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Abstract

Low-level game environments and other simulations present
a difficulty of scale for an expensive AI technique like narra-
tive planning, which is normally constrained to environments
with small state spaces. Due to this limitation, the intentional
and cooperative behavior of agents guided by this technology
cannot be deployed for different systems without significant
additional authoring effort. I propose a process for automat-
ically creating models for larger-scale domains such that a
narrative planner can be employed in these settings. By gen-
erating an abstract domain of an environment while retain-
ing the information needed to produce behavior appropriate
to the abstract actions, agents are able to reason in a lower-
complexity space and act in the higher-complexity one. This
abstraction is accomplished by the development of extended-
duration actions and the identification of their preconditions
and effects. Together these components may be combined to
form a narrative planning domain, and plans from this domain
can be executed within the low-level environment.

Introduction
Some expensive AI techniques are especially constrained
with respect to the size of problems they can be used on.
Many modern environments, such as those which appear in
open world games or other simulations, cannot benefit from
these technologies, and this limitation prevents some excit-
ing developments in AI from reaching wider settings. Narra-
tive planning is one such exciting technology, able to endow
agents with typically-elusive abilities like the ability to plan
to cooperate with other agents, but limited by the expense of
computation. Without significant authoring effort, this type
of technique cannot be deployed in settings that are not ex-
pressly designed for it.

I propose that this problem may be overcome by devel-
oping an abstraction of a domain, including capturing the
information necessary for navigating the initial domain with
abstract actions. A suitable abstraction should develop high-
level features composed from key features in the lower-level
domain, actions for affecting changes to those features, and
policies for accomplishing the required effects of these ac-
tions in the lower-level environment. Taken as a whole this
represents a high-level model of the domain, representative
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of an understanding of how the environment relates to the
tasks at hand. This type of abstraction is normally a task for
human authors, but by putting it in the hands of agents we
save on effort and required expertise.

The research I propose is to construct a method or col-
lection of methods which augment an environment, repre-
sented as a Markov Decision Process (MDP), with extended-
duration actions, yielding a semi-Markov Decision Process
(sMDP) (Sutton, Precup, and Singh 1999). These actions
(variously referred to as options, sub-tasks, sub-goals, and
skills) are developed such that when one is completed others
are guaranteed to be available, and as a result the states the
environment assumes between these actions can be extracted
as a higher-level state space. The system may then identify
preconditions and effects for these actions within this state
space, developing a narrative planning domain such that a
narrative planner may be applied to the abstract task domain.
Finally, plans can be executed in the original environment by
executing the actions provided by the sMDP.

Related Work
While much of the work in this project is not necessarily
associated with the training mechanisms that define rein-
forcement learning, the development of complex “macro-
operators” from the primitive operators in an MDP has been
previously explored as hierarchical reinforcement learning
(HRL). The options framework describes these complex op-
erators as policies that may begin executing when an agent is
in the operator’s initiation set and stop executing according
to a termination condition (Sutton, Precup, and Singh 1999).
Other HRL approaches—Hierarchies of Abstract Machines
(Parr and Russell 1997) and MAXQ value function decom-
position (Dietterich 2000)—present related methods of ab-
straction, but I focus on options due to the wealth of re-
search underpinning that framework. In particular, exten-
sive work into option discovery provides a breadth of meth-
ods to draw inspiration from, such as: identifying strongly
connected regions of states and defining options that es-
cape them (Davoodabadi and Beigy 2011), linking distant
parts of the state space (Jinnai et al. 2019), exploring in
specific directions through the state space (Machado, Belle-
mare, and Bowling 2017), navigating to bottleneck states
(Stolle 2004; Menache, Mannor, and Shimkin 2002), devel-
oping an agent’s basic skills of movement and interaction
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(Konidaris and Barto 2007; James, Rosman, and Konidaris
2018, 2020; Kulkarni et al. 2016), and deliberately chain-
ing together options for effective problem solving (Bagaria,
Senthil, and Konidaris 2021). Many methods have been con-
sidered for the development of options, but the focus on
solving tasks rather than modeling the domain prevents these
from being directly applied to solve the problem introduced
here.

State abstraction in MDPs provides another key under-
pinning of this work, as the development of an abstract state
space which an agent can operate within is vital for reducing
complexity to a point that symbolic planning can be used.
Existing abstraction methods identify symmetries within an
MDP (Ravindran and Barto 2002), utilize relational opera-
tors (Croonenborghs, Driessens, and Bruynooghe 2007), or
develop a symbolic model of the MDP based on the results
of executing actions available to the agent (Andersen and
Konidaris 2017). There is reason to believe that a symbolic
model of the environment should be a direct consequence
of the skills an agent possesses (Konidaris, Kaelbling, and
Lozano-Perez 2018), but a reversed relationship where ac-
tions are ”desired high-level observations” is also of signif-
icant interest (Bakker and Schmidhuber 2004). In an ap-
proach that leads with state-abstraction, it is key that the
abstract MDP maintains the Markov property and does not
become a partially-observable MDP (POMDP), or this may
burden a downstream system with a memory requirement.
Maintaining the Markov property can be accomplished by
a principled approach to abstraction which focuses on pre-
serving the property (Allen et al. 2021). This work in state
abstraction provides key underpinnings for some methods I
will use, but I am aware of no research which explicitly com-
bines the abstraction process with the process of developing
high-level actions.

Konidaris, Kaelbling, and Lozano-Perez (2018) use op-
tions to introduce the ability to plan within MDP environ-
ments (Konidaris, Kaelbling, and Lozano-Perez 2018). This
research demonstrates the possibility of solving tasks in
lower-level environments with symbolic planning, including
environments with continuous features and stochastic transi-
tions. Another key lesson from this work is that options must
lead consistently to other options in order to be suitable for
planning, and in general they should funnel an agent from
many possible initiating states to a smaller set of final ones
to satisfy this requirement. This work has been expanded
with parameterized options that allow for greater flexibil-
ity in their usage (Ames, Thackston, and Konidaris 2018).
Methods for ensuring the condition on options have been de-
veloped, including deliberately learning options that reach
other options with skill chaining (Bagaria and Konidaris
2019), extending this to a full graph structure (Bagaria,
Senthil, and Konidaris 2021), and using a method of opti-
mistic and pessimistic classification to stabilize the initiation
sets of options as they change (Bagaria et al. 2021). Another
potentially key component of this goal is the rapid combin-
ing of existing options (Barreto et al. 2019). This body of
work is closely related to the research proposed here, but fo-
cuses on modeling solutions to a given task rather than the
domain as a whole.

Current Work
To date, the work I have done for this research has focused
on defining the problem, establishing an experimental low-
level domain with an explicitly defined target high-level do-
main, and investigating the relationship existing options re-
search has with this work.

Formal Definition
To understand the required structure of the high-level ab-
straction, the problem can be defined as a graph transforma-
tion. Given a deterministic MDP (S,A, T,R) (where S is a
set of states, A is a set of actions, T (s, a, s′) yields 1 if taking
the action a in state s leads to s′ and 0 otherwise, and R(s)
is the reward recieved for entering state s), a directed graph
can be constructed such that G = (V,E) = (S, {(s1, s2) :
s1 ∈ S, s2 ∈ S, ∃A ∈ a s.t. T (s1, a, s2) = 1}). The
task is to find an abstraction GA = (VA, EA) of G such that
VA consists of strongly connected components (SCCs) in V ,
and the edges in EA commute the reachability of compo-
nents from V to the associated vertices in VA.
VA is ‘nearly’ a partition of V , but is not quite one—

the abstraction may remove vertices in V that only occur on
paths between the components that are represented in VA.
These removals occur because the edges in EA represent
paths in G, and the intermediate vertices are not reachable
in VA. This abstraction is related to, but distinct from, a con-
densation of the graph into maximally sized SCCs. A con-
tribution of this work is to identify meaningful actions and
state changes that may occur within a SCC, and as such it
may be divided into smaller SCCs—the abstraction should
be valuable even if every action in a problem is reversible.

In this formulation, GA represents the abstract domain.
The vertices in VA are abstract states, and an agent can iden-
tify where it is in in this model by which partition its current
state belongs to. The edges in EA are high-level actions. An
agent can execute them by following a path in E that an edge
from EA represents. It is assumed that navigation within an
abstract state in VA is essentially free.

This definition only describes the structure of the solu-
tion, and does not define what makes one abstraction better
or worse than another. Investigating what traits may suggest
a state should be considered meaningful to a problem, and
what actions should be considered significant, is a major as-
pect of the research I am proposing.

Experimental Domain
Since there is no preexisting definition of what might make
for a ”good” abstraction of a domain, I establish an ini-
tial possibility explicitly. A low-level domain must exist for
work done for this research, so I have selected a preexisting
high-level domain to develop a low-level instance of. For
this, I use an adaptation of the Grandma narrative planning
domain (Ware et al. 2019). It is important that the target is
a narrative planning domain rather than simply a solution to
the domain, as a full domain is required to enable intentional
behavior on the part of agents. My initial work intentionally
avoids attempting to abstract a truly multi-agent system, and
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so key reasons for choosing such a domain are not immedi-
ately apparent, but it will be more valuable when this point
of the research is reached.

For these first stages, the Grandma domain is rendered
into a single-agent problem where Tom must navigate the
environment to heal his Grandma with a potion. Tom can
solve this problem by venturing to the Market to buy the po-
tion, venturing to the Market to buy a sword and then rob
the Merchant for the potion, venturing to the Bandit’s Camp
to acquire an additional coin with which to buy the potion,
etc. The low-level adaptation of this problem breaks each
action into multiple expected steps that will be required to
execute them in full—for example, the attack action might
be accomplished by holding a weapon, then striking multi-
ple times. It also renders high-level features into conditions
on one or more lower-level features, such as location being
understood as an (x, y) position.

Initial Investigation
Using the test domain, deploying existing option discovery
methods provides an impression of where these methods are
with respect to the goal of the proposed research. A number
of these prove to be unsuitable for the task set out here, ei-
ther due to requirements on the input or the results that they
produce. For example, the option discovery algorithm Q-Cut
is designed to augment blind exploration, and produces re-
sults of limited use when too much information is available
(Menache, Mannor, and Shimkin 2002). On the other end of
difficulties with information, Bagaria and Konidaris’s skill
chaining method requires agents to reach a goal before de-
veloping any options, and so is not suitable for the large do-
mains with sparse reward that we anticipate.

A more straightforward approach of graph condensation
can quickly reduce a graph to strongly-connected compo-
nents, which are important to the structure of our prob-
lem. However, as discussed in the Formal Definition sec-
tion, these components may hide actions that are interesting
for use in the high-level domain, despite being reversible. As
such it may be a suitable starting point for some domains, but
the resulting components then need to be segmented, and it
is not immediately apparent how that should be done.

Future Work
The next step of this work is to develop a method of op-
tion discovery which has the necessary properties to sup-
port planning in a deterministic MDP environment. Then, a
process can be developed which extracts the abstract state
space created by these options and generates a planning do-
main. An alternative approach may identify an ideal abstract
state space first and construct options to navigate it. With a
system in place, it can be adapted to work within a multi-
agent MDP. With either the single- or multi-agent systems
in place, evaluations with human subjects may be valuable.

Option Discovery
Options for the purpose of planning must be arranged such
that when an agent ceases executing an option they are al-
ways able to execute a new option (Konidaris, Kaelbling,

and Lozano-Perez 2018), or are otherwise able to recover
from a failed action or plan. Additional desirable properties
are that options seem important to an agent’s goals and are
generally impactful but short: time-consuming options are
more likely to fail in multi-agent simulations.

Constructive Approach By identifying novel facts that
can be reached within the simulation, either by using any
achievable fact or employing a definition of novelty such as
width (Geffner and Geffner 2015), an expansive set of rela-
tively low-level options (aiming only to achieve these facts)
are be produced. Study of these options may reveal infor-
mation about preconditions which are necessary for their
successful execution, or side-effects which are unavoidable
if they successfully execute. These facts can then indicate
which options can be composed to form higher-level ones.

Decompositional Approach This approach begins with
an initial, small set of options which target predetermined
goal states. These options are studied for points where they
might be broken into smaller ones, using concepts such
as bottleneck states that successful trajectories frequently
visit (McGovern and Barto 2001; Menache, Mannor, and
Shimkin 2002), or landmark facts (or actions) that must be
true (or executed) at some point during the option (Hoff-
mann, Porteous, and Sebastia 2004; Zhu and Givan 2003).
These identify points at which the initial options can be seg-
mented, producing component options that preserve the nec-
essary condition of connectivity.

Extracting Abstract Representation
With suitable options in place, the abstract representation
can be determined by identifying preconditions and effects
of options, and composing features representative of these
facts. Alternatively, state abstraction may be the first step,
focused on identifying key groupings of facts in the domain.
In this case, option discovery proceeds easily from the con-
structive approach, using the abstract features as the target
effects.

Multi-agent MDPs (MMDPs)
A multi-agent environment presents difficulty both by in-
creasing the size of the MDP’s state space, as well as the
uncertainty inherent in acting around other agents who may
move or act in ways that disrupt the expected state of the
simulation. Expanding the initial work to nondeterministic
MDPs is likely to be key to solving this problem, as it pro-
vides a way to model that disruption.

Evaluation
Some results of this work may be evaluated against other
methods for performance (the generated options may prove
to be more effective than other option discovery methods
would produce), but superior performance is not the goal of
this system. Instead, the goal is to create high-level actions
that appear to be a reasonable abstraction of activities that
are significant in the domain. The success of this aspect of
the work will be evaluated with human subject studies, using
feedback on the suitability of the generated actions relative
to the expectations of non-experts.
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