
October 1970

STR IPS: A NEW APPROACH TO THE APPLICATION OF

THEOREM PROVING TO PROBLEM SOLVING

by

Nils J. Nilsson
Richard E. Fikes

Artificial Intelligence Group

Technical Note 43

SRI Project 8259

This research is sponsored by the Advanced Research
Projects Agency and the National Aeronautics and Space
Administration under Contract NAS 12-2221.

~'

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1970 2. REPORT TYPE

3. DATES COVERED
 00-10-1970 to 00-10-1970

4. TITLE AND SUBTITLE
STRIPS: A New Approach to the Application of Theorem Proving to
Problem Solving

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Artificial Intelligence Center,SRI International,333 Ravenswood
Avenue,Menlo Park,CA,94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

37

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

I INTRODUCTION

A. Overview of STRIPS

This note describes a new problem-solving program called

STRIPS (STanford Research Institute Problem Solver) . The program is

now being implemented in LISP on a PDP-lO to be used in conjunction

wi th robot research at SRI. Even though the implementation of STRIPS

is not yet complete, it seems to us important to discuss some of its

planned features so that they can be compared with other on-going work

in this area.

STRIPS belongs to the class of problem solvers that search

a space of "world models" to find one in which a given goal is achieved.

For any world model, we assume there exists a set of applicable opera-

tors each of which transforms the world model to some other world model.

The task of the problem solver is to find some composition of operators

that transforms a given initial world model into one that satisfies some

particular goal condition.

This framework for problem solving, discussed at length by

l*Nilsson, has been central to much of the research in Artificial

Intelligence. A wide variety of different kinds of problems can be. tposed in this framework. Our primary interest here is in the class of

*
References are listed at the end of this technical note.

t It is true that many problems do not require search and that special-

ized programs can be written to solve them. Our view- is that these
special programs belong to the class of available operators and that
a search-based approach can be used to discover how these and other
operators can be chained together to solve even more difficult problems.

1

I INTRODUCTION

A. Overview of STRIPS

This note describes a new problem-solving program called

STRIPS (STanford Research Institute Problem Solver) . The program is

now being implemented in LISP on a PDP-lO to be used in conjunction

wi th robot research at SRI. Even though the implementation of STRIPS

is not yet complete, it seems to us important to discuss some of its

planned f ea tures so that they can be compared wi th other on-going work

in this area.

STRIPS belongs to the class of problem solvers that search

a space of "world models" to find one in which a given goal is achieved.

For any world model, we assume there exists a set of applicable opera-

tors each of which transforms the world model to some other world model.

The task of the problem solver is to find some composition of operators

that transforms a given initial world model into one that satisfies some

particular goal condition.

This framework for problem solving, discussed at length by

l*Nilsson, has been central to much of the research in Artificial

Intelligence. A wide variety of different kinds of problems can be

tposed in this framework. Our primary interest here is in the class of

*
References are listed at the end of this technical note.

t It is true that many problems do not require search and that special-

ized programs can be written to solve them. Our view' is that these
special programs belong to the class of available operators and that
a search-based approach can be used to discover how these and other
operators can be chained together to solve even more difficult problems.

1

problems faced by a robot in rearranging objects and in navigating.

The robot problems we have in mind are of the sort that require quite

complex and general world models compared to those needed in the solu-

tion of puzzles and games. Usually in puzzles and games, a simple matrix

or list structure is adequate to represent a state of the problem. The

world model for a robot problem solver, however, needs to include a

large number of facts and relations dealing with the position of the

robot and the positions and attributes of various objects, open spaces,

and boundaries.

Thus, the first question facing the designer of a robot

problem solver is how to represent the world model. A convenient answer

is to let the world model take the form of statements in some sort of

general logical formalism. For STRIPS we have chosen the first-order,

predicate calculus mainly because of the existence of computer programs

for finding proofs in this system. Initially, STRIPS will use the QA3

th .. 2eorem-proving system as its primary deductive mechanism.

Goals (and subgoals) for STRIPS will be stated as first-order

predicate calculus wffs (well formed formulas) . For example, the task

"push a box to place b" might be stated as the wff (:Bu)(BOX(u) /\ AT(u,b)),

where the predicates have the obvious interpretation. The task of the

system is to find a sequence of operators that will produce a world model

in which the goal can be shown to be true. The QA3 theorem prover wi 1 1

be used to determine whether or not a wff corresponding to a goal or sub-

goal is ii theorem in a given world model.

Al though theorem-proving methods will play an important

role in STRIPS, they will not be used as the primary search

2

mechanism. A graph of world models (actually a tree) will be generated

by a search process that can best be described as GPS-like (Ernst and

3Newell) . Thus it is fair to say that STRIPS is a combination of

GPS and formal theorem-proving methods. This combination allows objects

(world models) that can be much more complex and general than any of

those used in previously implemented versions of GPS. This use of world

models consisting of sets of logical statements causes some special

problems that are now the subject of much research in Artificial Intelli-

gence . In the next and following sections we will describe some of these

problems and the particular solutions to them that STRIPS employs.

B. The Frame Problem

When sets of logical statements are used as world models,

we must have some deductive mechanism that allows us to tell whether or

not a given model satisfies the goal or satisfies the applicability con-

Green 4 implemented a problem-solvingdi tions of various operators.

system based on a theorem prover using the resolution principle.

In his system, Green expressed the results of operators as logical state-

ments. Thus, for example, to describe an operator goto(x,y) whose effect

is to move a robot from any place x to any other place y, Green would use

the wff . ,
0fx,y,s) (ATR(x,s) ~ ATR(y,goto (x,y,s)))

where ATR is a predicate describing the robot's position. Here, each

predicate has a state term that names the world model to which the predi-

cate applies. Our wff above states that for all places x and y and for

3

all states s, if the robot is at x in state s then the robot will be

at y in the state goto' (x,y,s) resulting from applying the goto operator

to state s.

Wi th Green's formulation, any problem can be posed as a

theorem to be proved. The theorem will have an existentially quantified

state term, s. For example , the problem of pushing a box B to place b

can be stated as the wff

(3:s) AT(B,b,s)

If a constructive proof procedure is used, an instance of the state

2proved to exist can be extracted from the proof (Green,

and Nilsson 5) .

Luckham

This instance,. in the form of a composition of

operator functions acting on the initial state, then serves asa solu-

tion to the problem.

Green's formulation has all the appeal (and limitations) of

any general-purpose problem solver and represents a significant step

in the development of these systems. It does, however, suffer from

some serious disadvantages that our present system attempts to over-

come. One difficulty is caused by the fact that Green's system combines

two essentially different kinds of searches into a single search for a

proof of the theorem representing the goal. One of these searches is

in a space of world models; this search proceeds by applying operators

to these models to produce new models. The second type of search con-

cerns finding a proof that a given world model satisfies the goal

theorem or the applicability conditions of a given operator. Searches

of this type proceed by applying rules of inference to wffs wi thin a

world model.

4

When these two kinds of searches are combined in the largely syntactically

guided proof-finding mechanism of a general theorem prover, the result is

gross inefficiency. Furthermore, it is much more difficult to apply any

available semantic information in the combined search process.

The second drawback of Green's system is even more serious.

The system must explicitly describe, by special axioms, those relations

not affected by each of the operators. For example, since typically the

posi tions of objects do not change when a robot moves, we must include

the statement

(Vu,x,y,z,s) (OBJECT(u,s) /\ AT(u,x,s) ~ AT(u,x,goto' (y,z,s))

Thus, after every application of goto in the search for a solution, we

may need to prove that a given object B remains in the same position in

the new state if the position of B is important to the completion of the

solution.

The problem posed by the evident fact that operators affect

certain relations and don!t affect others is sometimes called the frame

6 7problem.' Since, typically, most of the wffs ina world model will

not be affected by an operator application, our approach will be to name

only those relations that are affected by an operator and to assume that

the unnamed relations remain valid in the new world model. Since proving

that certain relations are still satisfied in successor states is tedious,

our convention can drastically decrease the search effort required.

Because we are adopting special conventions about what happens

to the wffs in a world model when an operator is applied, we have chosen

5

to tnlw the process of operator npplication out of the formal deductive

system entLrely. 111 oiir nppronch, when an operator is nppl j ocl to n

world model, the computation of the new world model is done by a special

extra-logical mechanism. Theorem-proving methods are used only within

a given world model to answer questions about it concerning which opera-

tors are applicable and whether or not the goal has been satisfied. By

separating the theorem proving that occurs wi thin a world model from the

search through the space of models we can employ separate strategies for

these two activities and thereby improve the overall performance of the

sys tem .

II OPERATOR DESCRIPrIONS AND APPLICATIONS

The operators are the basic elements out of which a solution is

buil t . For robot-like problems we can imagine that the operators corre-

spond to routines or subprograms whose execution causes a robot to take

certain actions. For example, we might have routines that cause the

robot to turn and move, a routine that causes it to go through a doorway,

a routine that causes it to push a box and perhaps dozens of others.

When we discuss the application of problem-solving techniques to robot

problems, the reader should keep in mind the distinction between

an operator and its associated routines. Execution of routines actually

causes the robot to take actions. Application of operators to world

models occurs during the planning (i.e., problem solving) phase when an

attempt is being made to find a sequence of operators whose associated

routines will produce a desired state of the world. Since routines are

6

programs, they can have parameters that are instantiated by constants

when the routines are executed. The associated operators will also have

parameters, but as we shall soon see, these can be left free at the time

they are applied to a model.

In order to chain together a sequence of operators to achieve a

given goal, the problem solver must have descriptions of the operators.

The descriptions used by STRIPS consist of three major components:

(1) Name of the opera tor and its parameters,

(2) Precondi tions, and

(3) Effects.

The first component consists merely of the name of the operator and the

parameters taken by the operator. The second component is a formula in

first-order logic. The operator is applicable in any world model in

which the precondition formula is a theorem. For example, the operator

push(u,x,y) which models the action of the robot pushing an object u

from location x to location y might have as a precondition formula

(3x,u) (AT(u,x) /\ ATR(x))

The third component of an operator description defines the effects

(on a set of wffs) of applying the operator. We shall discuss the process

of computing effects in some detail since it plays a key role in STRIPS.

When an operator is applied, certain wffs in the world model are no longer

true (or at least we cannot be sure that they are true) and certain other

wffs become true. Thus to compute one world model from another involves'

*
copying the world model and in this copy deleting some of the wffs and

*
In our implementation of STRIPS we employ various bookkeeping techniques

to avoid copying; these will be described in a later section.

7

adding others. Let us deal first with the set of wffs that should be

added as a result of an operator application.

The set of wffs to be added to a world model depends on the results

of the routine modeled by the operator. These results are not completely

specified until all of the parameters of the routine are instantiated by

constants. For example, the operator goto(x,y) might model the robot

moving from location x to location y for any two locations x and y. When

this operator's routine is executed, the parameters x and y must be

instantiated by constants. However, we have designed STRIPS so that an

operator can be applied to a world model with any or all of the operator's

parameters left uninstantiated. For example, suppose we apply the opera-

*tor goto(a,x) to a world model in which the robot is at some location a.

If the parameter x is unspecified, so will be the resulting world model.

We could say that the application of goto(a,x) creates a family or schema

of world models parameterized by x. The power and efficiency of STRIPS

is increased by searching in this space of world model families rather.

than in the larger space of individual world models.

If we are to gain this reduction in search space size, then we

must be able to describe with a single set of predicate calculus wffs

the world model family resulting from the application of an operator with

free parameters. One way in which this can be done is to use a state

term in each literal of each wff. Thus, the principal effect of applying

the operator ~oto(a,x) to some world model s , say, is to add the wff
o

0fx) (:s)ATR(x,s)

*
We shall adopt the convention of using letters
the alphabet (a,b,c,etc.) to stand for constants
end of the alphabet (u,v,w,x,etc.) as variables.

near the beginning of
and letters near the

8

which statei: that for all values of the parameter x, there exists n world

model s in which the robot is at x. Wi th expressions of this sort, a

set of wffs can represent families of world models. Selecting specific

values for the parameters selects specific members of the family.

Anticipating the use of a r~solution-based theorem prover in

STRIPS, we shall always express formulas in clause form. 1

Then the formula above would be written

ATR(x,goto' (a,x,s))
o

where goto' (a,x,s) is a function of x replacing the existentiallyo .
quantified state variable. The value of goto' (a,x,s), for any x, is

o

that world model produced by. applying the operator goto(a,x) to world

model s .o Recall that any variables (such as x in the formula above)

occurring in a clause have implicit universal quantification.

The description of each operator used in STRIPS contains a list

of those clauses to be added when computing a new world model. This

list is called the add list.

The description of an operator also includes information about

which clauses can no longer be guaranteed true and must therefore be

deleted in constructing a new world model. For example, if the operator

goto (a, y) is applied, we must delete any clause containing the atom *

ATR(a) . Each operator description contains a list of atoms, called

the delete !i, that is used to compute which clauses should be deleted.

Our rule for creating a new world model is to delete any clauses contain-

ing atoms (negated or unnegated) that are instances of atoms on the delete

list.. We also delete any clauses containing atoms of which the atoms on

*
An atom is a single predicate letter and its arguments.

9

on the delete list are instances. The application of these rules might

sometimes delete some clauses unnecessarily i but we want to be guaranteed

that the new world model will be consistent if the old one was.

When an operator description is written, it may not be possible to '

name explicitly all the atoms that should appear on the delete list. For

example, it may be the case that a world model contains clauses that are

deri ved from other clauses in the model. Thus from AT (Bl , a) and from

AT (B2, a+~) we might derive NEXTT (Bl ,B2) and insert it into the model.

Now, if one of the clauses on which the derived clause depends is deleted,.

then the derived clause must be deleted also.

We deal with this problem by defining a set of primi ti ve predicates

(e.g., AT, ATR, BOX) and relating all other predicates to this primitive

set. In particular, we require the delete list of an operator descrip-

tion to indicate all the atoms containing primi ti ve predicates which should

be deleted when the operator is applied. Also, we require that any non-

primi tive clause in the world model have associated with it those primitive

clauses on which its validity depends. (A primi ti ve clause is one which

contains only primi ti ve predicates.) For example, the clause NEXTO(Bl,B2)

would have associated wi th it the clauses AT (Bl, a) and AT (B2, a+~) .

By using these conventions we can be assured that primitive clauses

will be correctly deleted during operator applications, and that the

validi ty of nonprimi ti ve clauses can be determined whenever they are to

be used in a deduction by checking to see if all of the primi ti ve clauses

on which the nonprimitive clause depends are still in the world model.

lO

In the next scction, we shall describe the search process for

STRIPS and also present a specific example in which the process of

operator application is examined in detail.

III THE OPERATION OF STRIPS

A. Computing Differences and Relcvant Operators

In a very simple problem-solving system we might first apply

all of the applicable operators to the initial world model to create a

set of successor models. We would continue to apply all applicable

operators to these successors and to their descendants until a model

was produced in which the goal formula was a theorem. Checking to see

which operators are applicable and to see if the goal formula is a

theorem are theorem-proving tasks that could be accomplished by a deduc-

ti ve system such as QA3. However, since we envision uses in which the

number of operators applicable to any given world model might be quite

large, such a simple system would generate an undesirably large tree of

world models and would thus be impractical.

Instead we would like to use the GPS strategy of extracting

"differences" between the present world model and the goal and of identi-

fying operators that are "relevant" to reducing these differences. Once

a relevant operator has been determined, we attempt to solve the sub-

problcm of producing a world model to which it is applicable. If such

a model is found then we apply the relevant operator and reconsider the

original goal in the resulting model.

When an operator is found to be relevant, it is not known

where it will occur in the completed plan; that is, it may be applicable

11

to the initial model and therefore be the first operator applied, its

effects may imply the goal so that it is the last operator applied, or

it may be some intermediate step toward the goal. Because of this

flexibili ty, the STRIPS search strategy combines many of the advantages

of both forward search (from the initial model toward the goal) and

backward search (from the goal toward the initial model) .

Two key steps in this strategy involve computing differences

and finding operators relevant to reducing these differences. One of

the novel features of our system is that it uses a theorem prover as an

aid in these steps. The following description of these processes assumes

that the reader is familiar with the terminology of resolution-based

theorem-proving systems.

Suppose we have a world model consisting of a set, S, of

clauses, and that we have a goal formula whose negation is represented

by the set, G, of clauses. The difference-computing mechanism attempts

to find a contradiction for the set S U G using a resolution theorem

prover such as QA3. (The theorem prover would likely use, at least,
the set-of-support strategy with G the set receiving support.) If a

contradiction is found, then the "difference" is nil and STRIPS would

conclude that the goal is satisfied in S.

Our interest at the moment though is in the case in which QA3

cannot find a contradiction after investing some prespecified amount of

effort. Let R be the set consisting of the clauses in G and the resolv-

ents produced by QA3 which are descendants of G. Any set of clauses D in

l2

R can be taken as a "difference" between S and the goal in the sense

that if a world model were found in which a clause in D could be contra-

*
dicted, then it is likely tha t the proof of the goal could be completed

in that model.

STRIPS creates differences by heuristically selecting subsets

of R, each of which acts as a difference. The selection process considers

such factors as the number of literals in a clause, at what level in the

proof tree a clause was generated, and whether or not a clause has any

descendants in the proof tree.

The quest for relevant operators proceeds in two steps. In

the first step an ordered list of candidate operators is created for each

difference set. The selection of operators for this list is based on a simple

comparison of the clauses in the difference set with the add lists in the

operator descriptions. For example, if a difference set contained a clause

having in it the robot position predicate ATR, then the operator goto

would be considered a candidate operator for that difference.

The second step in finding an operator relevant to a given

difference set involves employing QA3 to determine if clauses on the addL " " (.ist of a can.didate operator can be used to resolve away i.e., continue

the proof of) any of the clauses in the difference set. If, in fact, QA3 can

produce new resolvents which are descendants of the add list clauses,

then the candidate operator (properly instantiated) is considered to be

a relevant operator for the difference set.

*
That is, a proof could be completed if this new model still allows a
deduction of this clause in D.

l3

To complete the operator-relevance test stRIPS must determine

which instances of the operator are relevant. For example, if the differ-

ence set consists of the unit clauses -ATR(a) and -ATR(b), then goto(x,y)

is a relevant operator only when y is instantiated by a or b. Each new

resolvent which is a descendant of the operator's add list clauses is

used to form a relevant instance of the operator by applying to the

operator's parameters the same instantiations that were made during the

production of the resolvent. Hence the consideration of one candidate

opera tor may produce several relevant operator instances.

One of the important effects of the difference-reduction

process is that it usually produces specific instances for the operator

parameters. Furthermore, these instances are likely to be those occur-

ring in the final solution, thus helping to narrow the search process.

So, although STRIPS has the ability to consider operators with uninstan-

tiated parameters, it also has a strong tendency toward instantiating

these parameters with what it considers to be the most relevant constants.

B. The STRIPS Executive

STRIPS begins by attempting to form differences between the

ini tial world model, s , and the main goal (as described in the previous
o

section) . If no differences are found, then the problem is trivially

solved. If differences are found, then STRIPS computes a set of operators

relevant to reducing those differences.

Suppose, for example, that STRIPS finds two instantiated

operators, OPl and OP2' relevant to reducing the differences between

s and the main goal.o Let the (instantiated) precondition formulas for

l4

these operators be denoted by Pel and Pe2' respectively. Thus STRIPS

has found two ways to work on the main problem:

(1) Produce a world model to which OP 1 is applicable,

apply OP l' and then produce a world model in which the

main goal is satisfied, or

(2) Produce a world model to which OP2 is applicable, apply

OP 2' and then produce a world model in which the main

goal is satisfied.

STRIPS represents such solution alternatives as nodes on a

search tree. The tree for our example can be represented as follows:

~(S ,(Gi ,G)) (S ,(G2 ,G))o 0 0 0
where Go,Gi' and G2 are sets of clauses corresponding to the negations

of the main theorem, Pel and PC2' respectively.

In general, each node of the search tree has the form

((world model) ,(goal list)). The subgoal being considered for solution

at each node is the first goal on that node's goal list. The last goal

on each list is the negation of the main goal, and each subgoal is the

negation of the preconcli tions of an operator. Hence, each subgoal in

a goal U.st represents an attempt to apply an operator which is relevant

to achieving the next goal in the goal list.

Whenever a new nOde, (s. ,(G ,G 1,... ,Gi ,G)), is constructedi m m- 0
and added to the search tree as. a descendant of some existing node, ,the

new node is tested for goal satisfaction. This test is performed by

QA3 which looks for a contradiction to s. U G .i m
l5

If a contradiction is found and m is 0 (i .e., the node has

the form (s., (G))), then the main goal is satisfied in s. and thei 0 i
problem is solved. If a contradiction is found and m is not 0, then

G is the negation of a precondition formula for an operator that is
m

applicable in s. .i STRIPS produces a new world model, Is. ,i by applying

to s. the operator corresponding to G .i m The node is changed to

(s. '(G 1,. . . ,Gi,G)) and the test for goal satisfaction is performedi m- 0
on it again. This process of changing the node continues until a goal is

encountered which is not satisfied or until the problem is solved.

If no contradiction is found in the goal satisfaction test,

QA3 will return a set R of clauses consisting of the clauses in G
m

and resolvents that are descendants of clauses in G .
m

This set of

resolvents is attached to the node and is used for generating successors

to the node.

The process for generating the successors of a node

(s. ,(G,G L'... ,Gi ,G)) with R attached involves forming differencei m m- 0
sets (D. J from Rand finding operator instances relevant to reducingi
these differences (as described in the previous section) . For each

operator instance found to be relevant, a new offspring node is created.

This new node is formed with the same world model and goal list as its

parent node. The goal of finding a world model in which the relevant

operator instance can be applied is added to the new node. This is

done by creating the appropriate instance of the operator's preconditions

and adding the negation of the instantiated preconditions to the begin-

ning of the new node's goal list.

l6

Since the number of operators relevant to reducing sets of

differences might be rather large in some cases, it is possible that a

gi ven node in the search tree might have a large number of successors.

Even before the successors are generated, though, we can order them

according to the heuristic merit of the operators and difference sets

used to generate them. The process of computing a successor node can

be rather lengthy, and for this reason STRIPS actually computes only

that single next successor judged to be best. STRIPS adds this successor

node to the search tree, performs a goal-satisfaction test on it, and

then selects another node from the set of nodes which still have uncom-

puted successors. STRIPS must therefore associate with each node the sets of

differences and candidate ope~ators it has already used in creating

successors.

STRIPS will have a heuristic mechanism to select nodes with

uncomputed successors to work on next. For this purpose we will

use an evaluation function that takes into account such factors as the

number and types of literals in the remaining goal formulas, the number

of remaining goals, and the number and types of literals in the difference

sets.

A simple flowchart of the STRIPS executive is shown in

Figure 1.

l7

Y
es

i- 00

SU
C

C
E

SS
E

X
IT

C
R

E
A

T
E

 I
N

IT
IA

L
 N

O
D

E

Y
es

C
H
A
N
G
E

N
O
D
E

B
Y

A
PP

L
Y

IN
G

 O
PE

R
A

T
O

R
T

O
 W

O
R

LD
 M

O
D

E
L

A
N

D
R

E
M

O
V

IN
G

 F
IR

S
T

 G
O

A
L

FR
O

M
, G

O
A

L
 L

IS
T

N
o

A
T

T
A

C
H

R
E

SO
L

V
E

N
T

S
T
O

T
H
E

N
O
D
E

S
E
L
E
C
T

A

N
O
D
E

H
A
V
I
N
G

A
N

U
N

C
O

M
PU

T
E

D
 S

U
C

C
E

SS
O

R

N
od

e
se

le
ct

ed
.

C
O
M
P
U
T
E

A

SU
C

C
E

SS
O

R
N

O
D

E

N
o

su
ch

no
es

FI
G

U
R

E
 1

F
LO

W
C

H
A

R
T

 F
O

R
 T

H
E

 S
T

R
IP

S
 E

X
E

C
U

T
IV

E

F
A

IL
U

R
E

 E
X

IT

T
 A

-6
:D

C. An Example

An understanding of how STRIPS works is aided by tracing

through a simple example. Consider the configuration shown in Figure 2

consisting of two objects Band C and a robot R at places b, c, and a,

respecti vely . The problem given to STRIPS is to achieve a configuration

in which object B is at place k and in which object C is ~ at place c.

The existentially quantified theorem representing this problem

can be wri t ten

(:s) (AT(B,k,s) /\ ~AT(C,c,s))

If we can find an instance of s (in terms of a composition of operator

applications) that satisfies this theorem, then we will have solved the

problem. The negation of the theorem is

G :
o

-AT(B,k,s) V AT(C,c,s)

Let us suppose that STRIPS is to compose a solution using

the two operators goto and push. These operators can be described as

follows:

1. push(u,x,y) : Robot pushes object u from place x to

place y.

Precondi tion formula:

(:u,x,s) (AT(u,x,s) /\ ATR(x,s))

Negated precondition formula:

~AT(u,x,s) V ~ATR(x,s)

Delete list:

AT(u,x,s)

ATR(x,s)

19

FIGURE 2

~
c

& ROBOT

a

k

o
b

T A-8259-31

CONFIGURATION OF OBJECTS AND ROBOT FOR EXAMPLE PROBLEM

20

Add list:

I *
AT(u,y,push (u,x,y,s))

, *ATR(y,push (u,x,y,s))

*
where s is the state to which the operator is applied.

2. goto(x,y) : Robot goes from place x to place y.

Precondi tion formula:

æx, s) ATR (x, s)

Negated precondition formula:

..ATR (x, s)

Delete list:

ATR(x,s)

Add list:

, *
ATR(y,goto (x,y,s))

The initial configuration can be described by the following

world model:

s :
o

ATR(a, s)
o

AT (B , b ,s)
o

AT(C,c,s)
o

In addition, we have a universal formula, true in all world models,

that states if an object is in one place, then it is not in a different

place:

F: (Vu,x,y,s) (AT(u,x,s) 1\ (x~y) ~ ..AT(u,y,s))

The clause form of this formula is

F' : ..AT(u,x,s) V (x=y) V..AT(u,y,s)

We assume that F' is adjoined to all world models.

2l

STRIPS first constructs the node N , consisting of the listo

(s , (G)), as the root of the problem-solving tree and tests it for ao 0
solution by attempting to find a contradiction for the set s U (G J.o 0
No contradiction is found but some resolvents can be obtained; among

them are two resolvents of G
o and F' :

"'AT(B,k,s) V (c=y) V""AT(C,y,s)

and

Ri:

R2 : ""AT(B,k,s) V (x = c) V ""AT(C,x,s)

Additional resolvents can be produced also, but these happen all to be

tautologies and can thus be eliminated.t A sophisticated system would

detect that Ri and R2 are identical, so let us suppose that Ri is the

only resolvent attached to N .
o

Next STRIPS selects a node (N is now the only one available)
o

and begins to generate successors. First it selects a difference set

Di from the set of resolvents attached to No' In this case it sets

Di = (RiJ. Then STRIPS composes a list L of candidate operators for

reducing Di' Here L would consist of the single element push.

Next STRIPS attempts to reduce Di using clauses on the add

list of push. Again using theorem-proving methods we obtain two resol v-
, *ents from Di and AT(u,y,push (u,x,y,s) :
i *""AT(B,k,push (C,x,y,s)) V (c = y)

and *
~AT(C,y,pusil (B,x,k,s)) V (c =y)

t We are assuming a set-of-support strategy with the initial support

set consisting only of the negated theorem.

22

Assuming that these resolutions represent acceptable reductions in the

difference, we extract the state terms of the resolvents to yield

appropriate instances of the relevant operator.

and

OPl:

OP2 :

This gives us:

push(C,x,y)

push(B ,x ,k)

Next, we construct the negated versions of the precondition

formulas for OPiand OP 2 :

and

Gi:

G2 :

~AT(C,x,s) V ~ATR(x,s)

~AT(B,x,s) V ~ATR(x,s)

These formulas are then used to construct two successor nodes

and

Ni:

N2 :

(s ,(G ,G))o 1 0
(s , (G2,G))o 0

These nodes would be immediately tested for solutions. For brevi ty , let

us consider just Ni'

a contradiction for s U Gl.
. 0

In testing for a solution STRIPS attempts to find

are obtained:

Again no contradiction is found, but the following resolvents.

and

R3 :

R4 :

~ATR(c,s) from Gl and AT(C,c,s)o 0
~AT(C,a,so) from Gi and ATR(a,so)

Al though these clauses represent differences between So and Gi' we do

not insist that these differences be reduced in s .
o

We would accept a

reduction occurring in any world model, so STRIPS rewrites the clauses

as:

R ' .3 .
and R i :

4

..ATR (c, s)

~AT(C,a,s)

23

These clauses refer to preconditions for pushing object C. To contradict, i
R3 the robot must be at c; to contradict R 4 object C must be at a.

Suppose our system recognizes that an attempt to contradict R4' is cir-

cular and attaches just the set (R3' 1 to node Ni.

Next STRIPS selects a node for consideration. Suppose it

selects Ni'

to (R3' J .

In generating successors, it sets the difference set, D2'

The list of operators useful for reducing D2 consists only of

goto . STRIPS now attempts to perform resolutions between the clauses on

the add list of goto and D2' The clause in D2 resolves with ATR(y,goto'

*(x, y, s)) to yield ni l, and answer extraction produces the instance sub-

stituted for the state term, namely

, *
s = go to (x, c ,s)

Thus STRIPS identifies the following instance of goto:

OP :
3

goto(x,c)

The associated negated precondition is

G3 : ..AT (R,x, s)

STRIPS then constructs the successor node

N" :"': (so,,(G3,9i,Go))

and immediately attempts to find a contradiction for So U G3.

contradiction is obtained, and answer extraction yields the state term:

Here a

goto' (a,c,s)
o

Thus STRIPS applies goto(a,c) to s "to
o

sl: ATR(c,goto' (a,c,so))

AT (B, b, goto' (a, c, s))
o

yield

AT(C,c,goto' (a,c,s))o

Node N3 is then changed to

N4 : (sl' (Gi ,Go))

24

and STRIPS immediately checks for a contradiction for sl U Gi' Again a

contradiction is found; answer extraction produces the following instances

for x and s:

x = c

and s = goto' (a,c,s)o

Thus STRIPS applies the following instance of OPl:

push(C,c,y)
,

The result is the world model family s2 consisting

s2: ATR(y,push' (C,c,y,goto' (a,c,so)))

AT(B,b,push' (C,c,y,goto' (a,c,s)))o

of the following clauses:

AT(C,y,push' (C,c,y,goto' (a,c,s)))o

Note that this application of the operator push involved an uninstan-

tia ted parameter, y.

Node N 4 is then changed to

N5 : (s2' (Go))

and STRIPS checks for a contradiction for s2 U Go. In doing so it pro-

duces the following tree of resolutions:

~AT(B,k,s) V AT(C,c,s) ""AT(u,x,s) V (x=y)~. ~. ~~~
""AT(B,k,s) V (c = y) V""AT(C,y,s)

V ""AT (u,y ,s)

~AT(B,k,push' (C,c,y,goto' (a,c,s)) V (c =y), . 0
AT(C,y,push' (C,c,y,goto' (a,c,s)))o

25

The clause at the root produces one of the resolvents to be attached

to Nt:' namely
;)

R5 : --AT(B,k,s) V (c =y)

Suppose STRIPS selects N5 next and begins generating successors

based on a difference D3 = £ R5J .

consists solely of push, and the relevant instance of push is found to be

The operator list for this difference

OP4 : push(B,x,k)

Its (negated) precondition is

G4 : --AT(B,x,s) V --ATR(x,s)

A successor node to N5 is then

N6 : (s2' (G4,GO))

STRIPS then finds a contradiction between s2 and G4' and extracts

s = push' (C,c,b,goto' (a,c,s)). 0

and x = b. Therefore, it applies push(B,b,k) to an instance of s2

(with Y = b) to yield

s .
3 .

ATR(k,push' (B,b,k,push' (C,c,b,goto' (a,c,s))))o .
AT(B,k,push' (B,b,k,push' (C,c,b,goto' (a,c,s))))o

AT(C,b,push' (B,b,k,push' (C,c,b,goto' (a,c,s))))o

Node N6 is then changed to node

N .
7 .

(S3,(Go))

STRIPS can find a contradiction between s3 and Go (assuming that the

equality predicatc(b = c) can be evaluated to be false) and exits

successfully. The successful plan is embodied in the state term for

s3 . We show the solution path in the STRIPS problem-solving tree in

Figure 3.

26

No: (So,IGo"

N,: (So,(G"Goll N2: (So, IG2. Ga~

N3: ISo,IG3,G1.Go"

N4: (S1.(G1,Goll

N5: 152, (Go))

N6: 152.(G4.GO))

N7: (53,IGo))
Goal achieved

T A-8259-32

FIGURE 3 SEARCH TREE FOR EXAMPLE PROBLEM

27

D. Efficient Representation of World Models

A primary design issue in the implementation of a system

such as STRIPS is how to satisfy the storage requirements of a search

tree in which each node may contain a different world model. We would

like to use STRIPS in a robot or question-answering environment where

the initial world model may consist of hundreds of wffs. For such

applications it is infeasible to recopy completely a world model each

time a new model is produced by application of an operator.

We have dealt with this problem in STRIPS by first making

the assumption that most of the wffs in a problem's initial world model

will not be changed by the application of operators. This is certainly

true for the class of robot problems we are currently concerned with.

For these problems most of the wffs in a model describe rooms, walls,

doors, and obj ects, .or specify general pI"operties of the world which

are true in all models. The only wffs that might be changed in this

robot environment are the ones that describe the status of the robot and

any objects which it manipulates.

Given this assumption, we have implemented the following

scheme for handling multiple world models. All the wffs for ,all world

models are stored in a common memory structure. Associated with each

wff (i.e., clause) is a visibility flag, and QA3 has been modified to

consider only clauses froni the memory structure which are marked visible.

Hence, we can "define" a particular world model for QA3 by marking that

model's clauses visible and all other cla~ses invisible. When clauses

are entered into the initial world model they are marked visible and

28

given a variable as a state term. Clauses not changed will remain

visible throughout STRIPS' search for a solution.

Each world model produced by STRIPS is defined by two clause

lists. The first list, DELETIONS, names all those clauses from the

ini tial world model which are no longer present in the model being

defined. The second list, ADDITIONS, names all those clauses in the

model being defined which are not also in the initial model. These lists

represent the changes in the initial model needed to form the model being

defined, and our assumption implies they will contain only a small number

of clauses.

To specify a given world model to QA3, STRIPS marks visible

the clauses on the model's ADDITIONS list and marks invisible the clauses

on the model's DELETIONS list. When the call to QA3 is completed, the

visibili ty markings of these clauses are returned to their previous

settings.

When an operator is applied to a world model, the DELETIONS

list of the new world model is a copy of the DELETIONS list of the old

model plus any clauses from the initial model which are deleted by the

operator. The ADDITIONS list of the new model consists of the clauses

from the old model's ADDITIONS list as transformed by the operator plus

the clauses from the operator's add list.

To illustrate this implementation design we list below the

way in which the world models described in the example of the previous

section are represented:

s :o
ATR(a,s)

AT (B, b, s)

AT(C,c,s)

29

s .
1 .

DELETIONS:

ADDITIONS:

s .
2 .

DELETIONS:

ADDITIONS:

83 : DELETIONS:

ADDITIONS:

ATR(a, s)

ATR(c,goto' (a,c,s))
o

ATR(a, s)

AT(C,c,s)

ATR(y,push' (C,c,y,goto' (a,c,s)))
o

AT(C,y,push' (C,c,y,goto' (a,c,s)))
o

ATR(a,s)

AT(C,c,s)
AT(B,b,s)

ATR(k,push' (B,b,k,push' (C,c,b,goto' (a,c,s))))
o

AT(B,k,push' (B,b,k,push' (C,c,b,goto' (a,c,s))))
o

AT(C,c,push' (B,b,k,push' (C,c,b,goto' (a,c,s))))
o

IV FUTURE PLAS AND PROBLEMS

in several directions.

The implementation of STRIPS now being completed can be extended

These extensions will be the subject of much of

our problem-solving research activities in the immediate future. We

shall conclude this note by briefly mentioning some of these.

nodes represent subproblems.

We have seen that STRIPS constructs a problem-solving tree whose

there must be a mechanism to decide which subproblem to work on next.

In a problem-solving process of this sort,

We have already mentioned some of the factors that might be incorporated

to heuristic merit.

in an evaluation function by which subproblems can be ordered according

We expect to devote a good deal of effort to devis-

ing techniques.

ing and experimenting with various evaluation functions and other order-

30

Another area for future research concerns synthesis of more complex

procedures than those consisting of simple linear sequences of operators ~

Specifically we want to be able to generate procedures involving i tera-

tion (or recursion) and conditional braaching. In short, we would like

Several researchers 4,8,9STRIPS to be able to generate computer programs.

have already considered the problem of automatic program synthesis

and we expect to be able to use some of their ideas in STRIPS.

Our implementation of STRIPS is designed to facilitate the definition

of new operators by the user. Thus the problem-solving power of STRIPS

can gradually increase as its store of operators grows.

An idea that may prove useful in robot applications concerns

defining and using operators to which there correspond no execution

routines. That is, STRIPS may be allowed to generate a plan containing

one or more operators that are fictitious. This technique essentially

permi ts STRIPS to assume that certain subproblems have solutions without

actually knowing how these solutions are to be achieved in terms of

existing robot routines. When the robot system attempts to execute a

ficti tious operator, the subproblem it represents must first be solved

(perhaps by STRIPS). On human problem solving, this strategy is employed

when we say: "i won't worry about that (sub) problem until I get to it. ")

We are also interested in get ting STRIPS to define new operators

for itself based on previoiis problem solutions. One reasonable possi-

bility js that after a problùnn represented by (S ,(G)) is solved,o 0
STRIPS could automatically gçneratù a fictitious operator to represent

the solution. It would be important to try to generalize any constants

3l

appearing in G ; these would then be represented by parameters in theo

ficti tious operator. The structure of the actual solution would also,

have to be examined in order to extract a precondition formula,

delete~, and ~ list .for the fictttious operator.

A more ambitious undertaking would be an attempt to synthesize

automatically a robot execution routine corresponding to the new operator.

Of course, this routine would be composed from a sequence of the exist-

ing routines corresponding to the individual existing operators used in

the problem solution. The major difficulty concerns general izing con-

stants to parameters so that the new routine is general enough to merit

saving. Hewi ttlO discusses a related problem that he calls" "
procedural abstraction. He suggests that from a few instances of a

procedure, a general version can sometimes be synthesized. We expect

that our generalization problem will be aided by an analysis of the

structure of the preconditions and effects of the individual 9perators

used in the problem solution.

32

ACKNOWLDGMENT

The development of the ideas embodied in STRIPS has been the result

of the combined efforts of the present authors, Bertram Raphael, Thomas

Garvey, John Munson, and Richard Waldinger, all members of the Artificial

Intelligence Group at SRI.

33

REFERENCES

1. N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence

(McGraw-Hill Book Company, New York, to appear in April 1971).

?~ . C. Green, '~heorem Proving by Resolution as a Basis for Question-

Answering Systems," in Machine Intelligence 4, B. Meltzer and

D. Michie (Eds.), pp. l83-205 (American Elsevier Publishing Co.,

Inc., New York, 1969).

3. G. Ernst and A. Newell, GPS: A Case Study in Generality and

Problem Solving, ACM Monograph Series (Academic Press, 1969).

4. rr.. . "
C. Green, Application of Theorem Proving to Problem Solving,

Proc. IntI. Joint Conf. on Artificial Intelligence, Washington,

D.C. (May 1969).

5. D. Luckham and N. Nilsson, "Extracting Information from Resolution

Proof Trees," Artificial Intelligence (to appear).

6. J. McCarthy and P. Hayes, "Some Philosophical Problems from the

Standpoint of Artificial Intelligence," in Machine Intelligence 4,

B. Meltzer and D. Michie (Eds.), pp. 463-502 (American Elsevier

Publishing Co., Inc., New York, 1969).

7. B. Raphael, "The Frame Problem in Problem-Solving Systems," Proc.

Adv. Study Inst. on Artificial Intelligence and Heuristic Program-

ming, Menaggio, Italy (August 1970).

8. R. Waldinger and R. Lee, "PROW: A Step Toward Automatic Program

Wri ting, " Proc. Intl. Joint Conf. on Artificial Intelligence,

Washington, D.C. (May 1969) .

34

10.

9. Z. Manna and R. Waldinger, "Towards Automatic Program Synthesis,"

Artificial Intelligence Group Technical Note 34, Stanford Research

Institute, Menlo Park, California (July 1970).

C. Hewi tt , "Planner: A Language for Manipulating Models and Proving

Theorems in a Robot," Artificial Intelligence Memo No. l68 (Revised),

Massachusetts Institute of Technology, Project MAC, Cambridge,

Massachusetts (August 1970).

35

