning task (MPT) is
given by a 5-tuple Π = 〈V , s0, s�,A,O〉 of variables V , each with an associated
finite domain, initial state s0 and goal s�, axioms A and operators O. We start
by defining suitable variables and variable domains; everything else then more
or less falls into place.

9.6.1 Variable Selection

Each variable of the generated MPT corresponds to one or more (reachable)
ground atoms of the STRIPS task. We start by enumerating the set P of all
such atoms, partitioned into atoms Pf which are instances of modifiable fluent
predicates or derived predicates and atoms Pc which are instances of constant
predicates (cf. Sect. 9.4.1).

We want to represent as many ground atoms by a single state variable
as possible. To achieve this, we first determine the set of mutex groups in-
duced by the computed invariants. Mutex groups are computed in a straight-
forward manner by instantiating the monotonicity invariants in all possible
ways, checking for each if it has weight 1 in the initial state, and if so, which
atoms from Pf it covers. The algorithm is shown in Fig. 9.7; the actual im-
plementation in Fast Downward uses an indexing structure for efficiently de-
termining the set of reachable atoms covered by a given invariant instance.

Normally, not every mutex group will correspond to an MPT state vari-
able, since the same atom can be part of several mutex groups, but of course
only needs to be encoded once. As an example of this phenomenon, consider
Fig. 9.8, which shows the mutex groups of a Blocksworld task with four
blocks. If, for example, we decide to encode mutex groups (1)–(4) with four
multi-valued state variables, then we only need to encode one atom from each
of the other groups, since all instance of the on and holding predicates are
already represented. Therefore, the translator would first generate four state
variables with domains consisting of seven values each, namely holding(x),
clear(x), on(a, x), on(b, x), on(c, x), on(d, x) and the seventh option “none
of the other six is true”. (Of these seven values, two – block x being on top of
itself and none of the six atoms being true – are actually impossible.) After-

9.6 Multi-valued Planning Task Generation 199

(1) {holding(a), clear(a), on(a, a), on(b, a), on(c, a), on(d, a)}
(2) {holding(b), clear(b), on(a, b), on(b, b), on(c, b), on(d, b)}
(3) {holding(c), clear(c), on(a, c), on(b, c), on(c, c), on(d, c)}
(4) {holding(d), clear(d), on(a, d), on(b, d), on(c, d), on(d, d)}
(5) {holding(a), ontable(a), on(a, a), on(a, b), on(a, c), on(a, d)}
(6) {holding(b), ontable(b), on(b, a), on(b, b), on(b, c), on(b, d)}
(7) {holding(c), ontable(c), on(c, a), on(c, b), on(c, c), on(c, d)}
(8) {holding(d), ontable(d), on(d, a), on(d, b), on(d, c), on(d, d)}
(9) {holding(a), holding(b), holding(c), holding(d), handempty()}

Fig. 9.8. Mutex groups for a Blocksworld task with four blocks. Some atoms,
e. g. on(a, a), are reachable in the relaxed task although they are never true in the
“real” task

wards, it would encode the truth values of the remaining atoms ontable(x)
and armempty() with binary state variables.

In this case, there was at least one atom in each mutex group that was
unique to this particular group, so that the resulting encoding is not much
better than an encoding which simply takes all mutex groups and introduces
a state variable for each. However, in other cases, one group can be completely
covered by others; examples of this can be found in the Airport domain. In
this case we would like to cover the set of reachable atoms with as few state
variables as possible.

Unfortunately, as we have seen in Part I, set cover problems of this kind
are NP-complete [43, problem SP5] and indeed not even c-approximable [7], so
we limit our covering efforts to the greedy algorithm shown in Fig. 9.9, which
is the best approximation algorithm known for this problem, achieving an
O(log n)-approximation [7]. Iteratively, we pick a mutex group P of maximal
cardinality and introduce a new MPT state variable with domain P ∪ {⊥},
where ⊥ stands for “none of the elements of P is true”. We then remove
all covered elements from all other mutex groups, removing groups that no
longer contain more than one element. This process is repeated until all mutex
groups have been removed. At this stage, the remaining uncovered atoms p
are represented by binary variables with domain {p,⊥}.

After execution of the algorithm, for each reachable atom p ∈ Pf there
is exactly one MPT variable whose domain includes p. The translation will
ensure that this variable, which we denote as var(p) in the following, assumes
the value p in an MPT state iff p is true in the corresponding state of the
PDDL task. With this information, we can now go about converting the rest
of the PDDL task to the MPT representation.

9.6.2 Converting the Initial State

We start by converting the initial state, which is the easiest step. For each
atom p ∈ Pf that is in the initial state, we set the initial value of var(p) to

200 9 Translation

algorithm choose-variables(Pf , mutex-groups):
uncovered := Pf

while mutex-groups �= ∅:
Pick a mutex group P of maximal cardinality.
Create an MPT variable v with domain Dv = P ∪ {⊥}.
uncovered := uncovered \ P
mutex-groups := { P ′ \ P | P ′ ∈ mutex-groups }
mutex-groups := { P ′ | P ′ ∈ mutex-groups ∧ |P ′| ≥ 2 }

Create an MPT variable v with domain {p,⊥} for all remaining
elements of uncovered.

Fig. 9.9. Greedy algorithm for computing the MPT variables and variable domains

p. MPT variables for which there is no initial state atom p with var(p) = p
are initialized to ⊥. Note that different initial state atoms p, p′ must satisfy
var(p) �= var(p′), because p and p′ could only be represented by the same
MPT variable if they were mutually exclusive, which implies their not being
in the initial state together. Therefore, the converted initial state is indeed
well-defined.

9.6.3 Converting Operator Effects

Translating the state changes incurred by operator effects requires some care.
For add effects setting an atom p to true, conversion is easy: Such an effect is
always translated to an MPT effect setting var(p) to p, because we know p to
be true after operator application if the effect fires.

However, for delete effects setting an atom p to false, the correct translation
is not as clear. We cannot simply set var(p) to ⊥ (“none of the variables
represented by var(p) is true”) unconditionally, because this is not always
correct: It could be the case that another effect of the same operator triggers
simultaneously and adds another atom represented by the same variable, or
that p was not true when the operator was applied, but some other atom
represented by var(p) was.

Therefore, the correct translation is to set var(p) to ⊥ only if we know
that p was previously true and that no effect adding an atom represented by
var(p) triggers simultaneously, and not to do anything if this is not the case.
If the other effects of the operator that add atoms represented by var(p) have
effect conditions χ1, . . . , χk, then this is achieved by adding p∧¬χ1∧· · ·∧¬χk

to the effect condition of the delete effect.
If some of the formulas χi are proper conjunctions (i. e., neither constant

true nor singleton literals), this results in an effect condition which is not a
conjunction of literals. In this case, we introduce a new derived variable vi

that evaluates to true whenever ¬χi is true, and use vi in the effect condition
instead.

9.6 Multi-valued Planning Task Generation 201

All things considered, this conversion of delete effects looks very com-
plicated, and indeed in most cases easier translations are possible. For this
purpose, we detect two common special cases, with which we deal differently:

– If we see that whenever the delete effect triggers, some add effect affecting
the same variable must trigger as well, because it has the same or a more
general effect condition, then we do not need to represent the delete effect
in the MPT at all. The add effect will take care of the value change of its
affected variable.

– On the other hand, if we see that no add effect affecting the same variable
can trigger at the same time, because no such effect exists or each of their
effect conditions is inconsistent with the condition of the delete effect, then
we can convert the delete effect to an effect setting var(p) to ⊥. If p is not
already part of the operator precondition or effect condition, we must add
it to the effect condition to make sure that var(p) is only cleared if it was
previously set to p.

In most cases, translating delete effects is straight-forward because the two
simpler cases are by far more common than the general case. In particular, for
operators without conditional effects, one of the special cases always applies.

9.6.4 Converting Conditions

The third major translation step is the conversion of grounded conditions of
the PDDL task, which occur in the goal, in operator preconditions and effect
conditions and in axiom bodies.

To translate a grounded condition, we first check if it contains any atoms
not in Pf . These have constant truth values, so that the condition can be
simplified accordingly. If this leads to a constant false condition, we react ac-
cordingly (for the goal, we report that the task is unsolvable; for axiom bodies,
operator preconditions or effect conditions, we remove the axiom, operator or
effect).

Having considered trivially false conditions, we translate each positive lit-
eral p in the condition to the pairing var(p) = p. Translating negative literals
¬p is slightly more tricky. Recall the Blocksworld example discussed ear-
lier, where we generated the MPT state variable v with Dv = {holding(a),
clear(a), on(a, a), on(b, a), on(c, a), on(d, a), ⊥}, and consider a condition in-
cluding the atom ¬on(c, a). If the condition also contains some positive literal
concerning variable v, for example the atom clear(a), then we do not need
to encode ¬on(c, a) at all, because it is implied by the other literal. However,
otherwise there is no simple way to represent ¬on(c, a) as an MPT condition.
We would need to write something like v �= on(c, a), but conditions of this
form are not supported by the representation.

Therefore, in situations like this, similar to what we did when translating
difficult effect conditions that arise for complicated delete effects, we introduce
a new derived variable not-p with domain {#,⊥} and generate an axiom

202 9 Translation

(v = d) → (not-p := #) for each value d ∈ Dv \ {p}. The pairing not-p = #
can then serve as a translation of the literal ¬p.

If we wanted to avoid introducing new axioms, we could further normal-
ize the PDDL task so that no negative literals occur in conditions. There
are well-known translation methods to achieve such a normal form, but for
our purposes, our method has the advantage that no new non-derived state
variables are introduced, keeping the memory requirements of search states
small.

9.6.5 Computing Axiom Layers

As a final translation step, we must compute the axiom layers for the MPT
representation so that the semantics match with those of stratified logic pro-
grams (cf. Definitions 9.1.1 and 9.1.2).

This is done as follows: Whenever the body of an axiom a includes the
condition v = ⊥ for some derived variable v, then all axioms a′ with affected
variable v must be evaluated before a, i. e. we introduce an ordering constraint
a′ ≺ a. If the axiom definitions of the original PDDL task corresponded to
a stratifiable logic program, then the graph containing all such ordering con-
straints will be acyclic. Thus, we can use a topological sort algorithm to assign
the individual axioms to axiom layers: The first axiom layer contains all ax-
ioms without predecessors in the graph, the second axiom layer contains all
axioms whose predecessors belong to the first layer, and so on, until layers are
assigned to all axioms.

9.6.6 Generating the Output

Having partitioned the axioms into layers, we have finished translating the
PDDL task. Before generating output, the translator applies a few post-
processing techniques to simplify the generated task where possible.

Most importantly, if there are two axioms with the same head, a =
(cond → v := d) and a′ = (cond′ → v := d) with cond ⊂ cond′, then a is
triggered whenever a′ is triggered, so a′ is unnecessary. In such a case, which
occurs frequently in domains where axioms encode transitive closures, we say
that a dominates a′ and only keep a. Similarly, we do not keep several copies
of the same axiom which only differ in the order in which the conditions are
listed.

Once post-processing is completed, the generated MPT is written to disk
in a simple text format suitable for easy parsing by the other components of
the planner.

9.7 Performance Notes 203

9.7 Performance Notes

Before moving on to the other components of Fast Downward, let us briefly
discuss the performance of the translation component and compare it to the
related MIPS system.

9.7.1 Relative Performance Compared to MIPS Translator

As discussed in detail in Sect. 8.2, there are a number of other approaches
to planning that use multi-valued planning tasks or similar formalisms as
their base input. However, there exists only one earlier approach exploiting
multi-valued planning tasks within a PDDL planner and thus requiring the
sort of translation described in this chapter, namely the MIPS planning sys-
tem [35]. In many ways, the Fast Downward translator can be considered a
further development of the MIPS translator, which is described in an article
by Edelkamp and Helmert [34].

The main difference between the MIPS translator as described in that
article and the Fast Downward translator described in this chapter is that
the latter is more general. The original MIPS algorithm cannot deal with
ADL-style conditions or effects, with derived predicates, or with schematic
operators involving constants. Moreover, its runtime typically scales expo-
nentially in the number of schematic operators. This is not very problematic
for constant-free STRIPS domains which typically exhibit a small number of
operators, constant across the tasks of the domain. However, some of the IPC4
domains contain partially pre-instantiated operators leading to very large do-
main specifications. For example, 15 of the 50 Airport tasks (STRIPS for-
mulation) of IPC4 contain more than 1300 schematic operators each. Dealing
better with such high numbers of schematic operators was one of the key
motivations for our new developments in invariant synthesis (Sect. 9.4) and
grounding (Sect. 9.5). We point out that Edelkamp has independently ex-
tended the translation algorithm of MIPS since IPC2. However, there is no
published work on these efforts, so we do not provide a comparison.

To compare the relative performance of the original MIPS translator and
Fast Downward’s translator, we applied both to those 566 IPC1–4 benchmark
tasks that the MIPS translator can handle, i. e., pure STRIPS tasks without
domain constants. This is a somewhat unfair problem suite for the Fast Down-
ward translator because its key performance improvements are in efficiently
dealing with complex domain descriptions during grounding – a complication
which does not arise for these benchmarks. We should also point out that the
MIPS translator is implemented in C++, whereas Fast Downward’s translator
is implemented in the higher-level Python language. It is reasonable to expect
that a C++ reimplementation of the translator could lead to a speedup of at
least one order of magnitude on large tasks.

The overall result of our comparison is that in general, the MIPS trans-
lator is clearly the faster of the two systems. To discount the impact of very

204 9 Translation

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250

R
un

tim
e

ra
tio

Planning task

Fig. 9.10. Runtime comparison between the MIPS translator (faster) and Fast
Downward translator (slower). Each data point corresponds to one planning task.
Data points are sorted by runtime ratio

easy tasks, we further limited the benchmark set to those tasks for which
either translator required at least one second of runtime, obtaining a total of
254 data points. For all of these, the MIPS translator was the faster of the
two algorithms (or implementations). Figure 9.10 shows the ratio between the
runtimes of the two translators on these 254 benchmark tasks. In 243 out of
254 cases, this ratio is between 6 and 13, with five outliers below and six
outliers above this region. Note that on the horizontal axis, task are sorted
by the observed runtime ratio, not by task size or any other scaling measure,
so the upward slope of the curve cannot be interpreted as any kind of asymp-
totical scaling behaviour. This mode of display was chosen because there was
no visible correlation between the observed speedup and task size (or some
other apparent measure of task complexity). In other words, the algorithms
appear to scale equally well, which is no surprise given that our translation
algorithm is very similar to the MIPS translator on this fragment of PDDL.

Regarding the kinds of translations they generate, the two translators are
interchangeable. For this reason, as a speed optimization, Fast Downward can
be configured to use the C++-based MIPS translator on those domains for
which it is applicable. (The performance results in the following section are
all with respect to the Python-based Fast Downward translator, in order to
allow comparisons across domains.)

9.7 Performance Notes 205

measure mean±dev. 25% median 75% max.
translation time 12.35± 82.52 s 0.39 s 1.19 s 4.28 s 1960.0 s
size of output 672± 3253 KB 23KB 93 KB 326 KB 81748 KB
state variables 565± 3176 25 55 240 61842

operators/axioms 7046± 38308 289 1009 3469 989250

Fig. 9.11. Some statistics on the performance and output characteristics of the
translation component. The first column shows the aspect of the task being mea-
sured, the second column shows the mean and standard deviation for the respective
measure, and the remaining columns show the 25%, 50% (median), 75% and 100%
(maximum) percentiles. Statistics are based on the 1442 propositional benchmarks
from the fully automated tracks of IPC1–4

9.7.2 Absolute Performance

In addition to comparisons to other similar techniques, it is of course also of
importance how fast the translator computes its result in absolute terms. On
a state-of-the-art computer, it is sufficiently efficient to generate MPT encod-
ings for all 1442 IPC1–4 benchmark tasks. Moreover, compared to the time
required in the search component, translation time is essentially negligible in
the vast majority of cases. (Some exceptions to this exist in “structurally sim-
ple” domains like Satellite and Logistics.) A short summary of “average”
performance for the translator (for different notions of average) is provided
in Fig. 9.11. All experiments were conducted on a machine with a 3.066 GHz
Intel Xeon CPU, setting a memory limit of 2 GB.

To get an impression of the size and translation cost of a “typical” task,
the mean values, which are heavily influenced by some very large PSR tasks,
are misleading. The comparatively high standard deviations show that the dis-
tributions are highly irregular, so the percentile information is probably more
meaningful than the mean values. To get an impression of what very large
planning tasks look like, Fig. 9.12 provides information about the “largest”
five input tasks according to each of the four measures translation time, en-
coding size of translated task, no. of state variables in translated tasks and
no. of operators and axioms in translated tasks. As an extreme example, the
largest PSR instance from IPC4, task PSR-Large #50, could only just be
translated within the memory bound, consuming more than 1.9 GB of RAM
before completing translation after 32:40 minutes. However, with 61842 rele-
vant state variables, almost all of them derived variables, this task is far from
being solvable with current domain-independent planning technology anyway.
For comparison, at IPC4, Fast Downward could only solve the PSR-Large

instances up to #31. The largest solved PSR instance comprises 5807 relevant
MPT state variables and needed 39 seconds for translation. Of the other com-
petitors, the best system could solve 11 tasks of the PSR-Large benchmark
set, of which the largest comprises 527 state variables. MPT translation took
4 seconds for this instance.

206 9 Translation

translation time task time
PSR-Large #50 1 960.00 s
Satellite #33 1 355.50 s
PSR-Large #48 1 145.80 s
PSR-Large #46 920.45 s
Satellite #32 634.80 s

size of output task size
Satellite #33 81 748 KB
Satellite #32 52 032 KB
Satellite #36 34 758 KB
Satellite #31 29 997 KB
Satellite #35 27 672 KB

state variables task amount
PSR-Large #50 61 842
PSR-Large #48 48 210
PSR-Large #46 40 357
PSR-Large #49 36 790
PSR-Large #44 32 174

operators/axioms task amount
Satellite #33 989 250
Satellite #32 638 665
Satellite #36 428 109
Satellite #31 368 990
Satellite #35 342 193

Fig. 9.12. Statistics for the five largest planning tasks in each of the four categories

	Part II Fast Downward
	Translation
	PDDL and Multi-valued Planning Tasks
	Translation Overview
	Normalization
	Compiling Away Types
	Simplifying Conditions
	Simplifying Effects
	Normalization Result

	Invariant Synthesis
	Initial Candidates
	Proving Invariance
	Refining Failed Candidates
	Examples
	Related Work

	Grounding
	Overview of Horn Exploration
	Generating the Logic Program
	Translating the Logic Program to Normal Form
	Computing the Canonical Model
	Axiom and Operator Instantiation

	Multi-valued Planning Task Generation
	Variable Selection
	Converting the Initial State
	Converting Operator Effects
	Converting Conditions
	Computing Axiom Layers
	Generating the Output

	Performance Notes
	Relative Performance Compared to MIPS Translator
	Absolute Performance

