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Abstract

Narrative planners generate sequences of actions that
represent story plots given a story domain model. This
is a useful way to create branching stories for interactive
narrative systems that maintain logical consistency across
multiple storylines with different content. There is a need
for story comparison techniques that can enable systems like
experience managers and domain authoring tools to reason
about similarities and differences between multiple stories or
branches. We present an algorithm for summarizing narrative
plans as numeric vectors based on a cognitive model of
human story perception. The vectors encode important story
information and can be compared using standard distance
functions to quantify the overall semantic difference between
two stories. We show that this distance metric is highly
accurate based on human annotations of story similarity,
and compare it to several alternative approaches. We also
explore variations of our method in an attempt to broaden its
applicability to other types of story systems.

1 Introduction
Plan-based models of narrative are popular in games and
other interactive systems for tracking causal connections
between events and ensuring plot consistency. Few methods
have been proposed for summarization and comparison
of narrative plans, which could be useful in a variety of
ways. Experience managers could make more informed
decisions by considering differences and similarities
between trajectories of an ongoing story (Jones and Isbell
2014; Amos-Binks, Potts, and Young 2017). Story distance
metrics that are based on human perception may improve the
accuracy of measurements such as plan-set diversity, which
is often used to evaluate narrative planning models and
algorithms (Porteous, Charles, and Cavazza 2013; Farrell
and Ware 2016; Porteous et al. 2020). Our own focus is
toward authoring tools, which could provide better feedback
about the story model being created by clustering stories into
similar groups. For this to be effective, we need a distance
metric that considers similarities between the stories that are
meaningful to humans.

We propose a story distance measurement using a
novel story summarization technique based on a previously
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validated cognitive model. Our method encodes information
about stories as numeric vectors that can be compared using
standard distance calculations for an accurate measurement
of the stories’ overall difference. We test the accuracy of
our distance metric and several alternative approaches in
a human subjects evaluation. We find that our metric is
at least as accurate as all the other methods we tried, and
significantly more accurate than the other summary-based
method. Although it is designed for a specific planning
model, we believe that our approach is flexible and can be
adapted to other kinds of story systems. We attempt to justify
this by testing several variations of our model’s definitions
and showing that they all achieve similarly high accuracy.
Finally, we release our dataset of human annotations of story
similarity to facilitate future research in this area.

2 Related Work
Our technique builds on prior research in adapting the
Event-Indexing Situation Model (Zwaan and Radvansky
1998) for a variety of uses in narrative planning systems.
Indexter (Cardona-Rivera et al. 2012) measured the salience
of past events based on their relatedness to the present event,
where events can be linked through five indices: protagonist,
time, space, intentionality, and causality. Later studies
found that choices are perceived as more meaningful when
their implied outcomes do not share any of these indices
(Cardona-Rivera et al. 2014); and that readers preferred
story endings that shared indices with prior choice outcomes
(Farrell, Ware, and Baker 2020). These studies demonstrate
that by tracking how events are linked in memory, we can
model various aspects of the reader’s perception of the story.
In the present work we use similar constructs but for a
unique goal: to model the reader’s memory of complete or
partial stories. The idea is that by modeling what people
remember about each story and comparing these memories,
we are approximating the process humans undertake when
they mentally make the same comparison.

There is a large body of work on plan-based narrative
models, which adapt classical planning structures and
algorithms for specific purposes related to modeling stories
(Young et al. 2013). This includes models of character
intentionality that govern how characters may act in stories
based on their goals (Riedl and Young 2010; Teutenberg
and Porteous 2013; Ware and Young 2014). The only work
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we are aware of that seeks to summarize the narrative
plans produced by these frameworks is the Important Step,
Intention Frame (ISIF) summary (Amos-Binks, Roberts,
and Young 2016). ISIF summarizes a plan as two sets:
its important steps (having most causal connections to
other steps) and its intention frames (the plans representing
how characters intend to achieve their goals). For a
distance measurement, the authors propose a Jaccard-based
comparison of the overlap between these two sets. The
accuracy of the ISIF distance metric according to humans
has not been previously evaluated. Our approach differs
from ISIF in that we are modeling more narrative features,
and are using a vector representation that captures more
nuanced information.

Common approaches to measuring the difference between
a pair of classical plans include the set difference between
the actions of the plans (Srivastava et al. 2007), and the
edit distance, or number of editing operations required to
convert one plan into the other (Levenshtein 1966). These
methods can be applied to story plans, but since they only
capture syntactic differences, they may not always agree
with human assessments of story similarity. There are also
linguistic approaches for comparing story texts, e.g. BLEU
and ROUGE (Papineni et al. 2002; Lin 2004); these can be
applied to story plans that have been translated into English
sentences. Additionally, language transformers like BERT
(Devlin et al. 2019) project a story text into a latent space
where distance can be measured. We include several of these
techniques in our evaluation to compare the accuracy of our
distance metric to alternative methods. These are methods
for measuring distance, but they do not summarize the
content of stories. Our method is unique; it assigns a numeric
value to the salience of each important story element, which
can serve to summarize the story’s content.

3 Methodology
In this work we represent stories as narrative plans
using a STRIPS-like planning domain (Fikes and Nilsson
1972), where steps in the plan are grounded instances of
parameterized operators, or actions. The following examples
are from the Grammalot domain, which we adapted from a
previous interactive narrative experiment (Ware et al. 2019).
It contains seven actions: walk, buy, attack, rob, loot, arrest,
and wait. It concerns the character Tom and his quest to get
a potion and bring it back home without being attacked by a
bandit or arrested by a guard in the process. The full domain
is described in Appendix A.

Table 1 shows two Grammalot solutions, labeled X and
Y . In X , Tom walks to the crossroads in the daytime and
gets attacked by the bandit. In Y , Tom waits for night,
then walks to the crossroads at nighttime and gets attacked
by the bandit. Each event is represented as a grounded
action containing typed parameters. In the walk operator,
the first parameter is a character, the second and third are
locations, and the fourth is a timeframe. The arguments
used to instantiate a specific instance of the operator are
constants, e.g. Tom, Cottage, Crossroads, and Day for
the action labeled a1X .

Story Action Signature Label

X
walk(Tom, Cottage, Crossroads, Day) a1X
attack(Bandit, Tom, Crossroads, Day) a2X

Y
wait(Tom, Cottage, Day) a1Y

walk(Tom, Cottage, Crossroads, Night) a2Y
attack(Bandit, Tom, Crossroads, Night) a3Y

Table 1: Example stories X and Y

Operators include preconditions, which must be true
in the story world for the action to be applicable;
and effects, which become true when the action is
applied. The action a1X changes Tom’s location
from the cottage to the crossroads: its precondition
specifies location(Tom) = Cottage, and its effect sets
location(Tom) = Crossroads.

We assume that the planning domain uses at least the three
types mentioned: character, location, and timeframe,
and that each operator contains at least one location
parameter and at least one timeframe parameter. We
explain the purpose of these assumptions in the definitions
below. As we discuss in a later section, our model may still
be usable with other story representations. As long as the
entities below can be defined in some way, we believe this
planning representation is not essential.

3.1 Salience Vectors
We summarize a story as a set of five fixed-length numeric
vectors, which we call the salience vectors, because they
represent the relative salience of different entities in the
story at a given time. Each vector reflects one of the five
situational dimensions defined in (Cardona-Rivera et al.
2012). Prior work deals with salience of events based on
links through these dimensions, but here we model the
salience of the entities involved in those links. For example,
if two events are linked through the protagonist index,
meaning they have a character in common, then instead
of modeling the earlier event becoming salient when the
later event occurs, we represent the character they have
in common becoming salient itself. Below we describe the
five dimensions, identify their associated entity types, and
define which entities of each type become salient based on
an action occurrence.

Protagonist The protagonist dimension links events that
involve the same important characters. Since intentional
planners explicitly distinguish between characters who are
responsible for taking the action (the actors, for whom the
planner must justify the action) and those who are involved
in it but not willfully (e.g. a recipient of the action), we use
this information in our definition.

Definition 1. When an action occurs, all characters who are
actors (intentional participants) in the action become salient.

Time The time dimension links events that occur within
the same time frame. We assume the planning domain
explicitly provides the time frame of each operator in its
parameters.
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Definition 2. When an action occurs, all time frames among
its arguments become salient.

Space The space dimension links events that occur in the
same location. As with time frames, we assume locations are
provided as arguments of each action.

Definition 3. When an action occurs, all locations among
its arguments become salient.

Intentionality The intentionality dimension links events
that occur for the same reason. Intentional planners differ
in their representations of character goals and how they
decide which goal an action is contributing to—e.g.
intention frames (Riedl and Young 2010), relevant actions
(Teutenberg and Porteous 2013), explanations (Ware and
Young 2014). We use a model that justifies character actions
using explanations: an explanation is a plan for a particular
goal that a character can foresee at a given time (Shirvani,
Farrell, and Ware 2018). We use the goals of an action’s
explanations to indicate the reasons why the action occurred.

This is not perfect: Some planners may not distinguish
between which of a character’s goals an action is in service
toward, only that it is justified. Even when this information
is modeled by the planner, it is still possible that there are
multiple valid explanations for the character’s action, or that
the audience could interpret the behavior in a completely
different way. We use this limited definition for now but
hope that future work will improve upon it, e.g. through goal
recognition techniques.

Additionally, we extend this definition to include
motivated goals. We say that an action motivates a goal when
it changes the goal condition from being satisfied (true) to
unsatisfied (false). For example, in the Grammalot domain
there is a guard who wants to punish criminals: He has a goal
for each other character that they are either not a criminal,
or have been punished. Initially this is true for Tom: He is
not a criminal. If Tom commits a crime, it becomes false, so
this motivates the guard’s goal to punish Tom.

Definition 4. When an action occurs, all character goals
used in explanations for that action, or that are motivated
by the action, become salient.

Causality The causality dimension links events that are
causally related, meaning the earlier action enables the later
action. Planners can readily access this information through
causal links or equivalent structures: when an action a has an
effect p, a later action a′ has a precondition p, and no action
in between a and a′ negates p, there is a causal link from
a (the parent) to a′ (the child). An action’s causal ancestors
are its causal parents and all actions in the transitive closure
of this relation.

Definition 5. When an action occurs, the action itself and
all its causal ancestors become salient.

Algorithm Algorithm 1 summarizes a given story with a
set of five vectors representing the salience of all entities
at the end of the story. For our work we are interested
in comparing complete stories, so we capture summaries
at the end. To summarize incomplete stories we would
simply halt this algorithm at the desired step. The function

Algorithm 1: Create salience vectors for a given story
procedure SUMMARIZE(story, d)

2: E ← {C, T, L,G,A} . the set of sets of entities
V ← {v1, v2, v3, v4, v5} . such that |vi| = |Ei|

4: Initialize all values in v1...5 to 0.
for action in story do

6: for i in 1...5 do
for j in 1...|Ei| do

8: if SALIENT(Eij , action) then
Vij ← 1

10: else
Vij ← Vij ∗ d

SALIENT(entity, action) returns whether an entity is made
salient by a particular action, based on its type, according to
the definitions given above.

Let d be a constant decay factor between 0 and 1 (we use
0.5 as a default). Let C be the set of characters in the domain,
T the set of time frames, L the set of locations, G the set
of character goals, and A the set of grounded actions. We
define the set of entities E comprising these five sets. The
algorithm begins by initializing the set of salience vectors V
with five numeric vectors, each having length equal to the
number of elements in the corresponding set in E.

Entities are assigned a zero salience value initially,
representing no salience at all. The procedure then steps
through the actions in the story, assigning the maximum
salience value (1) to each entity involved in the current
action, and decreasing the salience of all entities that are
not involved. The resulting set of vectors V represents the
salience of each entity in E at the end of the story.

Table 2 shows the salience vectors after each step in story
X from Table 1, using d = 0.5. Tom’s goal and the bandit’s
goal are abbreviated as gT and gB , respectively, and actions
using the labels shown in Table 1. Some entities whose
values remain zero across all vectors are omitted for space.

After step 1, the entities Tom, Day, Cottage, Crossroads,
Tom’s goal (to get home with the potion), and the action a1X
itself—walk(Tom, Cottage, Crossroads, Day)—are salient.
After step 2, Bandit, the bandit’s goal, and the new action
a2X have become salient. Entities that are still involved
remain salient: Day, Crossroads, and a1X (since it is a causal
ancestor of a2X ). Uninvolved entities have decayed: Tom
(since he was not an actor in the attack), Cottage, and Tom’s
goal. The final row reveals a great deal of information about
the story; e.g. that it ends with the bandit acting on his goal
at the crossroads, that it never involves night or the other
locations and characters (not shown), and which specific
actions are important.

Table 3 shows the vectors for the second story (Y ); we
can see that it, too, ends with the bandit acting on his goal at
the crossroads, but at night and with different actions. The
vectors highlight some similarities between the two stories
as well as some differences; they are similar in terms of their
characters, locations, and goals (v1,v3, and v4), but different
in their time frames and causal structure (v2 and v5).

The fact that the salience vectors contain information
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Step
v1 v2 v3 v4 v5

(characters) (times) (locations) (goals) (actions)
Tom Bandit Day Night Cottage Crossroads gT gB a1X a2X a1Y a2Y a3Y

1 1 0 1 0 1 1 1 0 1 0 0 0 0
2 0.5 1 1 0 0.5 1 0.5 1 1 1 0 0 0

Table 2: Salience vectors after each step in story X

Step
v1 v2 v3 v4 v5

(characters) (times) (locations) (goals) (actions)
Tom Bandit Day Night Cottage Crossroads gT gB a1X a2X a1Y a2Y a3Y

1 1 0 1 0 1 0 1 0 0 0 1 0 0
2 1 0 0.5 1 1 1 1 0 0 0 1 1 0
3 0.5 1 0.25 1 0.5 1 0.5 1 0 0 1 1 1

Table 3: Salience vectors after each step in story Y

about the content of the stories is a key benefit of our
methodology, and an important advantage of our distance
metric over the others we evaluate. The salience of story
entities can be used in a variety of ways beyond the
calculation of a distance measurement. For example, it can
be used to convey what is different between stories, or to
describe a particular group of stories in terms of what makes
them similar or sets them apart from the rest, as well as to
summarize information about solution spaces as a whole.
Specific techniques for accomplishing these goals are not
addressed in this paper; instead we focus on evaluating the
accuracy of our distance metric compared to others.

3.2 Distance Calculation
We define the salience distance SD between two stories X
and Y as a linear combination of the distances between their
corresponding salience vectors of each type:

SD(X,Y ) =
5∑

i=1

wi ∗NSE(viX , viY ) (1)

where wi are relative weights for each dimension, which
sum to 1 (by default we use equal weights, w∗ = 0.2), and
NSE(u, v) calculates the normalized squared Euclidean
distance between a pair of vectors (their squared Euclidean
distance after scaling their lengths to have unit norm). This is
an appropriate function for this case because the magnitudes
of the vectors are not important; only their directions. This
accounts for the unbalanced sizes of the different vectors
(e.g. the causality vector is likely to be much larger than the
other four). The normalized squared Euclidean distance is
always between 0 and 1, so the final salience distance value
is also bound between 0 and 1.

We calculate the salience distance between stories X
and Y from Table 1 using Equation 1, with v1...5X from
the bottom row of Table 2, and v1...5Y from that of Table
3. Since the final v1, v3, and v4 happen to be identical
(characters, locations, and goals are equally salient at the
end of both stories), these contributions to the equation are
zero. The differences come only from the time and causality
vectors:

SD(X,Y ) =0.2 ∗NSE([1, 0], [0.25, 1])

+0.2 ∗NSE([1, 1, 0, 0, 0, . . .], [0, 0, 1, 1, 1, . . .])

The result is a distance value of 0.296, which is relatively
small, as we imagine it should be. Tom either waits for night
or does not, but otherwise the stories are the same. Notice
that these two stories share no identical action signatures, so
metrics like ISIF would consider them highly different. Our
metric is more nuanced; it captures the similarity of some
elements while recognizing differences in others.

3.3 Variations
To demonstrate the model’s flexibility we test several
variations of the definitions given in Section 3.1. Our
protagonist definition distinguishes between actors and
non-actors, but this is not strictly necessary. We test
two alternative definitions: In one, all characters in the
action’s arguments become salient, regardless of their
intent. In the other, only the predefined story protagonist—
Tom in this case—becomes salient when present in the
action’s arguments. We also test an alternative version of
intentionality in which motivated goals are not considered;
only the goals used in explanations for the action become
salient.

Finally, we test two alternative representations of
causality. Properties in our planning system are represented
as assignments in the form fluent = value. For
example, Tom’s location is a fluent, location(Tom), and the
assignment location(Tom) = Cottage states that Tom is
at the Cottage. One alternative definition for causality uses
the set of all unique fluents as entities, rather than grounded
actions; and the other, the set of all unique assignments. In
both cases, a fluent or assignment becomes salient if it is
used in the causal ancestry of the current action, meaning it
is the property that establishes a causal link to the action or
one of its causal ancestors. We did not vary time or space
due to the lack of suitable alternative definitions.

We tested all 18 possible combinations of definitions. The
results in Section 5 show only the best and worst scores
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among these. The best variation was a tie between the two
that used our original protagonist definition with fluents
for causal entities (with and without motivated goals). The
worst variation used the story protagonist definition with
assignments for causality, and included motivated goals.
Results for all variations are included in Appendix B.

3.4 Parameters
We tested all possible combinations of the weights w1...5

ranging from 0 to 1 in increments of 0.1, using the default
decay rate d = 0.5 and the default vector definitions
(Section 3.1). The results in Section 5 show the best and
worst scores achieved using modified weights. The weights
that achieved the highest scores are shown in Appendix C.
They were different between the two analyses and there
were many ties, but one clear trend is that time should be
weighted low or zero for the most accurate performance in
this domain. We also tested different decay rates (0.05 ≤
d ≤ 0.95, in increments of 0.05) using the default weights
and vector definitions. Scores for the best and worst decay
are also shown in Section 5 (best ≤ 0.25, worst = 0.95).

4 Evaluation
Since we are comparing metrics with different scales, we
cannot directly compare their distance values. Instead we
use comparisons between two values: A comparison is a
triplet of solutions 〈REF,A,B〉 where REF is a reference
story and A and B are two other stories, and is interpreted as
the question, "Which story is more similar to the reference:
A, or B?" This condition can be evaluated by any distance
matrix: If the distance between REF and A is less than the
distance between REF and B, then the answer is A. If the
two distances are equal, the answer is undefined; otherwise
it is B. We use human answers as ground truth to obtain
accuracy scores for each metric.

We completed a breadth-first search of the Grammalot
planning problem up to depth 6, which produced 58
solutions ranging from 2 to 6 steps long. Subjects were
recruited using the online crowd-sourcing platform Prolific.
They read a description of the domain (Appendix A), then
completed 8 tasks in which they read a reference story
followed by a pair of stories (shown in random order).
Subjects were randomly assigned a question type: whether
we ask which story is "more similar to" or "more different
from" the reference (and invert their answers accordingly).
To limit cognitive load, the reference story remained the
same for a given participant throughout the whole task, as
did the question type. Equality was not an option; A and B
were the only available answers.

The specific stories we used were randomly selected,
constrained only on the requirement that each subject would
only view one reference story. We first randomly sampled
the solutions for 8 different stories to use as references, then
randomly sampled different stories for A and B. We asked
64 subjects 8 questions each and collected 512 total answers.

We compare salience distance to the following metrics
from the literature. We used each method to produce a
distance matrix containing pairwise distance values for all

58 solutions. Several methods require text input; for these
we first translated the solutions into basic English sentences
(the same translations we showed to participants). The
solutions and translations are included in the linked dataset.

Action Distance is the Jaccard distance between the sets of
grounded actions in each plan (Srivastava et al. 2007).
The Jaccard distance between two sets X and Y is:

J(X,Y ) = 1− |X∩Y ||X∪Y |

ISIF measures a combined Jaccard distance between two
sets of grounded actions taken from each plan. The
important steps (IS) of a story are those with the
most causal connections to other steps. The intention
frame summaries (IF) of a story are the motivating and
satisfying steps of the plans characters enact in pursuit of
their goals. The ISIF distance between two stories X and
Y is defined as:

ISIF (X,Y ) = 1− 1
2

( |ISX∩ISY |
|ISX∪ISY | +

|IFX∩IFY |
|IFX∪IFY |

)
Edit Distance counts the number of insertions, deletions,

or substitutions required to convert one plan into the
other (Levenshtein 1966). We use three variations:
Edit Action applies these operations to whole action
signatures; Edit Symbol applies them at the symbol level
(the action name and parameters); and Edit Word applies
them at the word level using the English translation of
the story set.

BLEU is an automatic evaluation metric for summary
comparison that evaluates textual similarity as co-
occurrence of subsequences between a target text and a
reference text (Papineni et al. 2002).1 BLEU considers
a combined score from multiple lengths of n-grams; we
tested all possible equally-weighted groupings of these
n-gram lengths. To present the range, we report the
lowest-scoring BLEU method (using only unigrams or
unigrams and bigrams) and the highest score (e.g. using
only trigrams—most combinations tied for this score).

Rouge is another text comparison metric similar to BLEU,
but considers a single n-gram length or the longest
common subsequence (Lin 2004). We tested Rouge using
n-grams 1 through 5, and Rouge-L (longest common
subsequence). The lowest Rouge score was a tie between
Rouge-1 and Rouge-L; the highest between Rouge-3,
Rouge-4, and Rouge-5.

BERT (Devlin et al. 2019) is an English language text
transformer which encodes similarities of input texts by
placing them in a latent space. We process each story as
a sequence of sentences and extract the final predicted
position of each sequence in latent space, then calculate
the cosine distance between two of these positions for
a distance measurement. We tested this with both an
unmodified instance of the base transformer and five
tuned instances. For these we processed the text stories
into two datasets for the Next Sentence Prediction and
Masked Language Modeling tasks, and trained BERT
for these tasks for a number of training epochs (1...5).

1We use REF as the reference to which A and B are compared.
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Note that this does not fine-tune BERT on the task of
measuring distance between stories, but on generating
text more like our stories. We report the lowest score
(using the unmodified BERT), and the highest score (the
instance with one training epoch).

5 Results
We compare the metrics in two ways; first using only the
questions where people agreed on an answer, and second
using all the questions. Subjects significantly agreed if at
least 7 out of 8 provided the same answer (binomial test,
p = .039), which occurred for 37 of the 64 questions. Figure
1a shows the results of the analysis using these questions, in
which a metric scores one point for each question it answers
the same as the majority of humans. Undefined answers
(equal distances) are counted as incorrect.

A binomial test indicates that a score of 24 or higher is
statistically better than chance. Most metrics exceed this
threshold. The default variation of Salience answers 34
out of 37 questions correctly (92% accuracy), which is
higher than all other metrics except the best BERT (with
which it is tied) and the best Rouge. To assess whether
any of these differences are significant, we use a z-test
of two proportions. The dotted vertical lines indicate the
thresholds where the test becomes significant: A score of
28 or below is significantly worse than 34, and only 38 or
above, which is impossible, would be significantly higher.
Salience performed very well in this test; it was significantly
more accurate than ISIF and Edit Action, and scored higher
than almost all other metrics, but not significantly higher.

We also measure accuracy using all 512 answers
collected, scoring one point for each individual human
answer the metric agrees with. This effectively weighs the
score for each question by how strongly people agreed on it.
We also award half a point for undefined answers, since in
this case people did not necessarily agree that one answer
is correct. This means that providing a wrong answer is
worse than providing no answer; and that when people
were evenly split (this happened for 5 questions), all three
possible answers (A, B, and undefined) are worth the same
4 points. The highest possible score is 420, representing
agreement with the majority on every question.

Figure 1b shows the results of this analysis. The default
Salience scores 388, and again we show the low and
high z-test thresholds, 360 and 414. Note that no p-value
correction is being applied, so we might reasonably consider
comparisons on the thresholds to be insignificant. Here the
default Salience outperforms all other metrics except the
best Rouge, and significantly outperforms the unmodified
BERT and Edit Word in addition to Edit Action and ISIF.

Dataset The story similarity data can be downloaded at:

http://cs.uky.edu/~sgware/projects/storysimilarity/

6 Discussion and Limitations
Both analyses suggest that intelligently choosing values for
w∗ and d may improve accuracy, although the improvements
here were not significant. Equal weighting appears to be a

good default, but better weights may be informed by domain
knowledge (e.g. dimensions or entities that are more or less
important). The ideal decay value is also likely to vary
by domain, but may be related to measurable properties
like average story length. None of the 18 variations of
Salience were significantly better or worse than the default,
with accuracy ranging from 84-95%. This suggests that our
technique does not strictly depend on one set of definitions,
and may be adaptable to other kinds of story systems.

While most metrics performed well in both analyses,
ISIF is a notable exception. ISIF and Action Jaccard have
a tendency to produce distance values of 1, e.g. for stories
with no identical action signatures, like our example pair
(Section 3). This results in many undefined answers, i.e.
when both distance values are 1, which explains why
they perform better in the second analysis than the first
(undefined answers are worth half credit). Still it was
surprising to see ISIF perform worse than Action Jaccard,
upon which it is based. The difference is that Action Jaccard
compares the full set of actions in both stories, whereas
ISIF only compares actions of specific importance. These
action sets may be helpful toward describing important story
differences, but as a distance metric our study shows it to be
less accurate than considering the full sets of actions.

The text-based methods generally performed well, with
the best being Rouge-3+. This is a viable approach for
measuring story distance, as long as the stories can be
automatically translated into natural language. Note that
these methods are sensitive to different text realizations;
the translations we used are simple and repetitive, which is
helpful to these metrics. Edit Symbol also performed well,
and does not rely on text translations, but does require a
plan-like symbolic representation. Salience is comparable
in accuracy to these approaches, does not depend on text
translations, and does not necessarily depend on a planning
representation either (i.e. the relevant information could
perhaps be extracted from text stories, or otherwise modeled
differently from how we have defined it here). Furthermore,
as noted previously, the primary benefit of salience distance
is that the salience vectors capture meaningful content about
the stories that can explain where their differences and
similarities come from. The other methods, apart from ISIF,
do not have this capability.

We believe this work may be useful for a variety of
research in this field, but our specific purpose is to build
authoring tools that can communicate the content of large
solution spaces to domain authors. In the future we plan
to cluster the set of stories and label the clusters using
information from the salience vectors (e.g. the name of an
entity that is always salient in this cluster and never in
the others). This is why we prefer to use grounded actions
as causal entities rather than fluents, even though fluents
performed slightly better in our evaluation. We find that
grounded actions make more intuitive cluster labels than
fluents; they provide information in a form people expect to
see. Fluents may be preferable for other purposes, however,
since they capture more nuance than grounded actions.

We only used one domain for this study due to limited
resources. This domain models enough variety to capture
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(a) Using the 37 questions humans agreed on (b) Using all questions

Figure 1: Accuracy Results

some differences between metrics, but perhaps we would
see more significant differences in a larger domain. If more
resources become available in the future, we would like to
replicate these results in other domains and with more data,
as this would allow us to draw stronger conclusions.

We showed that our distance metric is effective under
varying definitions, but we did not do this exhaustively.
These definitions are a starting point, but leave room for
improvement, especially as planner intentionality models
improve. Time and space could also be represented
hierarchically. Furthermore it may be worth including other
situational dimensions beyond the five we discuss, e.g.
emotions, ideas, or objects.

What are we missing? Salience with best weights was the
only metric to correctly answer all 37 questions on which
subjects agreed, but this is not a fair metric since we cannot
assume the optimal weights are known. The following is
a question that no fair metric answered correctly, despite
subjects agreeing on its answer with a 7/8 majority.2

(Reference) Tom walks to crossroads. Bandit
walks to market. Guard walks to crossroads. Bandit
walks to crossroads. Bandit attacks Tom.

(A) Tom walks to crossroads. Tom waits for night.
Bandit attacks Tom.

(B) Tom walks to crossroads. Tom walks to
market. Tom buys potion. Bandit walks to market.
Bandit attacks Tom.

According to the majority of our subjects, story A is more
similar to the reference than story B is; yet almost all of the
metrics answered that B is more similar. B contains more
of the same actions and content as the reference compared
to A, so why do humans think A is more similar?

In the reference, Tom goes to the crossroads and does
nothing, while others walk in and out of the market, and

2The story text has been abbreviated here for space.

then he gets attacked. It may seem like Tom bears some
responsibility for this fate—if he had done something
instead of nothing, he might have avoided it. Story A
involves waiting for night, which is semantically similar to
doing nothing. In A, Tom goes to the crossroads and allows
himself to be attacked, while in B, he tries to achieve his
goal but gets attacked in the process. In this light, B feels
different, despite containing many of the same elements as
the reference and being similar in structure and text.

Of course this is just one possible interpretation of why
subjects chose A over B. It may be that waiting is similar to
doing nothing, or perhaps this example reflects another type
of similarity that we are not accounting for, e.g. thematic
or high-level structural similarities. Whatever the case, this
example demonstrates that some semantic similarities are
not captured by any of these metrics. Future work may
benefit from exploring ways to account for situations like
this.

7 Conclusion
We have defined a numeric vector that summarizes a story’s
content by calculating the salience of each entity involved in
the story upon its ending. Distances between these vectors
can model the extent to which two stories are semantically
different from each other. We showed that our distance
metric is accurate according to humans in an example
domain and compares favorably to existing methods for
measuring story distance.

Our approach is unique in that the basis for the distance
measurement is a summary of each story, based on a
cognitive model of story comprehension, which contains
information that can explain the stories’ similarities and
differences in detail. We find the results of this evaluation
promising and intend to explore further applications of the
salience vectors in future work.
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A Domain Description
Tom needs a special potion from the merchant who works
at the market. Tom’s cottage is connected to the market via
a crossroads which also connects to the merchant’s house.
There is a bandit lurking in the crossroads, who is a known
criminal. There is a guard at the market who wants to punish
criminals, but the guard does not initially know where the
bandit is. At night, the merchant takes all her possessions to
her house and goes to sleep.

Figure 2: Initial state depiction

What characters want:

• Tom wants to have the potion and be back at his cottage.
• The merchant wants to sell her items for coins.
• The guard wants to punish criminals.
• The bandit wants to have valuable items (coins and

potions).

What characters can do:

• Walk between connected locations
• Buy something from the merchant (for one coin)
• Attack someone (while armed with a sword)*
• Rob someone who is unarmed (while armed)*
• Rob someone who is asleep*
• Loot something from a dead person*
• Arrest a criminal (only the guard can do this)
• Wait for night (only Tom can do this)

* (Attacking and stealing are crimes.)

What characters have:

• Tom has one coin.
• The merchant has the potion and a sword.
• The guard has a sword.
• The bandit has a sword and one coin.

Stories end when Tom either dies, gets arrested, or returns to
his cottage with the potion.3

3These are the end conditions that constitute solutions to the
planning problem.

B Accuracy for 18 Salience Distance
Variations

The default variation is labeled salience_default. The other
variations are named to indicate which alternative definitions
are used: c=F means it uses fluents for causality; c=A
means assignments for causality; p=A means it uses the “all
characters” definition of protagonist; p=S means the story
protagonist definition; and !M means it uses the version of
intentionality that does not include motivations.

Figure 3: Using the 37 questions humans agreed on

Figure 4: Using all questions
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C Best Performing Weights

Protagonist Time Space Intentionality Causality
0.0 0.0 0.1 0.3 0.6
0.0 0.0 0.1 0.4 0.5
0.0 0.0 0.1 0.5 0.4
0.0 0.0 0.1 0.6 0.3
0.0 0.0 0.2 0.3 0.5
0.0 0.0 0.2 0.4 0.4
0.0 0.1 0.2 0.4 0.3
0.0 0.1 0.2 0.5 0.2
0.0 0.1 0.3 0.4 0.2
0.0 0.1 0.3 0.5 0.1
0.0 0.1 0.3 0.6 0.0
0.0 0.1 0.4 0.5 0.0
0.1 0.0 0.1 0.2 0.6
0.1 0.0 0.1 0.3 0.5
0.1 0.0 0.1 0.4 0.4
0.1 0.0 0.1 0.5 0.3
0.1 0.0 0.2 0.2 0.5
0.1 0.0 0.2 0.3 0.4
0.1 0.1 0.2 0.3 0.3
0.1 0.1 0.2 0.4 0.2
0.1 0.1 0.2 0.5 0.1
0.1 0.1 0.2 0.6 0.0
0.1 0.1 0.3 0.4 0.1
0.1 0.1 0.3 0.5 0.0
0.2 0.0 0.1 0.2 0.5
0.2 0.0 0.1 0.3 0.4
0.2 0.0 0.1 0.4 0.3
0.2 0.0 0.2 0.2 0.4
0.2 0.1 0.2 0.3 0.2
0.2 0.1 0.2 0.4 0.1
0.2 0.1 0.2 0.5 0.0
0.2 0.1 0.3 0.4 0.0
0.3 0.0 0.1 0.2 0.4
0.3 0.0 0.1 0.3 0.3
0.3 0.1 0.2 0.4 0.0
0.3 0.1 0.3 0.3 0.0
0.4 0.0 0.1 0.2 0.3
0.4 0.1 0.2 0.3 0.0
0.4 0.1 0.3 0.2 0.0
0.5 0.1 0.2 0.2 0.0

Table 4: Weights scoring 37 on the first analysis

Protagonist Time Space Intentionality Causality
0.5 0.0 0.1 0.0 0.4
0.6 0.0 0.1 0.0 0.3

Table 5: Weights scoring 411 on the second analysis (both
scored 36 on the first)
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