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Abstract

In this paper we describe a virtual reality training simulation
designed to help police officers learn use of force policies.
Our goal is to test a training simulation prototype by measur-
ing improvements to presence and performance. If success-
ful, this can lead to creating a full-scale virtual reality narra-
tive training simulation. The simulation uses a planner-based
experience manager to determine the actions of agents other
than the participant. Participants’ actions were logged, phys-
iological data was recorded, and the participants filled out
questionnaires. Player knowledge attributes were authored
to measure participants’ understanding of teaching materi-
als. We demonstrate that when participants interact with the
simulation using virtual reality they experience greater pres-
ence than when using traditional screen and keyboard con-
trols. We also demonstrate that participants’ performance im-
proves over repeated sessions.

Introduction
Simulations provide a safe environment where trainers can
teach trainees about situations that may be dangerous. Sim-
ulations can be more cost-effective than using actual equip-
ment, both in terms of training costs equipment repair. Mil-
itary personnel, firefighters, doctors, nurses, and police em-
ploy simulations for training. (Hays and Singer 1989)

We have created a prototype simulation that allows police
officers to explore the consequences of use of force deci-
sions. It takes place in a virtual world where a police officer
responds to a call about a potentially dangerous suspect. The
participant takes the role of the officer and is free to take any
action available in the virtual world. The goal is to teach key
concepts defined by the Police Executive Research Forum
2012 via a learn-by-doing approach. When relying on hu-
man actors, these kind of role-playing scenarios can be time-
consuming and cost-prohibitive to create, run, and evaluate.
Even our limited scope prototype domain, which contains 11
types of actions, 5 endings, and 5 measures of player knowl-
edge, can be in 125,688 unique states and allows 752,741
possible transitions between those states. Hence we use a
planner-based experience manager in place of human actors
to make decisions in our simulation.
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In our evaluation of this system, we logged event data,
tracked indicators of player knowledge, measured physio-
logical signals, collected participant self-reports about their
experience, and used two methods of scoring performance
to understand the factors that influence presence and learn-
ing in the simulation. Our contribution is the development of
an intelligent tutoring system that uses an automated expe-
rience manager to create interactive stories that teach use of
force policies, and we show that using virtual reality can im-
prove presence. We expect this increase in presence to lead
to increased transfer of knowledge (Alexander et al. 2005).

Related Work

Training and Presence

Various studies have suggested ways to measure training ef-
fectiveness. We are ultimately interested in transfer, the ap-
plication of knowledge in a real world environment that was
learned in a virtual one. Several factors may affect transfer
(Alexander et al. 2005). This study focuses specifically on
presence (Slater and Steed 2000), the experience of being in
one place when one is actually in another. We want to test
whether newly available, affordable, commercial virtual re-
ality technology can increase presence. Stevens and Kincaid
(2015) point out a clear link in the literature between vir-
tual reality training and transfer. Though the relationship be-
tween presence and transfer is less clear, they demonstrated
a moderate relationship between presence and performance
in a virtual environment, with the expectation that improving
presence can improve transfer. Because our prototype sim-
ulation is not yet in a position to demonstrate transfer (for
example, through fewer incidents of unjustified use of force
in a community), we will measure presence and performance
as a proxy for effectiveness.

Specifically, we use Witmer and Singer’s (1998) Presence
Questionnaire, which has demonstrated high inter-rater reli-
ability and has been widely used. It measures 4 factors relat-
ing to presence: Control, Sensory Experience, Distraction,
and Realism. We also use physiological measures suggested
by Riva, Davide, and IJsselsteijn (2003), who demonstrated
a link between presence and physiological signals like heart
rate, skin conductivity, and skin temperature.
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Figure 1: This map shows how physical space in our domain
was discretized and the characters, item, and actions avail-
able in the simulation.

Narrative Planning
Planning is a branch of AI research that reasons about a se-
quence of actions which achieves a goal. A classical planner
(Newell, Shaw, and Simon 1959) takes as input (1) a descrip-
tion of the world in some formal logic, (2) a group of action
templates with preconditions and effects, and (3) a goal. It
generates a sequence of executable actions (i.e. a plan) to
achieve the goal.

Narrative planning (Young et al. 2013) expands upon clas-
sical planning by adding additional constraints to ensure
that agents act in a believable way. Some system-wide goal
called the author’s goal must be satisfied. Agents also have
individual goals, and every action they take must be in ser-
vice of one of those goals. Agents may conflict or cooperate
as they pursue their goals, while the planner as a whole shep-
herds all agents toward the author’s goal (Ware 2014). Riedl
and Bulitko (2013) classify narrative planners as strong story
systems, which may be preferable to strong autonomy or
simulation-based training systems when the designer places
strong constraints on the content and outcome of the narra-
tive, as we do in this system.

Experience Management
An interactive narrative must be prepared for the user to
take any action that is offered to them. Typically, each user
controls a character (their avatar) while an experience man-
ager controls all non-player characters and the environment.
Roberts and Isbell (2013) provide a survey of experience
management techniques. The experience manager’s goal is
to increase the quality of a participant’s experience as de-
fined by a human author who specifies certain criteria, prin-
ciples, goals, and aesthetics (Riedl et al. 2008). For our sim-
ulation, we want users to learn about use of force decisions
by experiencing positive endings when they apply policies
correctly and negative endings otherwise, all in a safe and
low-risk environment.

Intelligent Tutoring Systems
Intelligent Tutoring Systems (ITS) can employ narrative
planning and experience management to create environ-
ments that engage and teach at the same time. VanLehn
(2006) and Ma et al. (2014) provide surveys of ITS research.

Specifically relevant to this project are systems like Annie
(Thomas and Young 2010) and Automated Scenario Adapta-
tion (Niehaus, Li, and Riedl 2011), planning frameworks for
training that automatically generate and proactively adapt
scenarios for users based on a plan-based description of
the task environment. Many ITS also use the learn-by-
doing approach we have adopted (e.g. Schank, Berman, and
Macpherson 1999, Zook et al. 2012, and many others). Our
prototype is distinct from many previous plan-based systems
because it considers the long-term consequences of each de-
cision on the space of possible stories, allowing it to bal-
ance virtual character believability and pedagogical struc-
ture while allowing the player extensive freedom.

Simulation Description
The simulation domain consists of a police officer (Officer),
who is responding to a call from a young man’s mother. The
young man (Suspect) has been recently kicked out of the
house, is on the porch, banging on the door, and possibly has
a knife. The participant plays the role of the police officer.

Architecture
The domain has been written in STRIPS-style format where
all objects, actions, and goals are specified (Fikes and Nils-
son 1972). The simulation uses a client/server configuration,
where the client takes input from the participant to control
the officer, and the server controls all other agents. The client
was created with the Unity Game Engine. The play-space
and actions taken by the client are discretized for processing
by the planner on the server. The server stores the current
state of the simulation, and depending on the state, the par-
ticipant is allowed to take certain actions. The server also di-
rects the client on which actions the Non-Player Characters
(NPCs) will take. The client can be run using either Screen
and Keyboard controls or Virtual Reality controls.

The virtual reality controls use the HTC Vive virtual re-
ality system in room-scale mode, where the room represents
the area shown in Figure 1. The Vive is a motion-tracking
headset which displays a visual representation of the virtual
world and two motion-tracking hand controllers that repre-
sent the participant’s hands.

Our simulation contains 5 locations, 2 characters, 2
weapons, 11 actions, and 5 axioms, shown in Figure 1. Each
session begins with the Officer at the Cover location and the
Suspect at the Porch location. A session is designed to last
about 1 minute. Each action in the simulation takes roughly
the same amount of time as it would take in the real world.
Every successfully executed character action (by the player
or an NPC) is logged for analysis. At the end of each session
a score is displayed on the screen depending on how the sim-
ulation ended. Scores rank the possible endings from worst
to best based on the safety of the officer and the suspect.

• Score 0: The suspect stabbed and killed the officer.
• Score 1: The officer shot the suspect, but the suspect never

threatened the officer with the knife.
• Score 2: The officer shot the suspect after being threat-

ened with the knife.
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• Score 3: The suspect surrendered, but only after threaten-
ing the officer with the knife.

• Score 4: The suspect surrendered and never threatened the
officer with the knife.

Use of Force Policies
The Police Executive Research Forum (PERF) (2012) has
identified best practices regarding use of force that are de-
signed to ensure that the officer, suspect, and bystanders re-
main safe in a potentially dangerous situation. PERF also
speculates that some officers may leave the academy with a
bias toward using force because many training simulations
assume that force is always necessary. There are many tools
for teaching officers how to shoot, but too few for teaching
them how not to shoot. They call for innovative methods to
address this problem.

Our simulation is designed to teach one use of force pol-
icy in particular: distance + cover = time. When an officer
keeps distance and cover between himself and a suspect, he
can buy time to achieve a peaceful resolution. Policies like
this one demonstrate the advantages of interactive narrative
training simulations over traditional shooting range simula-
tions because, depending on the trainee’s actions, force may
not be needed at all.

We determined five specific features about which trainees
might demonstrate knowledge or ignorance. We call these
player knowledge attributes, and define them based on the
states in which the trainee finds himself and the actions he
takes or does not take. Knowledge or ignorance of these at-
tributes can thus be measured automatically by analyzing a
session log. We must note that these represent our own non-
expert interpretations of use of force policies. Before using
this simulation to train actual police officers we must obtain
feedback from experts.

• Keep Distance: The officer should keep distance between
himself and the suspect. If the participant and suspect get
within arm’s reach of one another (that is, occupy the
same location as shown in Figure 1), this concept is not
known. Otherwise, this concept is known.

• Use Cover: The officer should keep cover between him-
self and the suspect, even if he must retreat. If the par-
ticipant walks back to the Cover location (behind the
car), this concept is known. Otherwise, this concept is not
known.

• Justified Force: PERF (2012) mentions that holding a
knife is not the same as brandishing a knife. If the sus-
pect raises the knife in a threatening way and the officer
uses deadly force, this force was justified. If the officer
finds himself in a situation where force is justified and
uses it, this concept is known. If the officer finds himself
in a situation where force is justified and does not use it,
this concept is not known.

• Unjustified Force: If the officer used deadly force when
the suspect was not close and/or has not raised the knife,
force was not justified and should not have been used.
If the officer uses force in this way, this concept is not
known. Otherwise, it is known.

• Agitation: The suspect is nervous, and the way the officer
deals with him can either calm him down or further agi-
tate him. If the officer points his gun at the suspect while
the suspect is not angry, the suspect becomes angry and
aggressive. If the officer angers the suspect in this way,
this concept is not known. Otherwise, it is known.

Narrative Control
In the simulation, the player should always be free to per-
form any action when its preconditions are met. By using an
automated experience manager, our system is able to react
to a player taking any of these actions without needing to
hand author every possibility. In some cases, the experience
manager may direct an NPC to take an action. In other cases,
the experience manager may decide it best for the NPC not
to act at all.

The state space of the simulation can be represented by
a story graph where nodes are unique states and a directed
edge s1

a→ s2 may exist from state s1 to state s2 for action a
if a is allowed in state s1 and taking a in s1 would results in
s2. Each action can be categorized as either a player action
or an NPC action.

A state is a set of propositions which completely describes
three things: the configuration of the physical world, the in-
tentions of all agents, and the current state of the five player
knowledge attributes. Knowledge attributes can be known,
not known, or unobserved.

The experience manager’s decisions have been precom-
piled using the methods below, but the same criteria could
be applied (or approximated) in realtime systems. We be-
gin with the full story graph for our domain—the entire
state space representing every state and every possible action
reachable from the initial state. We then prune this graph in-
telligently until every NPC has at most one action to perform
in each state, thus making the experience manager’s deci-
sions unambiguous. We never prune player actions (i.e. we
never prevent a player from taking an action which should
be possible in the current state). Pruning the story graph at
design time allows us to fully consider the long-term con-
sequences of every decision on the space of possible stories
that can be told. The full story graph for this domain contains
125,688 nodes and 752,741 edges.

Intentional Prune Studies show that virtual characters
appear more believable when they act intentionally—that
is, they appear to be working toward their goals (Riedl and
Young 2010). We use Riedl and Young’s model of intention:
Any action that cannot contribute to achieving an agent’s
goal should be pruned. After intention pruning, the story
graph is reduced by 0.2% nodes (125,428) and 26.4% edges
(554,319) from the full story graph.

Unique Ending Prune The author’s goal in this domain
is a disjunction of various possible ending states. The ex-
perience manager is neither cooperating with the player to
achieve a good ending nor opposing the player to achieve
a bad one. Rather, the actions taken by the player (not the
NPCs) should be responsible for the ending earned. Hence
NPCs should prefer actions which keep the higher number
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of possible endings available. This is a tie breaking prune,
which means that if there exists only one edge for an NPC, it
will not be pruned using this technique. After unique ending
pruning, the story graph is reduced by 0% nodes (125,428)
and 0.7% edges (550,447) from the previous graph.

The order in which these pruning strategies are employed
is important. We perform intention pruning first because it
is important for characters to be believable. If unique end-
ing pruning were to happen first, it is possible that the char-
acters would act unbelievably or not at all to ensure more
endings stay available. For example, say the Officer angers
the Suspect. The Suspect approaches the Officer and then
raises the knife. If unique ending pruning has occurred be-
fore intentional pruning, the Suspect would simply do noth-
ing from this point on, because stabbing the officer would
remove a unique ending. Instead, we want the Suspect to
follow through with his plan, even if it reduces which end-
ings are available.

Player Knowledge Prune When the simulation starts,
each player knowledge attribute is set to unobserved. These
attributes are the simulation’s model of player knowledge.
Given multiple NPC actions, the action that leads to ob-
serving a player knowledge attribute (whether known or un-
known) as quickly as possible is preferred. This is also a tie
breaking prune; if there exists only one NPC edge, it will not
be pruned. After player knowledge pruning, the story graph
is reduced by 0% nodes (125,428) and 1.1% edges (544,491)
from the previous graph.

We prioritize keeping unique endings available over learn-
ing about the player. If we had done the reverse, the fol-
lowing example could have occurred: The Officer angers the
suspect, so Suspect immediately raises the knife. This is the
quickest way for the simulation to determine if the officer
will use justified force. However, this also immediately elim-
inates all endings where the Suspect did not threaten the Of-
ficer, making it impossible to achieve the best score. Instead,
the Suspect approaches the Officer first, then raises the knife,
keeping more unique endings available and still allowing the
simulation to learn if the Officer will use justified force.

Arbitrary Prune At this point, there may still be a few
states that have multiple possible NPC actions. We treat all
of these actions as equally good. Consequently, we arbitrar-
ily prune by choosing the first action. After arbitrarily prun-
ing, the story graph is reduced by 0% nodes (125,428) and
1.7% edges (534,991) from the previous graph.

Evaluation
We tested whether virtual reality technology increases a
trainee’s experience of presence and whether this simula-
tion teaches use of force policies. Twenty-one civilians were
recruited to test the simulation. We tested with civilians be-
cause we did not want to risk adverse effects if the simu-
lation failed and because the concepts being taught did not
require specialized knowledge or police training.

Methodology
We scheduled participants to come into our virtual reality
lab. Before starting the simulation, each participant was as-

signed a number for anonymity and watched a video about
safety and the controls for the simulation. Due to the novelty
of virtual reality technology, subjects completed a short tuto-
rial that required them to use all of the simulation’s controls
and were also given a verbal quiz about the controls. No
detail was given about the content of the simulation, what
we were measuring, or what behavior we expected from the
subjects. Investigators were prohibited from answering sub-
jects’ questions about what they should and should not do;
they were only permitted to answers questions about safety
and the simulation’s controls.

We alternated the starting control type so that half of the
participants started with screen/keyboard controls, while the
others started with virtual reality controls. At the end of each
session, the participant was shown a score between 0 to 4 in-
clusively (as defined earlier). The participant was required to
play at least 2 sessions and was allowed to play up to 10 ses-
sions per control type. The participant then played the simu-
lation using the other set of controls, and was again allowed
to play between 2 and 10 sessions.

Virtual Reality Improves Presence
We collected self-report questionnaires at several stages of
training as well as participants’ physiological state moni-
tored via wrist-strap sensor throughout all sessions of the
simulation. Physiological and self-report measures of pres-
ence are highly correlated (Meehan 2001), and both give
some insight into participants’ experience of virtual reality
versus screen and keyboard controls.

Self-Report Measures of Presence Before the simulation
began, participants completed Witmer & Singer’s immersive
tendencies questionnaire (ITQ) to measure baseline expe-
rience of presence. After running the simulation using the
first control type, the presence questionnaire (PQ) was given
to measure presence in virtual environments (Witmer and
Singer 1998). Subjects completed a modified presence ques-
tionnaire (MPQ) at the end of the study, where they chose
whether they preferred virtual reality, screen/keyboard, or
no preference for each factor in the PQ.

Participants were randomly assigned to begin with either
virtual reality or screen/keyboard controls (N = 21, 10 VR
first and 11 screen/keyboard first treatments). A Welch’s in-
dependent t-test revealed that participants who played VR
first reported marginally higher overall presence in the PQ
(t16.32 = -1.664, p = 0.1152).

Participants completed the simulation using both virtual
reality and screen/keyboard controls. Looking at self-reports
of preference in the MPQ, participants strongly preferred
virtual reality controls (x22 = 12.373, p = .002, ϕ = .142).
Additionally, participants who initially used screen and key-
board were 10.8% (S&K first: 73% and VR first: 62.3% pre-
fer VR) more likely to prefer virtual reality across all items
of the MPQ (x21 = 7.396, p = .007, ϕ = .136).

Participants completed the PQ after their first experience
with the simulation (using either set of controls). The PQ
therefore measured presence in the screen and keyboard ver-
sion for 11 participants, and virtual reality for the other 10
participants, limiting comparison between groups. A logis-
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Figure 2: Average heartrate, skin conductivity, and skin tem-
perature of participants progressing through the simulation.

tic regression analysis revealed no relationship between re-
ported presence on the PQ by control preference indicated
in the MPQ (z = -0.516, p = .606).

It was possible that individuals with high baseline pres-
ence might differ in their experience of presence and con-
trol preference in the simulation. An ANOVA modeling PQ
scores by ITQ and treatment revealed marginally signifi-
cant PQ scores for participants who played VR first (F1,18

= 4.079, p = 0.060, η2 = .165), and marginally significant
PQ as ITQ increased (F1,18 = 3.354, p = 0.085, η2 = .169),
with no interaction (F1,18 = .081, p = 0.381). There was no
difference in overall preference for VR by ITQ scores (F1,20

= 1.442, p = 0.245).

Physiological Measures of Presence An Empatica E4
physiological sensor was attached to the participant’s right
wrist to measure heart rate, skin conductivity, and skin
temperature throughout every simulation session. Meehan
(2001) proposed the following relationships between these
measures and presence. Under stress, heart rate increases,
skin conductivity increases, and skin temperature at core in-
creases which means decreased skin temperature at the ex-
tremities. We expect the same results as the participant ex-
periences higher presence.

Figure 2 visualizes a mixed-effect multilevel model of
physiological response within participants across multiple
sessions and controls, and accounting for whether partici-
pants first played VR or keyboard controls. This analysis re-
vealed that controls significantly increased heart rate (t131 =
4.244, p < .0001) and skin conductivity (t132 = 4.111, p <
.0001), and significantly decreased skin temperature (t131 =
-2.70, p = .008) when playing the virtual reality simulation,
all indicative of increased presence.

Training Effectiveness
We measured performance in two ways. Score is a single
value that represents performance in a particular session. It
is meant to rank the possible endings, with higher scores
representing better endings. Score was shown to subjects af-
ter each session. Player knowledge attributes represent spe-
cific training concepts of which subjects could demonstrate
knowledge or ignorance. A subject’s overall knowledge is
represented as a vector of nullable boolean values. These
attributes were never described to subjects, and their perfor-
mance on them was not shown to them.

Score A mixed-effect multilevel model predicting scores
from treatment group, controls used, and session number

Figure 3: Left: Average score of all participants as they
progressed through the simulation. Right: Overall average
knowledge attribute scores for all subjects as they pro-
gressed through the simulation.

nested within participant revealed that participant scores in-
creased over repeated sessions (t145 = 4.609, p < .0001) as
shown in Figure 3.

Player Knowledge Attributes As an alternative measure
of performance, we automatically analyzed each subject’s
session log based on the five player knowledge attributes
identified earlier. Each component of the player knowledge
vector can be represented with the following values:

• Unobserved: Simulation does not have enough informa-
tion to determine whether the knowledge attribute is
known.

• Known: Simulation has observed an action that indicates
the subject knows the attribute.

• Not Known: Simulation has observed an action that indi-
cates the subject does not know the attribute.

A subject’s overall average knowledge can be represented
as the number of known attributes divided by the total num-
ber of known values (ie. non Unobserved values) Figure 3
shows that overall knowledge significantly increases as the
participant progresses through the simulation (t278 = 2.198,
p = .0288). This validates that the simulation can teach basic
use of force principles (assuming a correct operationaliza-
tion of the knowledge attributes).

Discussion
The evidence we collected supports both of our hypotheses.
Virtual reality hardware increased a subject’s subjective and
objective indicators of presence. Two measures of perfor-
mance increased as subjects repeated the simulation.

Some subjects reported difficulty using the virtual real-
ity controls. Multiple subjects reported that they were afraid
to walk backwards for fear of bumping into walls. Walking
backward was the most common way for subjects to take
cover, and taking cover was required to reach the maximum
score, so this may have limited some subjects’ performance
and may help to explain why overall score on the knowl-
edge attribute was generally higher when using the screen
and keyboard controls. These difficulties may be mitigated
as virtual reality hardware becomes more common. Alterna-
tively, we may extend the tutorial to include walking back-
wards so that future subjects will know it is safe.
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Future Work
The first version of this simulation was tested with civilians,
so having demonstrated some success, we plan to test with
actual officers in training. We also plan to significantly ex-
pand the content of the simulation to include more use of
force scenarios based on the feedback of experts and re-
search by PERF (2012).

In future versions of this simulation, the only content pro-
vided by a human author will be the domain description and
descriptions of possible wrong beliefs about that domain that
the simulation should target during training. Wrong beliefs
represent a different version of the domain. For example, an
officer may not realize that approaching the agitated suspect
will cause him to get angry. This misunderstanding can be
represented as a version of the domain where the get angry
axiom either does not exist or has different preconditions.
The set of things a person would do differs based on their
beliefs about the domain, and these differences can be used
to diagnose what the trainee knows and does not know. This
is how we derived the knowledge attributes used to measure
subject performance—by identifying actions that only a per-
son who knows or does not know that information would do.

The domain for this prototype was small enough that a
story graph could be generated entirely offline. However, as
the content of the simulation expands in size and complex-
ity, the planner will need to generate the story graph online
and automatically derive knowledge attributes. By reasoning
about beliefs, the experience manager can use this model of
the participant’s knowledge to influence NPC actions, while
still ensuring each agent acts believably, and while ensuring
that only trainees who understand the knowledge attributes
being taught score highly.
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