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Abstract

The 3rd and 4th International Planning Competitions have en-
riched the set of benchmarks for classical propositional plan-
ning by a number of novel and interesting planning domains.
Although they are commonly used for the purpose of evalu-
ating planner performance, the planning domains themselves
have not yet been studied in depth. In this contribution, we
prove complexity results for the decision problems relatedto
finding some plan, finding anoptimal sequential plan, and
finding anoptimal parallel planin these planning domains.
Our results also provide some insights into the questionwhy
planning is hard for some of the domains under consideration.

Introduction
It is hard to deny the fact that the International Planning
Competitions (IPCs), starting from their first incarnationat
AIPS 1998 (McDermott 2000), have had a marked impact
on classical planning research in recent years. This is true
not just of the competitions themselves, but also of the plan-
ning domains used within them.

Evidence for this is manifold. First, significant work has
been published that discuss properties of, or algorithms for,
some of the competition domains (Slaney & Thiébaux 2001;
Thiébaux & Cordier 2001; Helmert 2003). (Some domains,
such as PSR, have only been used in the competitionsafter
being the topic of research papers, but this only reinforces
our point that they are interesting in their own right.)

Second, we observe that many developments in classical
planning are motivated by weaknesses of earlier planning
approaches in benchmark domains. For example, the Goal
Agenda Management technique used in IPP and FF (Koehler
et al. 1997; Hoffmann & Nebel 2001) is motivated by the
BLOCKSWORLD domain and the CG heuristic used by Fast
Downward (Helmert 2004) is inspired by “transportation do-
mains” such as LOGISTICSand MYSTERY.

Finally, it has become a rare occurrence that a paper dis-
cussing new techniques for classical planning is published
without presenting performance results for some of the com-
petition domains. Indeed, in the ICAPS 2005 proceedings
(Biundo, Myers, & Rajan 2005), there are eight papers on
domain-independent deterministic planning, of which seven
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Figure 1: IPC3 and IPC4 domains.

exclusively use IPC domains for evaluation purposes, while
the remaining one uses two competition domains and the
towers of Hanoi.

Whether or not this focus on the competition domains
constitutes a healthy trend is a matter of some debate. It
can be argued that current practice in classical planning re-
search focuses too much on raw benchmark performance,
and too little on original ideas. This has led to a cer-
tain uniformity of planning approaches, with three of the
five best-performing planners in the non-optimizing propo-
sitional track of IPC4 (Hoffmann & Edelkamp 2005) being
some variation of Hoffmann’s FF. In any case, it is evident
that the competition domains have become such a staple in
current planning research that it is worthwhile putting some
effort into understanding them well.

Working towards this goal, this paper analyzes the com-
putational complexity of planning in the propositional plan-
ning domains of IPC3 (Long & Fox 2003) and IPC4 (Hoff-
mann & Edelkamp 2005), shown in Fig. 1. We focus on
IPC3 and IPC4 because the domains of the first two com-
petitions have already been addressed (Helmert 2003). We
focus on propositional (i. e., non-numerical, non-temporal)
domains because they are more commonly used than their
non-propositional counterparts; indeed, no ICAPS 2005 pa-
per includes experiments with the latter. However, this is
not to say that the non-propositional domains are without
interest, and indeed a follow-up investigation of those is un-
derway.

Studies of decision complexity are certainly not the be-
all and end-all of research on planning domains. We rather
see them as a first step, where other steps should involve ap-
proximability properties, phase transition behavior, and(as a
reference for comparison) domain-dependent optimal plan-
ning algorithms. All these steps have been undertaken for



the BLOCKSWORLD domain (Slaney & Thiébaux 2001). To
allow the other benchmark domains to catch up a little bit, a
companion paper discusses the approximability of the com-
petition benchmarks (Helmert, Mattmüller, & Röger 2006).

We proceed as follows. In the next section, we provide an
overview of the problems addressed in this paper, and pro-
vide some first results. This is followed by four sections in-
vestigating certain planning domains in depth, namely AIR-
PORT, PIPESWORLD, PROMELA, and PSR. Finally, we dis-
cuss our findings and conclude.

The problems
The propositional planning domains of IPC3 and IPC4 are
shown in Fig. 1. For each of these domains, we are interested
in the complexity of the following decision problems:

• Plan existence: Is a given planning task solvable?

• Bounded plan existence: Is a given planning task solvable
using no more than a certain number of actions?

Plan existence is closely related to the problem ofgener-
ating a planfor the task, while bounded plan existence is
related togenerating an optimal planfor a task, i. e., a plan
consisting of a minimal number of actions. If it is hard to de-
cide the decision problem, then the planning problem must
also be hard. While the converse does not hold universally, it
does hold for the domains we analyze: All our proofs of eas-
iness for the decision problems are constructive, providing a
planning algorithm for the domain under consideration.

For many planning domains, plan existence can be de-
cided in polynomial time whereas bounded plan existence is
NP-complete. In these cases, it is natural to ask how difficult
it is to generateapproximate solutions, plans which are not
much worse than optimal, for some definition of “not much
worse.” We answer this question for the competition do-
mains in a companion paper (Helmert, Mattmüller, & Röger
2006), which includes classifications of approximability for
the DEPOT, DRIVERLOG, ROVERS, SATELLITE and ZENO-
TRAVEL domains. Because that paper contains an in-depth
study of these domains, we only discuss them very briefly
here.

In all five domains, non-optimal plans can be easily gen-
erated in polynomial time by addressing one subgoal at a
time. NP-hardness of bounded plan existence for DEPOT,
DRIVERLOG and ZENOTRAVEL follows because each of
these domains generalizes the MICONIC-STRIPS domain,
for which bounded plan existence isNP-hard (Helmert
2003). For ROVERS and SATELLITE , we can reduce from
anNP-hard set covering problem. The mappings are shown
in the companion paper (Helmert, Mattmüller, & Röger
2006), where they are used to show limits of approxima-
bility. Membership inNP follows because shortest plans
are only polynomially long and hence guess-and-check al-
gorithms are applicable.

This leaves us with five domains to investigate. One of
these, FREECELL, was already part of IPC2 and has been
shown to haveNP-complete plan existence and bounded
plan existence problems (Helmert 2003). We dedicate the
following sections to the remaining four domains, starting
with A IRPORT.

AIRPORT

The AIRPORT domain models ground traffic on an airport,
i. e., movement of aircraft along taxiways and runways.
Unlike other route planning domains, AIRPORT tasks are
heavily space-constrained: Not only can any given location
(called ataxiway segment) only be occupied by one aircraft
at a time, there even exist mutual exclusion constraints be-
tween segments to the effect that at most one of them may
be occupied at a given time. The purpose of these con-
straints is to model realistic safety conditions. Indeed, the
A IRPORTdomain is firmly grounded in real-world planning
tasks (Hatzack & Nebel 2001), and some of the IPC4 bench-
marks are faithful translations of realistic data from Munich
Airport. (Note that the formulation in Hatzack and Nebel’s
paper is quite different from the IPC4 version, leading to
different complexity results.)

Planning domain 1 AIRPORT
The set ofmovement modes for aircraft is defined as
M := {pushing, taxiing, airborne, parked}.

An A IRPORT task is given by the following components:

• finite sets ofaircraft A andtaxiway segments S,
• a taxiway relation, pushback relation andblocking rela-

tion RT, RP, RB ⊆ S × S,
• an initial mode function m0 : A → {pushing, taxiing}

andinitial segment function s0 : A → S, and
• a goal mode function m⋆ : A → {airborne, parked} and

goal segment function s⋆ : A → S.

The digraphsGT = (S,RT), GP = (S,RP) andGB =
(S,RB) are called thetaxiway graph, pushback graph and
blocking graph of the task.

The task is calledundirected iff RT, RP andRB are sym-
metric, planar iff (S,RT ∪ RP) is a planar digraph, and
regularly constrained iff RT = RP = RB.

States of the task are pairs(m, s) ∈ (A → M) × (A →
S), wherem(a) is called thecurrent mode and s(a) is
called thecurrent segment of aircraft a ∈ A. The initial
state is(m0, s0), the only goal state is the state(m⋆, s⋆).

Any state (including initial and goal state) must satisfy the
followingblocking constraints:

• If two aircraft share the same current segment, at least
one must be airborne.

• If an aircraft located at segmentu is pushing or taxiing
and another aircraft located at segmentv is pushing, taxi-
ing or parked, then(u, v) /∈ RB.

There are five kinds of actions:

• An aircraft can change its current segment fromu to v
if it is taxiing and (u, v) ∈ RT (move actions), or if it
is pushing and(u, v) ∈ RP (push actions), unless the
resulting state violates the blocking constraints.

• An aircraft can change its current mode from pushing to
taxiing (start up actions), from taxiing to airborne (take
off actions), and from taxiing to parked (park actions).

The AIRPORT tasks of IPC4 obey two further restrictions
not captured by our definition. First, there are no aircraft
whose initial mode ispushingand goal mode is “parked”.



This would make little sense aspushingmode is associated
with outbound aircraft only andparkedmode is associated
with inbound aircraft only. Second, the pushback graph is al-
ways a subgraph of the taxiway graph with all arcs reversed.
Neither restriction has an impact on the complexity of the
problem because our hardness results already hold if there
are no pushing aircraft at all.

We also made some deviations from the PDDL definition
of the domain (Hoffmann & Edelkamp 2005) to simplify
presentation. Most importantly, the PDDL definition distin-
guishes between thelocationandfacingof an aircraft, while
we only consider its currentsegment. Compilations between
these two representations are straightforward.

Other differences involve the modeling of take-off ac-
tions. In the PDDL definition, aircraft “leave the map”
when taking off, and they can only take off from specific
runway segments. We ignore airborne aircraft for blocking
purposes, which amounts to the same thing as having them
leave the map, and while we allow take-off everywhere, it
never makes sense to take off from a non-goal segment, and
goal segments of outbound aircraft are always runway seg-
ments. The PDDL domain also contains a minor modeling
flaw that allows airplanes to park immediately before take-
off. However, this is never a useful thing to do and hence
cannot affect complexity.

Finally, the PDDL domain allows the blocking relation to
depend on the aircraft (viaairplane types), but none of the
existing benchmarks makes use of this feature. Again, mod-
eling it would not make a difference in complexity, as even
without airplane types, we can provePSPACE-hardness.

Theorem 2 AIRPORT planning is PSPACE-complete.
Plan existence and bounded plan existence forA IRPORT
tasks arePSPACE-complete. This is true even if we only
allow undirected, planar, regularly constrained tasks where
all aircraft are taxiing initially and must be parked in the
goal.
Proof: For a graphG = (V,E) and a set oftokensT , we
define alegal placementof T onG as an injective function
π : T → V such that no two tokens are placed on adjacent
vertices. A legal placementπ′ is asuccessorof another le-
gal placementπ iff they differ on exactly one tokent ∈ T ,
for which we have{π(t), π′(t)} ∈ E. In other words, to
obtain a successor of a legal placement, move a single token
along an edge and verify that this results in another legal
placement.

We showPSPACE-hardness of AIRPORT plan existence
by polynomially reducing from the following (PSPACE-
complete) variation of the Sliding Tokens puzzle (Hearn &
Demaine 2005): Given a planar graphG, set of tokensT
and legal placementsπ0, π⋆ of T onG, is there a sequence
of legal placementsπ1, . . . , πM such thatπi is a successor
of πi−1 for all i ∈ {1, . . . ,M} andπM = π⋆?1

We now describe the mapping of puzzle instances to AIR-
PORT tasks. Given graphG = (V,E), tokensT and place-

1In the original Sliding Tokens puzzle, tokens are indistinguish-
able and the goal has a different form. Only simple adjustments to
the hardness proofs are needed for the modified version; cf. Theo-
rem 23 and Corollary 6 in the reference (Hearn & Demaine 2005).

mentsπ0 andπ⋆, we generate an AIRPORT task with seg-
ment setV , aircraft setT , taxiway graphG, pushback graph
G and blocking graphG, initial segment functionπ0 and
goal segment functionπ⋆. All aircraft are taxiing in the ini-
tial state and must be parked in the goal state. Clearly, the
mapping can be computed in polynomial time.

No solution to the planning task can ever containpush,
start upor take offactions, so we only need to considermove
andparkactions. If the planning task has a solution, then the
sequence ofmoveactions in such a solution defines a solu-
tion to the puzzle instance. Note that if a taxiing aircraft ever
moved to a segment which is adjacent to the current segment
of another (taxiing or parked) aircraft, this would violatethe
blocking constraints. Similarly, from a solution to the puz-
zle we can obtain a sequence of actions that move each air-
craft to its goal location without violating the blocking con-
straints, and from that state the task is solved by parking all
aircraft. Therefore, the mapping is indeed a reduction.

Thus, plan existence for restricted AIRPORT tasks is
PSPACE-hard, which implies that bounded plan existence is
alsoPSPACE-hard. Moreover, both problems must belong
to PSPACE because PDDL planning in any fixed proposi-
tional domain is inPSPACE. This concludes the proof.

Clearly, the result equally applies to the parallel plan-
ning framework, as allPSPACE-completeness results for
PDDL domains do. The result also implies that there ex-
ist AIRPORT tasks for which the shortest plan consists of
exponentially many actions (or sets of parallel actions). For
example, the shortest solution to the puzzle corresponding
to a QBF formula withn quantifier alternations consists of
Ω(2n) many steps (Hearn & Demaine 2005), leading to an
A IRPORT task with a similarly bounded sequential solution
length. The optimal parallel solution can only be shorter by
a linear amount, because onlyO(n) many actions can be ex-
ecuted in parallel (one per aircraft). This also implies that
any AIRPORT planning algorithm requires exponential time
for writing down the solution for such instances.

We have also proved another polynomial reduction (not
included in this paper) from the halting problem for polyno-
mially space-constrained Turing Machines. This reduction
only generatesdeterministicA IRPORT tasks, where at most
one action is applicable at any time. Therefore, AIRPORT
planning isPSPACE-complete even if no branching is in-
volved. However, the tasks generated by this reduction are
not undirected, planar, or regularly constrained.

PIPESWORLD

The PIPESWORLDdomain models the flow of oil-derivative
liquids throughpipeline segmentsconnectingareas, and is
inspired by applications in the oil industry (Milidiú, dos
Santos Liporace, & de Lucena 2003). Liquids are modeled
asbatchesof a certain unit size. A segment must always
contain a certain number of batches (i. e., it must always be
full). Batches can be pushed into pipelines from either side,
leading to the batch at the opposite end “falling” into the
incident area. Batches have associatedproduct types, and
batches of certain types may never be adjacent to each other
in a pipeline. Moreover, areas may have constraints on how



many batches of a certain product type they can hold.

Planning domain 3 PIPESWORLD
P := {lco, gasoline, rat-a, oca1, oc1b} is the set ofprod-
ucts. Two productsp, p′ ∈ P are calledcompatible unless
p = rat-a andp′ ∈ {oca1, oc1b} or vice versa.

A PIPESWORLDtask is given by:

• finite sets ofareas A andpipeline segments S,
• a finite set ofbatchesB, each with aproduct type bP ∈ P ,
• for each pipelines segments ∈ S, a start area s− ∈ A

andend area s+ ∈ A and asegment length |s| ∈ N1,
• an area capacity function c : A× P → N0,
• a goal contents function CG : A → 2B such that for

each batchb ∈ B, we haveb ∈ CG(a) for at most one
areaa ∈ A, and

• an (arbitrary) initial state,

where a state of the task is defined by anarea contents func-
tion CA : A → 2B and apipeline segment contents func-
tionCS : S → B∗ such that

• for each batchb ∈ B, eitherb ∈ CA(a) for exactly one
areaa ∈ A, or b ∈ CS(s) for exactly one segments ∈ S,

• for all areasa ∈ A and productsp ∈ P , CA(a) contains
at mostc(a, p) batches of product typep, and

• for all pipeline segmentss ∈ S, |CS(s)| = |s| and any
two adjacent batches inCS(s) can interface, i. e., have
compatible product types.

A state is a goal state iffCG(a) ⊆ CA(a) for all a ∈ A.
The only actions in the task arepush actions. Ifs ∈ S is a

pipeline segment with contentsb1 . . . b|s| andb ∈ CA(s
−) is

a batch that can interface withb1, thenb can be pushed into
s. This results in a state where the new contents of segment
s are bb1 . . . b|s|−1, b is no longer inCA(s

−), andb|s| is in
CA(s

+). Similarly, b ∈ CA(s
+) can be pushed intos if it

can interface withb|s|, leading to a state where the contents
of s are b2 . . . bnb, b is no longer inCA(s

+), and b1 is in
CA(s

−). Pushing a batch into a pipeline segment is not
allowed if the resulting state would violate the area capacity
constraints.

General PIPESWORLDtasks are sometimes referred to as
PIPESWORLD-TANKAGE tasks. Note that with our defini-
tion (as in the IPC4 benchmarks), the set of products and
their compatibility relation is fixed. We will see that we can
prove hardness already for this fixed compatibility relation.

Planning domain 4 PIPESWORLD-NOTANKAGE
A PIPESWORLD-NOTANKAGE task is aPIPESWORLD task
where the area capacity for each area and product type is
equal to the total number of batches of that product type.

Our definition of PIPESWORLD faithfully captures the
PDDL specification except for one modeling flaw of the lat-
ter: In some situations, the PDDL definition allows pushing
batches through a pipe even though this violates the area
capacity constraints on the receiving end of the pipe, mak-
ing some unsolvable tasks solvable. This minor difference
does not affect the applicability of our results because these
already hold for the PIPESWORLD-NOTANKAGE domain,
where area capacities can be ignored.

Theorem 5 PIPESWORLD is NP-hard
Plan existence and bounded plan existence in the domains
PIPESWORLD-TANKAGE and PIPESWORLD-NOTANKAGE
areNP-hard problems.
Proof: We prove that PIPESWORLD-NOTANKAGE has an
NP-hard plan existence problem, so that the other results
follow. The reduction is from satisfiability of propositional
CNF formulae where clauses contain at most four literals
and each variable occurs in at most three clauses (and at
most once per clause). This problem is known to beNP-hard
(Garey & Johnson 1979, LO1). (We could limit clauses to
three literals, but then Fig. 3 would look less symmetric.)

Let χ be the formula, and letV andC be its variable
and clause sets. Throughout the proof, we refer to batches
of type rat-a as white batches, batches of typeoca1 as
blackbatches, and batches of typegasolineasgraybatches.
Observe that white batches may not interface with black
batches, while gray batches may interface with anything.

The generated PIPESWORLD-NOTANKAGE instance is
assembled from components shown in Figs. 2 and 3, where
edges with differently decorated endpoints distinguish be-
tween different kinds of pipeline segments. The key to these
decorations is shown in Fig. 4. The first five kinds of seg-
ments all have length6|V |+ 1, while the sixth has length3.
The first kind of segment is filled with3|V | black batches,
then a gray one to interface between black and white, and
then3|V | white batches. The second and third kind are com-
pletely filled with one product type, and the fourth and fifth
are like the second and third except that the first batch is
gray. The sixth kind is like the fifth, but only contains three
batches.

The pipe network contains one copy of thevariable gad-
get structure shown in Fig. 2 for each variablev ∈ V , and
one copy of theclause gadgetstructure shown in Fig. 3 for
each clausec ∈ C. The open ends to the right of the vari-
able gadgets (dotted) are connected to the open ends to the
left of the clause gadgets. In particular, if clausec contains
the positive literalv, then areav′ of the variable gadget is
connected to any of the dangling pipeline segments of the
clause gadget forc. Similarly, for negative literals inc, area
¬v′ is connected to a dangling pipeline segment of the clause
gadget. Because every clause contains at most four literals,
there are sufficiently many pipes to make these connections.
Because every variable occurs in at most three clauses, at
most three new pipeline segments are connected to eitherv′

or ¬v′. Any pipeline segments left dangling (for clauses of
size three or less) are removed.

The areas in the variable gadgets labeled3 are the only
areas that are not initially empty, each of them containing
three black batches. In each clause gadget, the goal require-
ment is to move the last (rightmost) black batch in the pipe
connecting areasc andG into areaG. We call these pipeline
segmentsgoal pipes.

This completes the description of the mapping. Clearly,
the PIPESWORLDtask can be generated in polynomial time.
We will now show that it has a solution iffχ is satisfiable.

First assume thatχ is satisfiable, and thatα is a satisfying
assignment toV . For each variablev ∈ V , we push the
three black batches in area3 of the corresponding variable
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gadget into the pipe leading to the area denoted by a literal
l satisfied byα (i. e., to areav if α(v) = 1 and to area¬v
otherwise). This pushes three batches into this area, one of
which is gray. We push the gray batch, then the two white
batches into the pipe leading to areal′, making three black
batches available there. We then push one batch into each of
the pipes connectingl′ to clause gadgets.

Due to the way variable gadgets are connected to clause
gadgets and becauseα satisfiesχ, this places at least one
batch in one of the areasl1, l2, l3 or l4 of each clause gadget.
In each clause gadget, we choose one such batch and push it
into the pipe leading tol12 or l34, placing a batch in one of
these areas. This batch is then pushed into the pipe leading to
c, releasing a batch there which is pushed into the goal pipe,
satisfying the goal for this clause. We thus satisfy the goal
in each clause gadget, which shows that the task is solvable.

Now assume that the task has a solution. Obviously, this
requires that more batches are pushed into each clause gad-
get than pushed out of them. It is never possible to push
any batch out of a clause gadget unless this batch has been

3

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Figure 4: Key to Figs. 2 and 3.

previously pushed into the clause gadget through the same
pipe. This is because batches moved intol12 from l1 have
the wrong color to be pushed intol2 and vice versa, and
similarly there cannot be a flow betweenl3 and l4 via l34
or betweenl12 andl34 via c. (Note that there are not suffi-
ciently many batches on the left side of the network to push
a gray batch out of the pipes leading tol1, l3 or c.)

We can thus treat the segments connecting variable gad-
gets to clause gadgets as “one-way pipes”, which simplifies
the analysis because we can consider each variable gadget
in isolation. The important property for variable gadgets is
that we can either push batches into areav′ or into area¬v′,
but never both. To see this, note that to push even a sin-
gle batch into areav′, we must pushall threebatches from
area3 into areav; otherwise we obtain only white batches in
areav, which cannot be pushed into the pipe connecting to
v′. Moreover, to push a batch intov′, we must make use of
the gray batch from the pipe between3 andv′ and without
pushing that gray batch back intov (which requires empty-
ing areav′), we cannot push anything back into area3.

Therefore, if there is a solution, then there is one where
for each variable only one of the areasv′ and ¬v′ ever
contains a batch. Define the truth assignmentα so that
α(v) := 1 if areav′ ever contains a batch, andα(v) := 0
otherwise. Then a batch can only be pushed into the clause
gadget areali if α satisfiesli. Because at least one batch
must be pushed into each clause gadget,α satisfies at least
one literal in every clause, and henceχ is satisfiable. This
concludes the proof.

Obviously, NP-hardness of plan existence also implies
that bounded parallel plan existence isNP-hard. Also note
that the proof works just as well if batches of the same
product type are indistinguishable, and hence the goal is ex-
pressed in term ofproduct types, not batches, which is a
more realistic model of the underlying application problem.

Unfortunately, we cannot provide anNP membership re-
sult, and indeed the question whether plan existence for
PIPESWORLDis in NP is open.

However, we do know that PIPESWORLD-NOTANKAGE
without interface constraints (all product types are compati-
ble) admits polynomial planning algorithms (Pessoa 2004),
although bounded plan existence is stillNP-complete for
this PIPESWORLDvariant. Due to space limitations, we do
not prove this result.

PROMELA

PROMELA (Processor Protocol Meta Language) is the
input language used by the SPIN model checker (Holz-
mann 1997). The PROMELA planning domain (Edelkamp
2003) encodes a subset of PROMELA in PDDL2.2, al-
lowing the application of planning technology to a cer-
tain class of model-checking problems. We first intro-
duce and discuss the general PROMELA planning domain,
then the restricted subclasses PROMELA-PHILOSOPHERS
and PROMELA-OPTICALTELEGRAPH, which were part of
the IPC4 benchmark set.

A PROMELA task defines a distributed system consisting
of a set ofprocesses, modeling individual components of



a distributed system, andqueues, used for communication
between processes. The goal is always to find adeadlock
state, in which no process is able to continue its operation.

Planning domain 6 PROMELA
A PROMELA task is given by finite sets ofprocesses P ,
queues Q andmessages Σ, a capacity functionc : Q → N1,
and for each processp ∈ P :

• a finite set ofstates S(p),
• an initial state s0(p) ∈ S(p),
• a set ofreading transitions R(p) ⊆ S(p)×Q×Σ×S(p),
• a set ofwriting transitions W (p) ⊆ S(p)×Q×Σ×S(p).

A state of the task defines:

• for each processp ∈ P , a process state s(p) ∈ S(p),
initially s(p) = s0(p),

• for each queueq ∈ Q, thequeue contents C(q) ∈ Σ∗,
initially C(q) = ǫ.

There is only one kind of actions of the task,applying lo-
cal transitions. Processp ∈ P can apply local transition
t = (s, q, a, s′) ∈ R(p) ∪W (p) iff s(p) = s and eithert is
a reading transition and the first element ofC(q) is the mes-
sagea, or t is a writing transition and|C(q)| < c(q). As a
result of the action, the local state of processp changes to
s′ and the first element ofC(q) is removed (ift is a reading
transition), or messagea is appended toC(q) (if t is a writ-
ing transition). All other state components are unaffected.

A state is a goal state iff no action is applicable.

Our definition of the PROMELA domain differs from the
PDDL definition in some minor ways that do not limit the
applicability of our results. These are discussed towards the
end of the section.

Processes can be naturally described by labeled directed
graphs, where vertices correspond to process states and arcs
to transitions. For a transitiont = (s, q, a, s′), the graph
contains an arc froms to s′ with the labelq : a? if t
is a reading transition andq : a! if t is a writing transi-
tion. Fig. 5 shows an example process from PROMELA-
PHILOSOPHERS. The process corresponds to a single
philosopher, the queuesL andR to the forks to his left and
right. The intuition behind the model is that writing a mes-
sage corresponds to putting a fork on the table, and reading
a message corresponds to picking it up. Initial process state
1 is a set-up state in which each philosopher puts one fork
on the table. After leaving this state, philosophers followa
deterministic strategy of repeatedly requesting the two forks
they require in a certain order, then putting them down again.

Communicating processes are a very expressive formal-
ism for modeling computations. This makes planning for
general PROMELA tasks hard.

Theorem 7 PROMELA planning is PSPACE-complete.
Plan existence and bounded plan existence forPROMELA
tasks arePSPACE-complete. This is true even if all queues
have capacity 1 and the tasks are deterministic, i. e., at most
one action is applicable in any reachable state.
Proof: We provide a reduction that maps space-restricted
Turing Machines to PROMELA tasks such that the task has a

solution iff the Turing Machine halts (starting from a blank
tape).

Let M be a Turing Machine with state setZ, including
initial statez0 ∈ Z and accepting statez∗ ∈ Z, tape alphabet
Γ, including blank symbol� ∈ Γ, and transition function
δ : (Z \ {z∗}) × Γ → Z × Γ × {−1,+1}. We assume
that the machine hasn tape cells, starts at the left-most one,
and that attempts to move past the end of the tape in either
direction is an error that terminates computation (just like
reaching the accepting state).

The corresponding PROMELA task has onetape cell pro-
cesspi and one queueqi for each tape celli ∈ {1, . . . , n}.
The set of messages is the set of Turing Machine statesZ.
All queues have capacity1, all tape cell processes have state
setΓ ∪ (Γ × Z), and the initial state of each process is�

except for processp1 with initial state(�, z0).
For each Turing Machine transitionδ(z, a) = (z′, a′,∆)

and each tape positioni ∈ {1, . . . , n} where i + ∆ ∈
{1, . . . , n}, tape cell processpi has the following transitions:

• A transition froma to (a, z) which readsz from qi.

• A transition from(a, z) to a′ which writesz′ to qi+∆.

There is a straightforward correspondence between con-
figurations of the Turing Machine and states of the cor-
responding PROMELA task. If afterk computation steps,
the Turing Machine reaches statez with current tape posi-
tion i and tape contentsa1 . . . an, then after2k steps in the
PROMELA task, processpi is in state(ai, z) and each pro-
cesspj 6= pi is in stateaj. Moreover, all queues are empty.

We prove this inductively. Clearly, the statement is true
for k = 0. Assume that it is true fork. We can assume that
z 6= z⋆ andδ(z, ai) = (z′, a′,∆) with i +∆ ∈ {1, . . . , n},
since otherwise the Turing Machine computation stops and
there is nothing to prove. In this case, the only possible lo-
cal execution in the PROMELA task is by processpi, since
all other processes are in states that require reading from a
queue, and all queues are empty by the inductive hypothe-
sis. Processpi is in state(ai, z), which has only one out-
going transition, writingz′ to queueqi+∆ and changing the
process state ofpi to a′. In the next step, all processes are
in a state that requires reading, but only processpi+∆ can
read from a non-empty queue, so this process acts next. The
only applicable transition is the one that reads messagez′

and changes state fromai+∆ to (ai+∆, z
′). After these two

steps, all queues are empty again, and the local process states
again correspond to the Turing Machine configuration as re-
quired, concluding the inductive proof.

This shows that if the Turing Machine does not halt, we
cannot reach a deadlock in the PROMELA task. On the other
hand, if the Turing Machine halts, it either does so by at-
tempting to go past the tape boundaries or by reaching state
z⋆. In both cases, the PROMELA task reaches a deadlock,
because no local executions are possible in the state cor-
responding to the last Turing Machine configuration after
reachingz⋆ (or before going past the tape boundaries).

Thus, plan existence for PROMELA tasks isPSPACE-
hard, which implies that bounded plan existence is also
PSPACE-hard. Moreover, both problems must belong to
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PSPACE because PDDL planning in any fixed propositional
domain is inPSPACE. This concludes the proof.

Having established the result for the general PROMELA
domain, we now turn to the PROMELA-PHILOSOPHERSand
PROMELA-OPTICALTELEGRAPHdomains. These domains
are special cases of PROMELA where each task is character-
ized by a single number. In the former domain, this number
defines the number of philosophers in a dining-philosophers
style problem. In the latter, it defines the number of optical
telegraphs in a communication protocol.

Planning domain 8 PROMELA-PHILOSOPHERS
A PROMELA-PHILOSOPHERS task is given by a natural
numbern ≥ 2 and denotes aPROMELA task with message
set{fork}, processespi and queuesqi (of capacity1) for all
i ∈ {1, . . . , n}. Throughout this section, process and queue
indices ofPROMELA-PHILOSOPHERStasks are considered
modulon. States and transitions of processpi are given by
the directed graph in Fig. 5, where the initial process state
is state1, L denotes the queueqi, andR denotes the queue
qi+1.

Planning domain 9 PROMELA-OPTICALTELEGRAPH
A PROMELA-OPTICALTELEGRAPH task is given by a nat-
ural numbern ≥ 2 and denotes aPROMELA task with
message set{att, ctl, data, start, stop}, processespdi andpui
and queuesqci , qdi and qui (of capacity 1) for all i ∈
{1, . . . , n}. Throughout this section, process and queue in-
dices ofPROMELA-OPTICALTELEGRAPHtasks are consid-
ered modulon. States and transitions of the processes are
given by the directed graph in Fig. 6, where the initial pro-
cess state is state25. For processpdi , C denotes the queue

qci , R denotes the queueqdi andW denotes the queuequi .
For processpui ,C denotes the queueqci ,R denotes the queue
qui+1 andW denotes the queueqdi+1.

Because of their simple scaling structure, these bench-
marks are much easier to solve than general PROMELA
tasks.

Theorem 10 PROMELA-PHILOSOPHERS is easy.
In the PROMELA-PHILOSOPHERSdomain, optimal plans
can be generated in polynomial time.
Proof: To reach a goal state, apply the transitions from1 to
6 to 3 in all processes. When all processes are in state3,
they are all blocked, so this is a solution of length2n, if n is
the number of philosophers.

We now prove optimality. Because there is only one mes-
sage type and queues have size1, queues only have two
configurations,full or empty. We can verify the following
invariant: Queueqi is full iff pi is in state5 or 6 andpi−1 is
in state1, 3 or 6. Thereforepi cannot be deadlocked in state
1 or 4 (qi is not full if pi is in state1 or 4) or in state5 (qi+1

is not full if pi is in state5). Therefore, processes can only
be blocked in states6 or 3. However, if all processes are in
state 3 or 6 andpi is in state6, thenqi is not full and hence
pi is not blocked. Therefore, for all processes to be blocked,
all of them must be in state3. The generated plan clearly is
the shortest sequence of actions achieving this.

Theorem 11 PROMELA-OPTICALTELEGRAPH is easy.
In the PROMELA-OPTICALTELEGRAPH domain, optimal
plans can be generated in polynomial time.
Proof: To reach a goal state, first apply the transitions from
25 to 14 to 15 in all processespdi , then the transition from
25 to 2 in all processespui . Clearly, this leads to a dead-
lock. Optimality can be proved by similar arguments as for
PROMELA-PHILOSOPHERS(details omitted).

All the results in this section easily generalize toparallel
planning. Clearly, the generalPSPACE-completeness re-
sult also applies to that setting, asPSPACE-completeness of
plan existence impliesPSPACE-completeness of bounded
parallel plan existence for propositional PDDL domains. In
the restricted domains, parallelism allows taking the tran-
sitions of each process simultaneously, so that the opti-
mal parallel plan length for any PROMELA-PHILOSOPHERS
task is2, whereas the optimal parallel plan length for any
PROMELA-OPTICALTELEGRAPH task is 3. In the latter
case, note that processpui can only transition to state2 after
pdi−1 has transitioned to state15.

Finally, some comments on the differences between our
formalization and the actual PDDL domain. First, the PDDL
definition seems to have a minor flaw in the formalization
of writing to queues of capacity 2 or greater. The hard-
ness proof does not require such queues and they do not
occur in the competition domains, so this does not make a
difference. Second, because of another flaw in the PDDL
definition, processes can only be recognized as blocked
in states with at most one outgoing transition; reaching a
deadlock in which some process has two outgoing transi-
tions in its current state is not considered a solution, even
if all those transitions are blocked. This does not affect



our proofs for the competition domains, but it does mean
that thePSPACE-hardness proof is not immediately appli-
cable to the PDDL specification. However, it is easy to
adjust to work around the flaw. Finally, due to the diffi-
culty of expressing the queue updates and dead-lock condi-
tion succinctly in PDDL, a single action in our model corre-
sponds to a sequence of four actions in the PDDL model,
and another action is needed at the end of the plan for
each blocked process with an outgoing transition in the cur-
rent state. Counting the number of PDDL actions, the2n
plan length for PROMELA-PHILOSOPHERS thus becomes
9n (2n transitions,n processes), and the3n plan length for
PROMELA-OPTICALTELEGRAPH becomes14n (3n transi-
tions,2n processes). The optimal parallel plan lengths in the
PDDL domains, following the PDDL definition of concur-
rency, becomes9 for PROMELA-PHILOSOPHERSand11 for
PROMELA-OPTICALTELEGRAPH(it is not14 since some of
the “subactions” can be interleaved).

PSR
The PSR (power supply restoration) domain was origi-
nally introduced for planning under uncertainty (Thiébaux
& Cordier 2001). At the 4th International Planning Com-
petition, a deterministic and fully observable variant was
one of the benchmark domains. The domain models a sit-
uation where parts of a power network, consisting of power
sources (circuit breakers), switches and power lines, have
turned faulty. Circuit breakers or switches can be open or
closed, with open devices blocking the current. The objec-
tive of a PSR task is to reconfigure the network by opening
and closing devices so that as many lines as possible are fed,
while avoiding to feed any faulty lines (which immediately
opens all power sources feeding them).

Planning domain 12 PSR
A PSRtask is given by a finite set ofdevices D, partitioned
into circuit breakers C ⊆ D andswitches D \ C, and by a
finite set oflines L, some of which arefaulty lines F ⊆ L.

Devices are linked to lines by a connected, bipartite graph
called thepower network. In the power network, each edge
connects a device to a line. Circuit breakers have a degree
of 1, switches a degree of1 or 2. There is no restriction on
the degree of lines. We say that a line isfeedable iff there
exists a path in the power network leading from a circuit
breaker to that line which does not pass through any faulty
lines (including the line itself).

For each circuit breaker, there is a set of lines and devices
called itsfeeder tree, including the circuit breaker itself. The
subgraph induced by a feeder tree must be a tree where all
leaves are devices. Each line and circuit breaker is part of
exactly one feeder tree, each switch part of one or two feeder
trees. If it is part of two feeder trees, it must be a leaf in both
induced graphs and is called ajoining switch.

A state of the task is given by a setO ⊆ D of open de-
vices; non-open devices are calledclosed. Initially, the join-
ing switches are open, all other devices closed. We say that
a line l ∈ L is fed by a circuit breakerc ∈ C in a given
state iff there exists a path in the power network fromc to l
which does not pass through any open device (includingc it-

self). We say that a circuit breaker isaffected iff a faulty line
is fed by it. A state isunsafe iff there is an affected circuit
breaker, andsafe otherwise.

There are three kinds of actions in the task:

• Thewait action is applicable iff the state is unsafe, and
opens all affected circuit breakers.

• Theopen andclose actions are applicable iff the state is
safe. They open or close a single device.

A state is a goal state iff it is safe and each feedable line
is fed by some circuit breaker.

Differently to the original PDDL definition, we do not ex-
plicitly model theearth device, which is always open, but
rather allow to have switches with a degree of 1, which leads
to the same semantics.

Note that there is no requirement that a line be fed by only
one circuit breaker, although this is true for the initial state
due to the fact that joining devices are initially open.

Somewhat surprisingly, optimal plans in PSR can be gen-
erated in polynomial time.

Theorem 13 PSR is easy
In thePSRdomain, optimal plans can be generated in poly-
nomial time.
Proof: Solving PSR tasks requires maintaining safety
and feeding all feedable lines. The safety property is
monotonously increasing in the set of open devices, i. e., if
O ⊆ O′ and stateO is safe, then stateO′ must also be safe.
(Recall that we identify states with the corresponding set of
open devices.) The feeding property is monotonously de-
creasing in the set of open devices, i. e., ifO ⊆ O′ and a
certain line is fed inO′, then it is also fed inO. Thus, the
two aspects of solving a PSR task conflict in a certain way.
However, as we shall see, it is possible to separate these as-
pects by ensuring safety first, then feeding all feedable lines.

We say that a circuit breaker isdangerousiff it is adjacent
to a faulty line, and a switch is dangerous iff it is adjacent to
a faulty line and to a feedable line.

If the initial state is a goal state, we return the empty
plan. Otherwise, since all lines are fed initially by the circuit
breaker in their feeder tree, the initial state must be unsafe,
and the first action in any plan must be await action, which
opens all dangerous circuit breakers. We then useopenac-
tions to open all dangerous switches. Like the initialwait
action, these actions must occur in any solution (although
not necessarily at this point), because switches can only be
opened byopenactions (rather than by waiting, as for cir-
cuit breakers), and dangerous switches must be open in a
goal state: Assume dangerous switchd were closed in a
goal state. By definition, it is adjacent to a feedable linel
and faulty linel′. In a goal state,l must be fed by some cir-
cuit breakerc, sol′ is also fed byc, and hencec is affected
and the goal state unsafe, a contradiction. It is also evident
that dangerous circuit breakers must be open in a goal state
to ensure safety.

Interestingly, having all dangerous devices open is not just
necessary for safety of a goal state, it is alsosufficientfor
safety of any state. Assume that this were not the case and
there were an unsafe state where all dangerous devices are



open. By definition of safety, in this state there must be a
pathπ = d1l1 . . . dnln from circuit breakerd1 to faulty line
ln where all devicesdi are closed. We can assume thatln is
the only faulty line on the path (ifli for i < n is faulty, we
considerπ′ = d1l1 . . . dili instead). Ifn = 1, then the cir-
cuit breakerd1 is dangerous and therefore not closed, a con-
tradiction. Ifn > 1, then lineln−1 is feedable by the path
d1l1 . . . dn−1ln−1, and hencedn connects a feedable line to
a faulty line and is dangerous and therefore not closed, a
contradiction.

Therefore, we can solve the task as follows:

• Wait, then open all dangerous switches.
• Compute a set of non-dangerous devicesDC of minimal

cardinality such that closingDC leads to all lines being
fed. Close these devices.

We already saw that all actions in the first step must occur
in any solution. Moreover, due to the monotonicity of feed-
ing and due to the fact that closing a device requires a single
action per device (unlike opening, which can in some cases
be done more efficiently with thewait action), the generated
plan is clearly optimal provided that safety is not violatedby
any of the closing actions. However this is ensured by the
fact that having all dangerous devices open is sufficient for
safety.

Thus, we only need to show how to calculate the setDC in
polynomial time. For this purpose, we apply some transfor-
mation to the power network. First, we remove all dangerous
devices along with all lines and devices that become discon-
nected from the circuit breakers by this operation. Clearly,
since all dangerous devices are open and we are not going to
close them, this is a valid operation. This results in a graph
where all lines are feedable and no devices are dangerous, so
we can ignore wait or open actions in the following. Second,
we introduce a new (closed)main circuit breaker, connect it
to a newmain line, and connect that line to all original cir-
cuit breakers in the network, which change status to switches
(note that their degree is now 2 due to the edge from the
main line). Again, this does not change the semantics of the
fed predicate. Itdoeschange the semantics of affectedness
for our network, but this is not a problem because our net-
work contains no faulty lines. Third, we remove all switches
with degree 1 (they are no use for solving the task) and re-
place all other switches with colored (i. e., labeled) edges
connecting their two neighboring lines, using red edges for
open switches and green edges for closed switches. Closing
a switch thus corresponds to changing the color of an edge to
green. A line is fed iff it is reached by a path from the main
circuit breaker that does not pass through any red lines, and
hence all lines are fed iff the subgraph obtained by remov-
ing all red lines is connected. To achieve this with a min-
imal number of close actions, we can compute a spanning
tree with a minimal number of red edges, or equivalently
a minimal spanning tree in the weighted graph obtained by
assigning weight 1 to all red edges and weight 0 to all other
edges. Computing a minimal spanning tree is a polynomial
time operation.

Some comments are in order at this point. First, if we
use Prim’s algorithm (Cormen, Leiserson, & Rivest 1990)

for computing minimum spanning trees, it is easy to verify
that the complete PSR planning algorithm amounts to the
following quite simple greedy strategy:

1. If the initial state is a solution state, return the empty plan;
otherwise continue.

2. Wait.

3. Open all dangerous switches.

4. Until a goal is reached, close some non-dangerous device
such that closing this device leads to at least one addi-
tional line being fed.

Second, the proof critically relies on the fact that switches
are connected to at most two lines, and circuit breakers only
to one line. Eliminating the degree restriction for devices
indeed leads to a more difficult domain, for which bounded
plan existence isNP-complete. However, we do not prove
this result here.

Finally, the problem remains easy in a parallel planning
framework. In fact, according to the PDDL definition of the
domain, no two PSR actions are concurrently executable,
due to the conservative definition of mutexes in the presence
of derived predicates (Hoffmann & Edelkamp 2005). Under
a less strict notion of concurrency, it makes sense to allow
opening several devices in parallel and closing several de-
vices in parallel if that does not lead to any circuit breakers
being affected. Using this notion, it is obvious that the op-
timal parallel solution length for any PSR task is 3, where
the first step consists of a wait action, the second of a num-
ber of open actions, and the third of a number of close ac-
tions. This concludes our discussion of PSR, and of the IPC
benchmarks in general.

Summary and discussion
Fig. 7 summarizes our results. Comparing these findings
to the complexity properties of the earlier benchmark do-
mains (Helmert 2003), one notable development is the ad-
vent ofPSPACE-equivalent planning domains at IPC4. We
believe that this is an effect of the competition organizers’
focus on actively seeking forrealisticandstructurally inter-
estingdomains. Indeed, they mention including aPSPACE-
equivalent benchmark as one of the desiderata for the IPC4
benchmark suite (Edelkamp & Hoffmann 2003). Another
notable development is the advent of anon-trivial planning
domain in which optimal solutions can be computed effi-
ciently, namely PSR. We consider theoretically tractable,
but non-trivial domains an import addition to the toolset
of planner evaluation, and indeed solving PSR tasks has
proven to be very challenging for state-of-the-art planning
systems.

Realism and interestingness come with a cost in complex-
ity, and this is not limited to decision complexity. In three
out of the four IPC4 domains (or domain groups) we studied,
the PDDL models are flawed, PSR being the only exception.
Moreover, two of these three (PIPESWORLDand PROMELA)
are modeled unnaturally in the sense that an atomic activ-
ity in the modeled domain (such as pushing a batch into a
pipe, or taking a transition in a process) corresponds to sev-
eral actions in the model. A similar need for splitting con-



optimal planning inP:
PROMELA-OPTICALTELEGRAPH,
PROMELA-PHILOSOPHERS, PSR

planning inP, optimal planningNP-equivalent:
DEPOT, DRIVERLOG, ROVERS, SATELLITE ,
ZENOTRAVEL

planningNP-hard:
PIPESWORLD(both variants)

planningPSPACE-equivalent:
A IRPORT, PROMELA (general case)

Figure 7: Planning complexity for the IPC3 and IPC4 do-
mains.

ceptually atomic activities into several PDDL operators has
been identified in an application domain devised by Boddy
et a. (2005). From these observations, we conclude that it
would be useful to extend PDDL to allow modeling com-
plex operators more naturally. Allowing operators to be de-
fined assequential compositionsof other (not independently
applicable) suboperators could go a long way towards ad-
dressing these issues, while still allowing for compilation
techniques to current PDDL.

Apart from an increase of complexity, another interest-
ing trend in the competition domains is the lack of a com-
mon theme or pattern in the IPC4 benchmark suite. Many
of the IPC1 and IPC2 domains can be subsumed under the
headingtransportation domains(Helmert 2001). Many of
the domains of IPC3 have a transportation or route-planning
aspect, but except for ZENOTRAVEL, each of them signifi-
cantly diverges from the theme in some way. For the IPC4
domains, no central theme can be identified at all. This is
clearly a healthy development if we want planning technol-
ogy to apply to a wide spectrum of application domains.

In the introduction, we mentioned how the competition
benchmarks have influenced the development of proposi-
tional planning systems in the past. Our results show that
the IPC4 domains present considerable difficulties from a
complexity point of view. It will be interesting to see how
planning technology will rise to this challenge.
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