
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014 113

Versu—A Simulationist Storytelling System
Richard Evans and Emily Short

Abstract—Versu is a text-based simulationist interactive drama.
Because it uses autonomous agents, the drama is highly replayable:
you can play the same story from multiple perspectives, or assign
different characters to the various roles. The architecture relies on
the notion of a social practice to achieve coordination between the
independent autonomous agents. A social practice describes a re-
curring social situation, and is a successor to the Schankian script.
Social practices are implemented as reactive joint plans, providing
affordances to the agents who participate in them. The practices
never control the agents directly; they merely provide suggestions.
It is always the individual agent who decides what to do, using
utility-based reactive action selection.

Index Terms—Exclusion logic, interactive drama, multiagent
simulation, script, social practice.

I. INTRODUCTION

V ERSU is a text-based simulationist interactive drama. It is
available now for iPad (and soon for other devices). The

player starts by choosing an episode. At the time of writing,
the Versu platform contained episodes from three genres: we
have various episodes from a Jane-Austen-esque Regency Eng-
land, some episodes from a modern office comedy, and episodes
from a lighthearted fantasy world. Once the player has chosen
an episode, and selected which character she wants to play, the
game starts.
The player is presented with text and static images describing

the current situation (see Fig. 1). There are two buttons: “act”
and “more.” If she presses “more,” the nonplayer characters
(NPCs) will make decisions autonomously. She can keep
pressing “more” if she just wants to sit back and watch the
situation unfold. At any time, she can interrupt the autonomous
action and interject by pressing the “act” button. This brings
up a large array of choices. She chooses an action, the NPCs
respond autonomously, and play continues.
Versu is a platform for interactive drama (focusing especially

on lighthearted comedy of manners) and supports multiple
styles and genres of fiction. In this game-play example, from
our Regency England setting, the naive young debutante Lucy
and the rakish poet Brown are both dining with the Quinn
family.

Manuscript received October 05, 2012; revised May 06, 2013; accepted
October 08, 2013. Date of publication October 25, 2013; date of current
version June 12, 2014.
The authors are with Linden Lab, San Francisco, CA 94111 USA (e-mail:

richardprideauxevans@gmail.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2013.2287297

Fig. 1. Screenshot of Versu in action.

“The first course is ready laid out on the table, with
salmon at one end and a dish of turbot at the other, together
with a dish of macaroni, muffin pudding, and larded sweet-
breads.

Lucy is at the Quinn dinner table, with their other guests.

The meal has only just begun, but a curious sort of un-
ease hangs over the room; a sense of apprehension whose
source she cannot identify.

Mrs. Quinn gulps her wine down enthusiastically.

Mr. Quinn oversees the serving of a turtle soup from the
great tureen in front of him.”

At this point, Lucy has several options to participate in the
dinner, by sipping her wine or having something to eat. She
also has interpersonal options, including the ability to check out
other people and see whether they seem to be attracted to her.
She chooses to look at Brown.

“Lucy silently studies Brown.

She concludes that he cannot be wholly indifferent to her
charms.”

Encouraged by what she has seen, she will now give him a flir-
tatious sort of look.

1943-068X © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

114 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014

“Lucy gives Brown a demure yet intriguing look under
her lashes.

Brown smiles at Lucy in a way that conveys a strong
encouragement.”

Success! Lucy has established an initial relationship with
Brown.

“Brown rises from the table, taking his glass of wine.

Brown (to Lucy): You are truly a Muse!

Brown: I apologize, but I must go: I feel a sonnet coming
on.

He gives a flourishing parting bow. He swaggers out of
the dining room on his way to the study.”

Now other characters react to Brown’s departure.

“Mr. Quinn: Perhaps Brown is sickening for some-
thing.”

Now Lucy can choose how to interpret Brown’s abrupt exit.
She could be dismayed by his poor manners, or intrigued by
his decision to go write a sonnet. We select for her to be sad that
he has left.

“Lucy watches Brown go with a disappointed expres-
sion in her eyes.

Frank expresses a similar concern over Brown’s health.”

Lucy’s sadness about Brown going means that her eating op-
tions become centered on expressing unhappiness.

“Lucy picks joylessly at the dish of buttered macaroni.”

In addition, because everyone is talking about Brown’s ill health
and strange behavior, she has the conversational option to de-
fend him by mentioning a positive evaluation she has made
about him.

“She defiantly says that Brown is so handsome.”

Because Lucy has expressed admiration for Brown, and Frank
is the jealous type, we trigger another one of the situations avail-
able in this dining scene. Frank challenges Lucy about her crush.

“Frank (to Lucy): Oh, enough! Pray spare us more of
your calf-eyes.

Frank (to Lucy): Do you truly think that a man like
Brown would be so captivated by a girl like you as to marry
you? Do you not realize that he has his choice of London?
And he has hardly lived as a monk, I may add!”

II. A SIMULATIONIST INTERACTIVE DRAMA

Versu is an interactive drama. It is an improvisational play,
rather than an interactive story. The player is encouraged to
perform her character, to improvise within the dramatic situa-
tion that she has been thrown into. The smallest comment, the
slightest look, even not saying something—these moment-to-
moment actions are noticed by the other participants and ampli-
fied. In this respect, Versu resembles Façade. But while Façade
uses an architecture built around beats and joint behaviors (JBs),

Versu is an agent-driven simulation in which each of the NPCs
makes decisions independently.
When building an interactive narrative system, one of the fun-

damental design decisions is whether the individual agents or a
centralized drama manager (DM) gets to decide what happens
[21]. At one end of the spectrum, a strong story system is one in
which the DM makes all the decisions. The NPCs have no indi-
vidual autonomy; they are just puppets of the DM. At the other
end of the spectrum is the strong autonomy system, in which
the NPCs make decisions based on their own individual pref-
erences, unaware of authorial narrative goals. Façade occupies
the middle ground on this axis: a centralized DM chooses the
next beat, but the individual agents and JBs have some limited
control over how the beat is played out.
Versu, by contrast, takes the strong autonomy approach. Each

character chooses his next action based on his own individual
beliefs and desires. There is a centralized DM, but it is rare
indeed for the DM to override the characters’ autonomy and
force them do something. Instead, the DM typically operates at a
higher level—by providing suggestions, or tweaking the desires
of the participants.
Why did we choose a strong autonomy approach in Versu?

There were two main reasons. First, a true simulation provides
muchmore opportunity for replayability. In Façade, many of the
behaviors are hard-coded to the particular characters who are in-
volved in them. In Façade, there is no general making cocktails
activity. Instead, there is the particular activity of Trip making
cocktails. Because the scripts and characters are entangled to-
gether, it would be hugely nontrivial to replace a character in
Façade with another (replacing Trip with Captain Kirk, say). It
would involve rewriting most of the behaviors.
In Versu, the social practices are authored to be agnostic about

which characters are assigned to which roles. This means that
we can assign various different characters to the roles, and ev-
erything just works. In a Versu-authored version of the Façade
situation, you could play Grace, or Trip, or the guest. You could
assign different characters to the various roles, and see what
happens.
The simulation makes a clear distinction between roles in a

story and the characters playing those roles. A romance might
have a hero, a heroine, a friend, and a jealous rival. The player
is free to assign various characters to those roles. She could
make Mr. Darcy the hero, and Elizabeth Bennett the heroine;
or, she could make Mr. Collins the hero, and Miss Bates the
heroine. The episode will play out very differently depending
on which characters are playing which roles. If there are roles
and characters to play those roles, we have
permutations.
Relatedly, the scripts in Façade assume that the player is al-

ways playing the guest, and the hosts are always played by
NPCs. If you wanted to rework it so that you could play Trip
or Grace, this would involve a major rewrite. In Versu, because
the social practices are authored to be character agnostic, you
can play the same story from multiple perspectives. You can try
out the job interview from the perspective of the interviewee,
or the interviewer. You can even play it as the DM. An episode
with two roles could be played by two humans in multiplayer,
one human playing either role, or both roles played by the AI.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

EVANS AND SHORT: VERSU—A SIMULATIONIST STORYTELLING SYSTEM 115

More generally, an episode with roles has permutations of
player-NPC assignments. The first reason, then, that we com-
mitted to a simulationist architecture is because we wanted to
maximize replayability.
The second reason for choosing strong autonomy is that a

simulationist architecture allows the player more control over
the outcome. A simulated system has clear rules which the
player can learn and internalize. Once she has confidence that
she has understood the internal mechanisms, she can use these
to anticipate the consequences of future action, and plan how
to achieve her goals. A nonsimulated system risks being just
a series of arbitrary puzzles, in which the player is forced to
guess the changing whims of the designer. A simulation, by
contrast, uses the same models repeatedly. The player can build
up confidence that she understands the underlying system—and
increased understanding can yield increased control.

III. ADDRESSING THE DESIGN QUESTIONS RAISED BY FAÇADE

Some of the crucial initial design decisions in Versu were
made by looking hard at what Façade achieved. We focused on
Façade in particular because it is such a substantial achieve-
ment. In [8], when evaluating the successes and failures of
Façade, Mateas and Stern mention three outstanding issues in
particular.
• The speed of content production and global agency. Be-
cause of the intricate animation overlaying and parallel
behaviors which needed to be authored for most actions,
adding a new piece of content to Façade was a time-con-
suming task. In the end, after three plus years in develop-
ment, they only had time to author 27 beats. The amount of
global agency (the ability for the player to affect the overall
arc of the story) is limited by the amount of content, so in
the end, the player did not have as much ability to affect
the outcome of the story as the authors had initially hoped.

• Feedback. Façade involved three social “head games,”
played one after the other (an affinity game, a hot-button
game, and a therapy game). By design, the state of each
game was not communicated directly (via numbers of
spreadsheets or sliders), but indirectly by gesture and tone
of voice. (The authors wanted to maintain the sense that
this was a drama rather than a computer game.) But this
design decision made it very hard for the player to tell the
state of the simulation.

• Interface. In Façade, the player can type any text she
wishes. But the parser will attempt to shoehorn all the
player’s sentences into one of 30 parametrized discourse
acts. Unfortunately, the player’s utterance cannot always
be fitted into one of these 30 specific actions, and even if it
could, the parser often cannot see how it could. The player
can feel like she is fighting the parser, rather than using it
effortlessly as a tool to communicate with.

We tried to make sure that Versu had good answers to the three
issues which Mateas and Stern identified.
• The speed of content production. To speed up content
production, we eschewed Façade’s 3-D procedurally an-
imated characters for (procedurally generated) text and
static images.

• Feedback. We added various visualizations to the user in-
terface (UI) so the player can see at a glance the state of
the simulation.

• Interface. We replaced the parser with a simpler menu in-
terface. The affordances provided by each social practice
are displayed explicitly to the player. She acts by clicking
on a button.

We will go through each of these three decisions in turn. But
first, a point of clarification: it may look like each of these re-
sponses to issues in Façade are just simplifications that allowed
us to avoid the hard problems that Mateas and Stern were brave
enough to tackle head on. But these decisions were not just a
cop-out—they were pursued in order to allow us to be more
ambitious in our simulational goals. We will return to this point
repeatedly below.

A. Text Output

Façade wholeheartedly embraced the “holodeck” vision of
interactive drama in which character behavior is rendered real-
istically in multiple modalities: 3-D characters, parallel anima-
tion, recorded speech. This, of course, is one of the main rea-
sons why it took so long to add a new behavior: it is time con-
suming getting the animations blending correctly and achieving
synchronization with other actors.
Now there is nothing wrong with realistic rendering of char-

acters, but neither is it necessary. We agree with Salen and Zim-
merman [26] that the level of immersion does not necessarily
increase with extra levels of realism. A text output can be just
as immersive as a 3-D animated environment. To think other-
wise is to be seduced by what Salen and Zimmerman call the
“immersive fallacy.” Versu does not use fancy 3-D animation
or voice actors; the output is dynamically generated text and
static images. Text output certainly makes it quicker to produce
behavior (later, we will describe how we managed to produce
an order of magnitude more behaviors than Façade in a shorter
time frame). But that is not its only advantage. It is not just that
text is cheaper than 3-D animation; it is also more expressive.
1) Text as an Expressive Medium—Interiority: Before we

started developing Versu, when working on The Sims 3, we
came across a revealing situation which highlighted the advan-
tages of text output for revealing interiority. There was a chron-
ically shy Sim who was hosting a party. Some of the guests
had rung the door, and were waiting to be ushered in. The shy
Sim was sitting on the couch, deciding what to do. Debug-
ging his internal state, we could see that he was conflicted: the
norms of social propriety dictated that you should answer the
door when invited guests come over. But his own chronic shy-
ness gave him a strong countervailing reason for not answering
the door: he very much wanted to be alone. Within the deci-
sion-making system that we were using, the Sim had a hard
choice between answering the door and refusing to do so. But
neither of these options captured what the Sim wanted to ex-
press: what should have happened is that the Sim answered the
door reluctantly. Here, we express his internal conflict through
an adverbial modifier.
Now, in a 3-D game with animated polygonal characters,

adding an adverbial modifier to an action is a hugely expensive
process: we would need a separate animation for answering the

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

116 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014

door reluctantly, and we would also need a separate walk cycle
for reluctant walking. Given a large set of animated actions, each
adverbial modifier we add would require a prohibitively large
number of additional animations. But in a text game, adverbial
modifiers are much cheaper: we can modify a verb by simply
appending an adverb to the sentence. Adverbial modifiers are
useful in many ways: we can use them to express internal state,
to express the reason for action, and also to express individual
personality.
2) Text as an Expressive Medium—Individuality: Wewanted

each character in Versu to have a unique personality and we
wanted their individuality to be expressed throughout their
actions. Text output made it feasible for each character to have
a unique text override for many actions. For example, in most
3-D games, each character uses the same generic walk cycle.
But in Versu, each character has an individual way of walking:
Brown swaggers, Frank Quinn walks ponderously, George
Wickham strides, Lady Catherine hobbles, while the pug dog
waddles.

B. Feedback

When designing ways to help the player understand the social
simulation, we were guided by Wardrip-Fruin’s concept of the
Sim City effect [34]. When playing a game which simulates
some aspect of experience that the player is already familiar
with, the player starts by using her own model of how it works.
But the simulation will inevitably diverge from reality in various
ways. If things go badly, the divergence between the player’s
understanding of the phenomenon and the simulation’s model
of the phenomenon will prevent the player from understanding
or manipulating the system. The Sim City effect occurs when
the user interface helps the player to transition from her original
model of how the thing actually works to how the simulation
models it. If this works properly, the player ends up with an
accurate model of how the simulation models the phenomenon,
without having had to read a manual or a textbook.
Our simulation is based on fine-grained emotional states, re-

lationships, and social practices. We made sure that the user in-
terface exposed these to the player transparently.1

To help the player understand the characters’ moods and re-
lationships, we added a portrait of each character at the bottom
of the screen (see Fig. 2). Each character has various emotional
states he can be in (based on Ekman’s typology [4]), and each
character has a different portrait for each emotional state. When
the player clicks on a character portrait, she sees why that
character is in that particular mood: each character remembers
who the emotion is directed toward (e.g., I am annoyed with
Brown), and the event which prompted the emotional change
(e.g., Brown’s insult).
Our simulation is unusual in that there are multiple indepen-

dent social practices running concurrently (this is described in
detail below). To help the player understand the state of the
various social practices that are currently in play, we organized

1A danger with exposing the simulation internals is that the experience starts
to seem less like a drama and more like a computer program. We worked hard
to make sure that the emotions, relationship states, and social practices were ex-
posed in a way that kept the player immersed within the world we were creating.

Fig. 2. Each character’s emotional state is displayed along with explanatory
text.

the affordances around the practices which initiated them. For
example, if the player’s character is in the middle of a dinner
party, and Brown has just made a rude remark, there will be two
social practices running concurrently: the dinner party (pro-
viding affordances to eat, drink, etc.) and the current conver-
sation (providing affordances to disapprove of Brown, forgive
him, etc.). The affordances are arranged in categories, grouped
by the social practice that instantiated them, so that the player
begins to understand the underlying simulation state. The text
for each social practice is carefully worded to display its cur-
rent state.

IV. ARCHITECTURE OVERVIEW

Our simulation is built up out of two types of objects: agents
and social practices (see Fig. 3).
A social practice describes a type of recurring social situation.

Some social practices (e.g., a conversation, a meal, a game) only
exist for a short time, while others (e.g., a family, the moral
community) can last much longer.
A practice coordinates agents via the roles they are playing.

For example, a greeting practice sees the two participants under
the descriptions of greeter and recipient.
The main function of the social practice is to describe the

actions the agents can do in that situation. A greeting practice,
for example, tells the greeter how he can greet the recipient. It
also tells the recipient the various ways she can respond.
The practice provides the agent with a set of suggested ac-

tions, but it is up to the agent himself to decide which action
to perform, using utility-based reactive action selection. This is
described in Section IX.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

EVANS AND SHORT: VERSU—A SIMULATIONIST STORYTELLING SYSTEM 117

Fig. 3. The architecture of the simulator. Data is placed in rectangles, and processes in ovals. This diagram shows the information flow when an NPC makes a
decision. The same architecture is used for player choice—except the Action Instances are sent directly to the user-interface, rather than to the Decision Maker.

In Versu, we allow multiple practices to exist concurrently.
During a dinner party, for example, there will be multiple prac-
tices operating at once:
• eating and drinking (and commenting on the meal);
• the conversation about politics;
• the rising flirtation between Frank and Lucy;
• responding to the fact that Mr. Quinn has spilled the soup.

Each of these practices provides multiple affordances. The
agent’s set of options is the union of the affordances from each
of the practices he is participating in.
Some practices are organized into states, so that they can pro-

vide different affordances in different situations. But a social
practice is significantly more powerful than a finite-state ma-
chine, in two main ways. First, each practice can store arbi-

trary persistent data,2 while the only memory a state machine
has is the state it is in.3 Second, the only possible effect of a fi-
nite-state machine’s action is transitioning from one state to an-
other. A Versu action can do much more than change the state
of the practice: performing an action can result in any sentence
being added to the world database. The results of adding new
sentences can be that relationships are updated, new beliefs or
desires are formed, old practices are deleted, or new practices
are spawned.

2Thewhist game, for example, storeswhich cards have been assigned towhich
players,which suit is trumps,whose turn it is to play, and the score. See [10] for an
early descriptionof howpractices need their ownmemory to “keep score.”
3Because the finite-state machine’smemory is limited by the number of states,

it is not Turing complete.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

118 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014

V. THE ARCHITECTURE

In this diagram, boxes represent data and ovals represent pro-
cedures which operate on that data.4

Wewill start from the top of the diagram andwork downward.
Creating an episode involves three types of scripts:
• scripts defining the social practices that can be instantiated
during the episode;

• scripts defining the initial state of the characters that may
be participating in the episode;

• a script defining the initial world state.
All scripts are authored in a high-level domain-specific-lan-
guage designed specifically for this simulation: Praxis.5

When the episode starts, we execute the world initialization
function, and then execute the character initialization function
for each character who is selected to participate in the episode.
At this point, the database contains the initial world state.
Social practices can be parameterized by arguments, so they

can be multiply instantiated with different values for the argu-
ments. Each practice type specifies a set of actions together with
their preconditions. The actions available to a character at any
given moment are determined by all the actions of the currently
instantiated practices whose preconditions are satisfied.
Agents score each available action (see Section IX) and then

execute the highest scoring action. Actions may modify the
database and/or generate text.
The diagram is almost symmetric, with social practices on the

left-hand side, and characters on the right-hand side. The reason
it is not entirely symmetric is that there are multiple social prac-
tice instances for each social practice type (e.g., there may be
two instances of the whist game practice type occurring simul-
taneously in two different rooms), but there is only one character
instance for each character file.
The diagram does not call out the DM explicitly. This is be-

cause each episode’s DM is implemented as a special type of
social practice. A DM is not a new type of entity: it is just a par-
ticular type of practice.6

VI. HOW WE REPRESENT THE WORLD

A. The World Is Everything That Is the Case

In the Praxis system, the simulation state is entirely deter-
mined by a set of sentences in a modal logic.7 The set of sen-
tences is the complete simulation state. There are no objects,

4Sometimes if a procedure is used in multiple ways (e.g., the function inter-
preter which sometimes interprets a world initialization function and sometimes
a character initialization function), that procedure is drawn twice, to make it
easier to see the flow of data through the system.
5Praxis contains a number of decisions which are logically independent:

1), the decision to model social practices as first-class objects; 2) the use of a
strongly typed logic-formalism to model simulational state; and 3) the use of
exclusion logic as the logic of choice.
6The DM is described in Section XI.
7A modal logic, in the broad modern sense, is a logic which contains non-

truth-functional operators for talking about relational structures (see [1, p. xi]).
Previously, the term “modal logic” was restricted to logics which treat the stan-
dardmodalities of necessity, possibility, knowledge, belief, time, deontic modal-
ities, etc.

or pointers, as traditionally conceived. Representing the world
state as a set of sentences has a number of advantages.
• Visibility. The entire world state is completely open to in-
spection. Nothing is hidden. If you want to know, for ex-
ample, if there is anyone in the current simulation state who
is in the same room as someone they dislike, you just need
to form the query. There is no need to ever write code to
access the state of the world because the entire state of the
world is represented in a uniform manner and is already
open to view.

• Debuggability. You can place logical breakpoints to detect
which practice is responsible for making a fact true. This
is much more powerful than traditional code breakpoints
or data breakpoints.

• Serializability. Because the world state is represented in a
uniform manner, it is trivial to serialize and deserialize the
world state.

The main advantage is visibility. We found, in previous simu-
lations we have worked on, that the main factor which makes it
hard to improve the quality of the AI is the difficulty in seeing
the entire simulation state. Bugs lurk in the darkness. In this
architecture, where the world is a set of sentences, nothing is
hidden.
The simulator comes with a runtime inspector, which gives

developers complete access to the internal state of the simula-
tion. The inspector allows them to:
• find out what is true;
• print all facts about an object, an agent, or a process;
• find all instantiations of a term with free variables (e.g.,
find me everybody who Brown has annoyed);

• find out why an action’s preconditions have failed;
• find out what is causing a fact to become true.

B. Sentences, Practices, Agents, and Affordances

The world is a set of sentences in a formal logic. Sentences
which contain the distinguished process keyword make prac-
tices active. Sentences containing the distinguished agent
keyword makes agents active. These practices provide affor-
dances to the agents. When an agent chooses to perform one
of these affordances, the world state is changed: sentences are
added and removed from the database. The database changes
can change the set of available practices, and the loop begins
again. In summary:
• sentences being true make practices and agents active;
• practices propose affordances to agents;
• performing affordances updates sentences in the database
(which might mean that different practices are now avail-
able, providing different affordances).

VII. EXCLUSION LOGIC

Theworld state is defined as a set of sentences in a logic called
exclusion logic [5]. This modal logic is particularly well suited
for modeling simulation state in general, and social practices in
particular.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

EVANS AND SHORT: VERSU—A SIMULATIONIST STORYTELLING SYSTEM 119

Given a set of symbols, the literals8 in exclusion logic are
defined as all expressions of type in

We use the “!” and “.” operators to build up trees of expressions.
For example:
• brown.sex!male: Brown is male;
• brown.class!upper: Brown is upper class;
• process.dinner.dining_room.participant.brown: Brown is
one of the people having dinner in the dining room;

• process.dinner.dining_room.participant.lucy: Lucy is one
of the people having dinner in the dining room.

Asserting that is claiming both and one of the ways in
which is . Saying that , by contrast, is to say that is
the only way in which is the case. The semantics of exclusion
logic are described in [5].
The two things that distinguish exclusion logic from tradi-

tional predicate logic are:
• the ability to directly represent tree structures;
• the exclusion operator.

A. Exclusion Logic Literals Represent Tree Structures

Consider the following facts about Brown:
• brown.sex!male;
• brown.class!upper;
• brown.in!dining_room;
• brown.relationship.lucy.evaluation.attractive!40;
• brown.relationship.lucy.evaluation.humour!20.

This is a declarative representation of a tree structure, imple-
mented as a trie [9]. A group of shared literals has a shared
prefix (in this case, “brown”), and the subtree can be referred
to directly by its prefix. The subtree can be removed in one
fell swoop by deleting its associated prefix. For example, we
can remove all of the facts about Brown by deleting the term
“brown.”9 A prefix (referring to a subtree) is the Praxis equiva-
lent of an object in an object-oriented programming language.
The structure of literals allows us to express the lifetime of

data in a natural way. If we wish a piece of data to exist for
just the lifetime of an object , then we make the prefix of be
the prefix of . For example, if we want the beliefs of an agent
to exist just as long as the agent, then we place the beliefs inside
the agent:

mr_collins.beliefs.clergymen_should_marry

Or if we want the state of a game to exist just as long as the
game itself, then we place the state inside the social practice for
the game:

process.whist.data.whose_move!brown

8The database (representing the current world state) is just a collection of
ground literals. But the queries that can be expressed in the Praxis language are
all propositions of type , using the familiar connectives

9Compare this with prolog, where it is much harder to remove all sentences
containing a particular symbol. You can remove all predicates of a certain arity,
but you would have to separately remove the various different groups of predi-
cates of different arities.

A related advantage of exclusion logic is that we get a
form of automatic currying [32] which simplifies queries. If,
for example, Brown is married to Elizabeth, then we might
have “brown.married.elizabeth” in the database. In exclusion
logic, if we want to find out whether Brown is married, we can
query the subterm directly; we just ask if “brown.married.” In
traditional predicate logic, if married is a two-place predicate,
then we need to fill in the extra argument place with a free
variable. We would need to find out if there exists an such
that “married(brown, X).” This is more inefficient as well as
being more verbose.

B. Automatic Removal of Invalid Data

The exclusion operator supports the automatic cleanup of
data which is no longer referenced.10 For example, a social prac-
tice might have two states and . State might have two
pieces of information and . State might have three pieces
of information , , and . Being in state would be repre-
sented as

State would be represented as

Now, if we are in state (because the statement is true),
and we switch to state (by inserting into the database), all
the local data from state are automatically removed from the
database according to the update rules for exclusion logic.

C. Simple Postconditions

When expressing the preconditions and postconditions of an
action, STRIPS11 has to explicitly describe the propositions that
are removed when an action is performed:

action move(A, X, Y)
preconditions

at(A, X)
postconditions

add at(A, Y)
remove at(A, X).

STRIPS finesses the frame problem [12] by using the
closed-world assumption: anything that is not explicitly
specified as changing is assumed to stay the same. But there is
still residual awkwardness here: we need to explicitly state that
when moves from to , is no longer at . It might seem
obvious to us that if is now at , he is no longer at ; but
we need to explicitly tell the system this. As Orkin writes [19]:

“It may seem strange that we have to delete one assign-
ment and then add another, rather than simply changing the
value. STRIPS needs to do this, because there is nothing in
formal logic to constrain a variable to only one value.”

Exclusion logic is a formal logic designed to express directly
the natural idea that certain variables can only have one value.

10This is a form of simplified belief revision, or garbage collection.
11These comments apply equally to the planning domain definition language

(PDDL).

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

120 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014

The interpretation of the exclusion operator means we do not
need to specify the facts that are no longer true:

action move(A, X, Y)
preconditions

A.at!X
postconditions

add A.at!Y

When using exclusion logic, the postconditions are shorter and
less error prone. The “!” operator makes it clear that something
can only be at one place at a time.

D. The Exclusion Operator Helps the Author
Specify Her Intent

The semantics of the exclusion operator remove various
error-prone bookkeeping tasks from the implementer. But
perhaps the exclusion operator’s main benefit is that it allows
the Praxis scriptwriter to specify her intent more precisely.
When we specify that, for example12:

A(agent).sex!G(gender).

We are saying that an agent has exactly one gender. This ex-
clusion information is available to the type checker, which will
rule out any piece of code which suggests that an agent can have
multiple genders.
Some modern logic-programming languages are starting to

add the ability to specify uniqueness properties of predicates
[31], but they treat uniqueness properties as metalinguistic pred-
icates. Praxis is the first language to treat exclusion as a first-
class element of the language.

E. Support Tools for Praxis

A domain-specific language needs a number of support tools
before it becomes really usable for production work. Praxis
comes with a number of tools13 to make the scriptwriter’s life
easier.
• A type-checking system to find errors early. Praxis is
strongly, but implicitly typed14: the author does not have
to specify the types of all variables; instead, the system
will infer the types of all variables and complain if a
consistent assignment cannot be found.

• An inspector for giving the author runtime access to the
precise state of the simulation.

• A playback facility. The game stores the exact set of ac-
tions chosen by the player during a game, and writes them
to a file. This allows the author to reproduce exactly a pre-
vious playthrough. This playback feature required that we
kept the simulator fully deterministic at all times.

• A stress-test tool which runs hundreds of instances of the
game simultaneously, with all characters controlled by the
computer. By running multiple instances of the game at
high speed, we are able to find bugs and anomalies quickly.

12This is a typing judgement in Praxis, saying that a variable (of type
agent) has a unique sex (of type gender).
13When designing the inspection tools, we were heavily indebted to the so-

phisticated authoring tools in Inform 7.
14Compare ML and Haskell.

VIII. SOCIAL PRACTICES

A. Regulative Versus Constitutive Views of Social Practice

At the heart of the technical architecture is a commitment to a
constitutive view of social practices. We will explain what this
means by contrasting it with the alternative regulative view of
social practices.
1) The Regulative View of Social Practice: Imagine a group

of agents, each with his own set of goals and available actions.
At any decision point, an agent chooses the action which best
satisfies his goals (or expected goal satisfaction, once we take
probabilities into account).
In this individualist picture, a social practice is just a set of

restrictions on available actions which allows us to collectively
increase our utility. For example, the driving-on-the-left prac-
tice restricts our actions (we can no longer drive on the right).
We are prepared to accept this limitation on our freedom be-
cause it lowers the probability of a collision.
2) The Constitutive View of Social Practice: According to

the regulative picture, agents could act before they participated
in practices. They already had goals, and already understood
what actions were available to them. These were already given.
All the social practices do is allow us to solve various coordi-
nation problems.
The constitutive view (first articulated explicitly by Rawls

[20])15 rejects this assumption. According to the constitutive
view, the action is only available within the practice. A nice ex-
ample from Rawls’ original paper is the game of Chess: you
can move a carved piece of ivory from one square to another,
but you can only move your pawn to King 4 if you are playing
Chess. Again, we can utter a series of noises which sounds like
“Ay doo,” but this only constitutes a marriage vow in the con-
text of a wedding ceremony. The action is only available in the
practice.
One way to see the need for a constitutive view of practice

is to consider the vast array of actions we could possibly do
now. Sitting here right now, we could lend the stranger on our
left 10 pounds; we could tell the other stranger on our right that
Paris is the capital of France; we could ring up our spouse and
enumerate the prime numbers.
With an infinite number of actions available to us, why are we

not overwhelmed with choice? How do we ever find the time to
make a decision?
In the constitutive view of practice, the affordances are al-

ways embedded in the practices. The agent does not see the ac-
tion as available unless he is already participating in the practice
which makes it visible. The agent is not overwhelmed by an infi-
nite number of choices because he only sees the affordances that
are provided by the social practices he is in. It is this constitutive
model of social practices which lies at the heart of our simula-
tion. In our implementation, we take this idea literally: every
affordance is contained within a practice and is only available
if that practice is instantiated.

15But this view has a long history and can certainly be traced back toWittgen-
stein [29] and Heidegger [3], and arguably to Hegel [2] and beyond.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

EVANS AND SHORT: VERSU—A SIMULATIONIST STORYTELLING SYSTEM 121

B. Role Agnosticism

Tomasello [33] has argued that one of the critical differences
between the great apes and humans is that, although both apes
and humans can participate in practices, only humans are able
to effortlessly switch roles. As soon as a human infant (as young
as two) participates in a practice, she adopts a bird’s eye view of
the practice, which means she is able, after participating once,
to suggest we play again, with roles reversed. Other creatures
do not exhibit the ability to play a practice from multiple roles.
A great ape can participate in many sorts of practice, but he is
locked in to the role which he played. He cannot see the practice
from a bird’s eye perspective. This is a distinguishing feature of
humans.
One of our big goals in Versu was that each practice would

be role agnostic: it would be authored without knowing which
roles were being played by NPCs and which by human players.

C. Representing Social Practices

A social practice is a hierarchical collection of affordances,
providing various options to its participants (who are character-
ized solely in terms of the roles they are playing).
A social practice is represented with the keyword process.

Processes are specified with declarations, for example:

process.greet.X(agent).Y(agent)
action “Greet”

preconditions
// They must be co-located
X.in!L and Y.in!L

postconditions
text “[X] says ‘Hi’ to [Y obj]”

end

Here the term associated with the process is:

process.greet.X.Y.

The processes can then be instantiated any number of times by
adding sentences to the knowledge base. For example, if we add
the following assertion:

process.greet.jack.jill

then the process will be active with substitutions [jack/X, jill/Y].
If, furthermore, Jack and Jill are in the same location:

jack.in!hill
jill.in!hill.

Now the preconditions of the action are satisfied and the greet
action will be available to Jack on Jill. If we added another term:

process.greet.jill.jack

then another instance of the process will be active with substi-
tutions [jill/X, jack/Y], and the greet action will be available
to Jill on Jack.
The language for describing actions has a number of the fea-

tures described in PDDL [14]:
• disjunctive preconditions;
• negation in preconditions (using negation as failure);

• quantified preconditions (both universal and existential
quantifiers can be nested arbitrarily);

• expression evaluation (the ability to perform numeric
calculations);

• domain axioms (the ability to define new predicates and
relations in terms of existing relations);

• conditional effects in postconditions.

D. Respecting the Normative

Many of the practices we authored had their own individual
sense of the normative. During a conversation, you should re-
spond when spoken to, you should respect the salient topics, etc.
[25], [30]. During a meal, you should be polite about the food,
etc. But the player still has a choice; she can always violate the
norms if she wants to. The major requirements for modeling the
normative were that:
• NPCs understand what they should and should not do;
• NPCs, if left to their own devices, should respect the norms
(unless they have some particularly acute personality de-
viation which overrides their urge to respect the social
mores);

• but the player should be free to violate these norms at any
time;

• if the player violates a norm, the others should notice and
respond accordingly.

To get NPCs to respect norms, we add postconditions to norm-
violating actions to mark that a norm has been violated. We sim-
ilarly add postconditions to actions which should be performed
to mark that a requirement has been respected. We give most16

agents strong desires to respect the social norms.When deciding
what to do, the agents will see the consequences of their actions.
If they see a norm-violation consequence, that will be a major
disincentive.
Although NPCs typically do not violate norms, the player is

allowed to do whatever she likes. If the player does step outside
the bounds of propriety, the NPCs should notice and respond ac-
cordingly. Getting drunk, insulting the wine, refusing to answer
when spoken to, all these norm violations are only fun to play
if they are noticed. When a norm violation occurs, the practice
which kept track of the norm spawns a subpractice whose job
is to mark that a violation has occurred. This responsive prac-
tice will provide options to the others: disapproving, forgiving,
getting angry, and even (in extreme circumstances) evicting the
character altogether.

IX. AGENTS

A. Autonomy

When an agent is deciding between various possible actions,
he looks at the consequences of each action, and chooses the
action which best satisfies his desires. He uses forward chaining,
rather than goal-directed backward chaining.17

16The DM will occasionally lower these desires for certain agents (e.g., our
rakish poet, Brown) when it wants them to behave outlandishly for dramatic
purposes.
17SHOP [17] uses a similar approach: “Since SHOP always knows the com-

plete world-state at each step of the planning process, it can use considerably
more expressivity in its domain representation than most planners.”

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

122 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014

This is a form of utility-based reactive action–selection [11],
[23], rather than a full-blown planner. But it is an unusual utility-
based method in that it is highly responsive to the fine details of
the simulation.
In most systems which use utility-based decision making, the

agent’s estimation of the consequences of the action is much
simpler than the actual consequences. For example, in The Sims,
when a Sim decides to go to the toilet, the actual consequences
of the action are:
• routing into the bathroom;
• if there is someone already in the room, he expresses frus-
tration, and exits;

• otherwise, he locks the door, sits down, and relieves his
bladder motive.

These are the actual consequences. But the estimated conse-
quences are much simpler. When considering going to the toilet,
all he sees about the future is:
• he will relieve his bladder motive.

This discrepancy (between the actual and estimated conse-
quences) creates all sorts of issues. One particularly aggravating
problem is that the estimated consequences miss all the condi-
tional effects: effects which may or may not happen depending
on various other aspects of the simulation state. For example,
whether the going to the toilet will be successful depends on
whether there is somebody already in the bathroom. But the
Sim does not consider this when planning: he thinks the action
will always be successful. If there is, in fact, someone else in
the bathroom, the Sim will attempt to use the toilet, but he will
be thwarted by the other person. Then, he will try to choose
another action; his bladder motive will still be unsatisfied, and
he will attempt to use the toilet again, etc. This behavior can
repeat indefinitely.18 Now there are various kludges we can put
in to avoid this particular problem. But the best way to fix this
general class of problems is to address the root cause: instead
of using a simplified estimation of the consequences, compute
the actual consequences for decision making.
The NPCs in Versu look at the actual consequences of an

action when deciding what to do. When considering an action,
they actually execute the results of the action, rather than some
crude approximation. Then, they evaluate this future world state
with respect to their desires. Then, we undo the consequences
of the world state.19

This sort of decision making is broad rather than deep. It does
not look at the long-term consequences of an action, but at all
the short-term consequences. By looking at a broad range of fea-
tures, it is able to make decisions which would typically only be
available to long-term planners. For example, the NPCs are able
to play a strong game of whist. When considering the various

18The Sims is not an isolated example. FEAR contains exactly the same dis-
crepancy between the planner’s understanding of the action effects and the ac-
tual game-play effects. In [19], notice the two separate fields in the action class:
m_effects for the planner’s understanding of the effects, and the ActivateAc-
tion() function for the actual game-play effects.
19It is only because we are able to undo actions that this approach is work-

able. The language instruction primitives of the Praxis language were designed
to be efficiently undoable. If we could not undo an action, the only way we could
compute the actual consequences would be by making a copy of the entire sim-
ulation state, performing the action in that copy, and then throwing it away. But
copying the entire simulation state is prohibitively expensive when we are con-
sidering so many actions for so many agents.

cards the whist player can play, the decision maker computes
the various features of a move (whether it counts as winning
the trick, whether it counts as throwing away a card, trumping,
getting rid of a suit, etc.). These conditional effects determine
the score of playing the card. Using such simple appraisals, and
giving the NPCs suitably weighted desires to perform actions
which satisfy these appraisals, is all that is needed for the NPCs
to automatically play a strong game. There is no need for any
separate sui-generis whist-playing decision procedure.
Our short-term planner elegantly handles large dynamic sets

of goals, allowing characters to select actions that advance mul-
tiple goals simultaneously.
Utility is computed by summing the satisfied desires. A want

is a desire to make a sentence true, and that sentence can be any
sentence of exclusion logic, to any level of complexity. So, for
example, Brown (our rakish poet) likes annoying upper class
men. He wants it to be the case that there exists an other such
that:

Other.sex!male and
Other.class!upper and
is_displeased_with.Other.brown.

Each want comes with an associated utility modifier. This want
is tagged with a utility modifier of 20. Every separate instantia-
tion of this desire gives an additional 20 score. If, for example,
Brown can see that one remark would simultaneously annoy
three upper class men, then that remark would score three times
higher than a remark that just annoyed one.

B. Individuality

When attempting to model individual personalities, one
common method is to implement a small finite set of person-
ality traits, and define a character as a combination of these
orthogonal traits [6]. We wanted a more expressive system, in
which there were an infinite number of personalities—as many
personalities as there are sentences in a language.
The fact that the planner looks at the entire simulation state

means that the range of things that agents can desire is very
wide. Some examples of individual desires are:
• The doctor is sexist: he wants leader! sex!male;
• Brown enjoys annoying upper class men: he wants

is_displeased_with brown sex!male class!
upper;

• Peter does not like to be alone: he hates it when
peter.in! character peter not in! ;

The expressive range of the logic is what allows us to specify
such fine-grained personalities.

C. Relationships

We use role evaluation (based on Sacks’ membership catego-
rization devices [24]) to model many different sorts of relation-
ships described.
At any moment, we are simultaneously participating in many

different practices. In Pride and Prejudice, Darcy, for example,
is simultaneously a member of the gentry, a friend of Mr. Bin-
gley, a potential suitor. For each role he is playing, one crucial
question is how well he is playing that role. Different people

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

EVANS AND SHORT: VERSU—A SIMULATIONIST STORYTELLING SYSTEM 123

have different evaluations of how well someone is playing a
role.
This concept, role evaluation, is at the heart of the relation-

ship model. Just as agents can be participating in multiple social
practices concurrently, just so an agent can have multiple con-
current views about another agent.
Some of the role evaluations we use for our Jane Austen

episodes include:
• how well bred someone is;
• how properly he is behaving;
• how attractive someone is (evaluating someone as a poten-
tial romantic partner);

• how generous, intelligent, amusing, etc., he is;
• how well they are performing their familial role (father,
mother, daughter, etc.);

• whether they are a good husband or wife.
In Pride and Prejudice, characters evaluate each other ac-
cording to their success at these various roles:
• the Bingley sisters find Elizabeth lacking in style, taste,
beauty;

• they judge Jane to have low family connections;
• Mrs. Bennet judges Charlotte to be plain.

Characters remember the reason for these evaluations20:
• Mr. Bingley is a good suitor because he was so affable at
the dance;

• Mr. Darcy is a bad suitor because he was rather rude at the
dance;

• Jane is a bad catch because her family is so badly
connected.

Characters make these evaluations public when prompted (or
unpromptedly):
• Mrs. Bennet says Darcy is a bad match for Elizabeth on
account of his rudeness;

• the Bingley sisters say Jane is a bad match for Mr. Bingley
on account of her low connections.

These public evaluations can be communicated from one char-
acter to another:
• Mr. Wickham tells Elizabeth that Darcy is dishonorable
and she believes him.

Sometimes, people disagree about their evaluations of a
character:
• Elizabeth and Jane disagree about whether Mr. Wickham’s
dark hints mean that Darcy is blameworthy.

These evaluations affect the characters’ autonomous behavior:
• characters will be invited over if they are evaluated suffi-
ciently highly;

• characters will propose if they evaluate the other as a suit-
able match;

• characters will display gratitude for doing favors (e.g., the
wife and daughters are grateful to Mr. Bennet for paying
Mr. Bingley a visit).

These evaluations also affect the tone of their autonomous
behavior:
• Miss Bennet is not gracious when Mrs. Bennet apologizes
because she is not valued highly;

20The evaluations are stored inside the agent in terms of the form Agent.rela-
tionship.Evaluated.role.Role!Value!Explanation.

• their effusiveness in looking after somebody depends on
their evaluation (e.g., the Bingley sisters are less effusive in
their concern for Jane because they do not rate her highly).

1) Updating Role Evaluations: Characters can acquire eval-
uations in three ways:
• they can start with the evaluation hard coded into them;
• they can acquire the evaluation when they interpret one of
the other’s actions;

• they can hear someone else’s evaluation and decide to be-
lieve it.

Characters acquire new evaluations of others when they see
them performing actions, and interpret those actions in a par-
ticular light. These interpretations are themselves actions which
the characters decide to do: they have a choice how to interpret
others’ actions.
2) Relationship States: Relationship evaluations aremultiple

and asymmetric: may judge according to multiple different
roles, and ’s views on may not be the same as ’s views on
.
But as well as these multiple views, we also model a

single symmetric notion: the public relationship state between
the characters. This is the official long-term stance between
the characters: whether they are friends, lovers, siblings, or
enemies.

D. Reactions

In The Sims, there is a curious design asymmetry. The player
chooses how to act, but not how to react:
• the player chooses which action her Sim performs;
• but when another character does something to the player’s
Sim, the player does not get to choose how to react; her
Sim reacts automatically.

In Versu, we wanted to restore the symmetry, allowing the
player to choose how to react as well as how to act.
For example, when Lucy recounts her art lessons from an at-

tractive teacher, there are many ways of interpreting her remark.
A character who admires Lucy may jealously resent the impli-
cation that she was attracted to someone else. One attuned to
issues of status may realize that Lucy has been sent to an expen-
sive private seminary, and respond by congratulating her on her
superior education—or irritably tell her not to brag about her-
self. Another might simply proceed with a conversation about
schooling, art, or romance, riffing on the topics brought up by
Lucy’s remark.
We choose how to perceive the world, and we are responsible

for how we perceive it. One of our guiding design goals was
that these interpretations should themselves be interpretable by
subsequent interpretations. So if we decide that Lucy was being
improper to talk about her art teacher in that way, our decision to
perceive her action that way is itself evaluable by others. They
may, for instance, decide that I am being prudish. And this in-
terpretation of my interpretation is itself evaluable, and so on.21

Reactivity is implemented as a type of social practice. When
an action is performed, a social practice is spawned. This re-
acting practice proposes various different sorts of responses to

21This is something that Sacks [24] has emphasized.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

124 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014

the initiating action. When a response is performed, this re-
sponse is just another action, which can itself spawn subsequent
reactive practices, and so on. Each of these responsive practices
is short-lived and destroys itself if anything more recent hap-
pens, to prevent agents reacting to “old news.”

E. Emotions

We used a fine-grained set of emotional states, based on
Ekman’s work [4]. An advantage of a text representation was
that it was easy to express the various emotional states. It would
be much harder to express the fine-grained distinction between,
for example, being embarrassed and humiliated if we had to
show it in a 3-D face. In order for an emotional state to be
intelligible to another, the character should be able to explain
it. To do this, the character remembers who the emotion is
directed toward (e.g., I am annoyed with Brown), and the event
which prompted the emotional change (e.g., Brown’s insult).
An agent changes emotional state when performing an ac-

tion. Reactions, in particular, are a rich source of emotional state
changes.
Our representation of agents’ emotional states is simple and

straightforward: the agent has only one emotional state at a time,
and any new emotional state always overrides the previous one.
The agent also remembers his previous emotional state, so that
we can have autonomous decisions based on mood switching.
An agent, for example, may not like to laugh when he is already
in a bad mood.

F. Beliefs

The world state is shared among the agents. We do not, for
memory reasons, give each agent his own separate representa-
tion of the world. Instead, we give them all access to the one
authoritative world model. This means, of course, that misun-
derstandings, etc., cannot be implemented fully.
For specific cases where we want false beliefs, or factual dis-

agreements, we store individual beliefs for that specific issue.
So, for example, early on in the ghost story, when there are var-
ious spooky (but inconclusive) happenings, the characters can
disagree about whether these events are caused by a ghost or
there is some more scientific explanation. Another example is
that, typically, interpersonal evaluations are shared and acces-
sible to all. But if we want some people to know—and others to
be unaware—that Frank loves Lucy, then we store this as a be-
lief, and gate certain actions on whether the actor believes that
loves , rather than on whether it is true that loves .

G. Character Arcs

The most complex part of a character description file is the
character arc: a story arc for that individual character, describing
how his objectives and emotions change over time. This arc ref-
erences only facts about that individual character, so it can be
brought into any story in which the character is placed. Our phi-
landering poet, Brown, for example, might choose to take an-
other mistress, but once he has seduced her, we might want him
to start to feel bored and trapped once again. If a social practice
provides choices about external low-level actions, the character
arc represents internal high-level choices: Does Brown want to

take another mistress, or focus on improving his poetry? The
author designs the character arc to give the character choices
about what he wants to be, not just what he wants to do.
The character arc also specifies a variety of possible epilogs

for the character. Each epilog describes the end state of the game
from the perspective of that character’s defining life choices. If
Brown decides to distract himself from his malaise by taking
another mistress, this could end upwith him ditching her, or with
him deciding—to his own great surprise—that he will remain
committed to her after all. The character arc has its own sense of
drama, separate from the story: it is here that the character may
achieve self-awareness, sink into despair, or transform himself.
True character transformation comes about in the moments

where a character decides to set aside an old want, adopt a new
one, or act in contravention of his own desires. This ability—the
ability to choose an affordance that is not what the character
simulation would prefer—is not available to NPCs; it is only
available to the player. The natural result of this is that the char-
acters controlled by humans have opportunities for change and
development, while the characters controlled by NPCs will not
exercise those opportunities; instead, they will continue to play
supporting roles.
The mixing of character arcs with episode story management

also produces a productive interference when it comes to the
meaning of the stories as they are experienced and interpreted by
the player. For instance, the story manager of the murder mys-
tery might dictate that the characters can identify and confront
the murderer and then choose either to turn him in to the law or
to help conceal his guilt. These might be the only possibilities
recognized by the episode structure. However, different motiva-
tions might manifest themselves as a result of the character arcs.
For instance, if the character who discovers the murderer’s guilt
is betrothed to the murderer’s son, this presents a motivational
question to the player: Should she push to convict out of a love
of justice, knowing that this will swamp the family in scandal,
lead to the end of her engagement, and cause a disappointing
end to her personal story arc?
Such dilemmas as these are not explicitly modeled by Versu;

rather, they fall out of the creative interference between charac-
ters who have personal motivations and desires for the outcome,
and narrative cruxes that force dramatic change.

X. THE COREMODEL OF BELIEFS, EMOTIONS, RELATIONSHIPS,
AND EVALUATIONS

A. Interpractice Communication via the Core Model

Social practices typically track internally one or several vari-
ables pertinent to that practice: for instance, a dinner practice
might keep track of how many guests had been served wine, or
which course it was; a whist practice might track which agents
were playing in the game, what cards they had been dealt, and
which suit was trumps.
This kind of internal information, however, does not allow the

different practices to communicate with and affect one another.
Instead, the agent information described above—consisting of
relationship states, beliefs, emotions, and evaluations—serves
to communicate between practices.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

EVANS AND SHORT: VERSU—A SIMULATIONIST STORYTELLING SYSTEM 125

To be effective, that is, to cause repercussions for other char-
acters and changes within the story, a character’s actions within
Versu need to change one or more of these core model elements.
Changes to emotional states might last for a few turns and

might affect the way the character is described doing things (and
her appearance on screen), but a character will experience many
emotions in the course of a game. Unless a given mood affects
one of the longer term decisions, its unlikely to determine how
the story ends.
By contrast, character evaluations of others play into rela-

tionship state decisions. A character who evaluates her flirt as
cruel or bumbling will have the opportunity to begin a “breaking
up” practice, which will end the romantic relationship state be-
tween these characters and produce a negative “rejected flirt”
relationship state instead. It does not matter to the core model
how the character’s flirt made himself unacceptable: it might be
that he clumsily spilled his wine at dinner, or stepped on her foot
during a dance, or said something inconsiderate to her mother.
It might be that he committed one large transgression or a series
of smaller ones. Regardless of the originating practice, when the
character’s evaluation of him becomes too negative, the oppor-
tunity to break up will present itself.
Relationship states and character self-evaluations are the

most significant and lasting part of the core model.
During play, a relationship state may function to make par-

ticular actions available: for instance, the practice allowing a
couple alone together to kiss will become functional only if the
pair are in a romantic relationship state.
In addition, each character in the drama begins with certain

relationship or self-belief goals. For instance:
• Miss Bates begins wishing to be friends with someone;
• the poet Brown, who has a chip on his shoulder about his
illegitimacy, may have a desire to form an inimical rela-
tionship with an upper class man;

• Lucy starts out hoping either to find a protector or else to
become more confident in herself.

Succeeding or failing to achieve these goals affects story
outcomes, as each story concludes by narrating both how the
extrinsic episode ended (Was the murderer identified? Was he
tried?) and how the character arc went for the player character
(Did Elizabeth conclude the story engaged to Mr. Darcy?).

B. Using the Core Model to Promote Player Agency

Most of the player’s agency in the game, therefore, comes
from using the affordances made available by the social prac-
tices to affect the core model in some fashion. In order to max-
imize this sense of agency, we identified the following design
goals.
• Player actions should be rewarded either with information
about the world state or changes to the world state.

• Changes to short-term qualities should happen frequently.
• Changes to short-term qualities should lead to a chance
for the player to back down or persist in an attempt. For
instance, if the player’s character has evaluated another as
somewhat attractive, this should lead to opportunities to
either flirt with or ignore the object of affection, allowing
the player to indicate whether it is really her intention to
try to develop a relationship there.

• Changes to long-term qualities should be strongly marked.
If a player becomes someone’s friend, flirt, enemy, etc.,
that event should entail several moves of interaction and
be marked out clearly by the user interface. (Currently,
making a friend, a flirt, or an enemy is an achievement
which is strongly noted when it occurs.) These events
are key to the story and should be noted as significant
accomplishments.

• Relationship state changes should require active choice
from both characters. It should never be possible for an
NPC unilaterally to change his or her relationship to the
player, though the NPC might offer the player an unavoid-
able choice, either prong of which will have a significant
state-changing outcome (e.g., “marry me or we will break
up”).

C. Using the Core Model With Autonomous Agents

The use of autonomous agents also introduces an additional
design goal into the system. As explored above, each agent
may have arbitrarily complex preferences. Lucy likes to eval-
uate other characters positively. Miss Bates likes to be in a good
mood. Mr. Quinn likes to have a bad opinion of Frank Quinn.
However, these preferences can only produce significantly dif-
ferent behavior between agents if the range of available affor-
dances, and the effect of those affordances, is sufficiently great.
Otherwise, agents will be comparatively scoring just a handful
of options, and they are unlikely to produce distinct behavior,
even if their formulas for scoring differ widely. This produced
an additional design goal:
• individual actions should ideally produce change to mul-
tiple qualities or types of quality.

This is especially easy to demonstrate with respect to conver-
sation. A given line of conversation may accomplish any of the
following tasks:
• shift the speaker to a new belief about the world;
• communicate a belief;
• shift the speaker to a new emotion;
• communicate one or more emotions;
• shift the speaker to a new evaluation of another character;
• communicate an evaluation of another character;
• shift the speaker to a new self-evaluation;
• communicate the self-evaluation of the speaker;
• count as an atomic action to which others may react.

For example, Mr. Collins may speak about how Lady Catherine,
his patroness, has complimented the sermons he preached at her
parish. This quip22 is marked to do each of the following things:
• communicate that Mr. Collins has a positive self-evalua-
tion about intelligence, inviting listeners to accept or reject
this view of Mr. Collins;

• communicate that Mr. Collins admires Lady Catherine’s
status and patronage, inviting listeners to accept or reject
this view of Lady Catherine;

• shift Mr. Collins to the “pleased” emotional state, because
he enjoys dwelling on the compliments he has received.

22Dialog is authored in units called quips, which are combinations of a text
template together with a collection of possible effects on social and emotional
state.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

126 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014

Likewise, Lucy might say, “Oh no! I’m afraid there must be a
ghost here!” when she has not previously believed in ghosts.
That quip would have the following effects:
• shift to a belief in ghosts, changing Lucy’s mentality on
this point for the remainder of the game;

• communicate a belief in ghosts, allowing other characters
to accept this belief or rebut it;

• shift to a fearful emotion;
• communicate a fearful emotion, allowing other characters
to offer Lucy comfort;

so that it would be possible for other characters to respond by
reassuring her, telling her that she is superstitious to believe such
a thing, or agreeing that there probably is a ghost.
Coding speech and other social actions in this way allows

agent-driven characters to make a more nuanced use of their
various wants. It also produces texts in which characters appear
to react to both surface and subtext, as in this final example:
Mrs. Elton might say, “What a handsome parlour you have; it is
almost as graciously appointed as my sister’s!” This quip would
accomplish each of the following:
• communicate a moderately positive status view of the
person addressed;

• communicate a superior status view of her own family;
• constitute a “be complimentary” action.

Some characters might respond to the “compliment” by
thanking Mrs. Elton; others might reply by being self-depre-
cating about their status or by putting down Mrs. Elton’s family
in order to correct her self-evaluation that they disagreed with.

XI. THE STORY MANAGER

Unlike some other systems [22], Versu does not have a gen-
eral-purpose DM which dynamically combines story elements
to produce a wide variety of different stories. Instead, each indi-
vidual episode has its own individual story manager, which en-
codes the author’s understanding of the narrative goals for that
particular episode. A particular story (say, a murder mystery)
has certain key recognizable moments (the victim makes him-
self unpopular, the victim is killed, the body is discovered), and
the story manager is responsible for making sure these events
happen at the right moment.
The story manager for an episode is a high-level director who

does not like to micromanage. Given a stock of characters and a
set of social practices, all our story manager likes to do is initiate
practices, watch their progress, and insert occasional changes.
It leaves the performance of those practices, and the individual
decisions, to the individual autonomous NPCs.
The story manager is a reactive process (itself implemented

as a social practice). It starts by creating characters and placing
them in initial social situations. Once these characters have
been given some interesting goals, it often leaves those au-
tonomous characters to their own devices for some time, before
the next intervention. The story manager watches what is going
on, spawning new social practices, and tweaking individual
goals, to keep things moving.
For example, in the murder mystery, the story manager

wants, after the meal has finished, for the people to gather to-
gether to perform some sort of group activity: reading together,

music, whist. But it does not mind which particular activity, so
it spawns different practices on different occasions, leading to
significantly different runthroughs.
Our storymanagers are significantly less ambitious than some

systems [22]. They do not plan ahead, anticipating the narrative
consequences of various dramatic moves, scoring each move
according to narratological criteria. Instead, our story managers
are reactive processes, handcrafted for each episode. This gives
the author strong control over the outcome and quality of the
story, at the expense of emergence at the narrative level.

XII. RELATED THEORY: COMPUTATIONAL MODELS
OF SOCIAL PRACTICE

A. Schank and Abelson’s Scripts

Schank and Abelson’s work on scripts [27], [28] has been
hugely influential. They were one of the first in the AI commu-
nity to articulate the important idea that an individual action is
not intelligible on its own: its intelligibility comes from the so-
cial practice in which it is embedded. They used the term script
to describe a computer model of a routine social practice: eating
at a restaurant, traveling on a bus, visiting a museum. A script
is a state graph containing a distinguished path which is marked
as “normal.” (For example, in the restaurant script, the normal
path involves the customer ordering, eating the meal, and then
paying for it.)
The script describes coordination of multiple actors: charac-

ters were assigned to roles and the script understood which ac-
tions were expected for each role in each state. The script also
achieves continuity over time: an individual agent’s sequence of
actions over time is intelligible as a sequence of causally linked
actions as the script travels through various states.
Schank and Abelson’s theory accommodates the important

idea that multiple scripts can be running concurrently, and can
interfere with each other. One example they give is:

“John was eating in a dining car. The train stopped short.
John’s soup spilled.”

Here, the eating script and the being-on-a-train script are run-
ning concurrently. A problem in the train script then causes an
interference in the eating script.
Schank and Abelson’s work on scripts was a major source of

inspiration to us. But our model of social practice is different
in a number of ways. First, Schank and Abelson used scripts as
a way of understanding natural language stories, while we use
social practices as a way of guiding autonomous behavior in an
interactive system. Second, Schank and Abelson use so-called
“scruffy” methods to model social practices (conceptual depen-
dency theory is a graph-based representation without a formal
semantic), while we model the entire simulation state declar-
atively using a modal logic. (In Versu, we tackle “scruffy”
research problems with “neat” methods.) Third, a Schankian
script describes a social practice from a particular perspective:
from the viewpoint of one distinguished role. Schank and
Abelson are explicit about this [27, p. 210]:

“A script must be written from one particular role’s point
of view. A customer sees a restaurant one way; a cook sees
it another way.”

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

EVANS AND SHORT: VERSU—A SIMULATIONIST STORYTELLING SYSTEM 127

Again, [28 p. 152]:

“A script takes the point of view of one of these players,
and it often changes when it is viewed from another
player’s point of view.”

In Versu, by contrast, a social practice is authored from a bird’s
eye perspective: the domain-specific language supports an au-
thoring style in which practices are agnostic about which par-
ticular character is playing which role. In Versu, a restaurant
script is written once and incorporates both the customer’s and
the cook’s perspectives.

B. Moses and Tenenholtz’s Work on Normative Systems

Moses and Tenenholtz [16] have also developed a computa-
tional model of social practices. They define a normative system
as a set of restrictions on available actions such that, when these
restrictions are respected, there is a guarantee that a certain de-
sirable condition obtains. For example, on a busy road, the de-
sirable condition might be that no cars hit each other, and the
restriction might be that all cars drive on the right-hand side of
the road. Part of the power of their work is that, using a type
of modal propositional logic, they can prove that certain norms
guarantee certain desirable properties.
Their approach is related to ours in that they use formal logic

to describe social systems. But there is one fundamental differ-
ence: they see social systems as restrictive rather than constitu-
tive. Imagine an agent who already has a set of available actions.
A normative system, in their sense, provides a restriction on the
set of actions. The restriction on the agent’s freedom is offset
by the (provable) desirable properties of everyone obeying that
restriction: forcing me to drive on the right is a restriction on
my ability to drive on the left, but the guarantee that I can drive
without collision offsets that restriction. Versu, by contrast, uses
a constitutive model of social practice in which social practices
make new actions available: placing a card down on the table
only counts as trumping with the Jack of Spades within the con-
text of the whist game in which it is embedded.

XIII. RELATED INTERACTIVE SYSTEMS

Starting with Tale Spin [15], there have been many attempts
to generate narrative using a simulationist agent-driven archi-
tecture. The recurring problem with these attempts has been that
the generated stories lacked narrative coherence. It has proven
very hard for an author to achieve any sort of narrative con-
trol by fiddling with the parameters of individual agents. When
building Versu, we were hoping to find a spot in design space
that has the generativity of simulation, while also having a sat-
isfying degree of narrative coherence and author ability.
In a recent paper [21], Riedl and Bulitko provided a clear

taxonomy for describing design choices in interactive narrative
systems. The following are the two fundamental questions that
they considered.
1) Authorial intent. To what extent does the human author’s
storytelling intent constrain the narrative? How much of
the story is decided in advance by the author, and how
much is generated by the player and computer during play?

2) Virtual character autonomy. Does each individual char-
acter make up his own mind, or is each character merely a
puppet controlled by a centralized DM?

In terms of authorial intent, Versu is somewhere in the middle
between a manually authored choose-your-own adventure, on
the one hand, and an automatically generated emergent narra-
tive, on the other hand. Each episode in Versu comes with its
own episode-specific DM: a reactive agent which mostly sits
back and watches, occasionally intervening to push the narra-
tive forward. In this respect, Versu is rather like Façade: for each
episode, there is a specific situation which has been carefully au-
thored, but the exact path taken through the narrative landscape,
the how and the why, is up to the player to determine.23

In terms of character autonomy, Versu is strongly simula-
tionist. Each character chooses his next action based on his own
individual beliefs and desires. It is very rare indeed for the DM
to override the characters’ autonomy and force them to do some-
thing. Instead, the DM typically operates at a higher level, by
creating new social practices, or tweaking the desires of the
participants.
Unusually, the DM is also modeled as an autonomous agent,

and chooses which (metalevel) action to do based on her own
(metalevel) desires. This means that, in some episodes, the
player can actually be the DM.

A. Comparisons With Façade

1) Playing the Same Scene From Multiple Perspec-
tives: Whereas Façade chose a middle ground between
the story-driven and agent-driven approaches, Versu is much
more heavily agent driven and simulationist. At the heart of
Versu’s simulation of social practices is a distinction between
the roles in the social practice and the characters who are
assigned to those roles. Because the player can play different
roles in a situation, and can assign many different permutations
of characters to the roles, a Versu situation has much more
variation and replayability than the Façade scenario. If we
were to implement a version of the Façade scenario in Versu,
the player would not be constrained to playing the guest—she
could also play Trip or Grace. Further, in a Versu version of
Façade, the player could assign different characters to the roles.
The player could assign, say, Mr. Darcy to play the male host,
and Elizabeth Bennett to play the female host, and see how
differently it plays out.
2) The Difference Between JBs and Social Practices: A

story-driven interactive narrative lets a single DM determine
what happens next. (This provides continuity at the cost of
emergence.) At the opposite extreme, an agent-driven interac-
tive narrative lets each individual agent determine what he will
do next. (This provides emergence at the cost of continuity.)
One of the most striking architectural ideas in Façade is the use
of JBs which coordinate a group of agents and are intermediate
between individual agents (on the one hand) and a single
DM (on the other hand). A JB can express synchronization
between its participants and can enforce continuity between

23Versu’s DM is rather less ambitious. Façademodels a sense of rising tension
and chooses the next beat by finding the one which most closely matches the
intended current tension. We do not do this.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

128 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014

individual behaviors. But a JB, as Mateas and Stern use it, is
more restrictive than a social practice in that:
• a JB is a way of coordinating NPCs—there is no equiva-
lent of a JB for coordinating PCs—or for coordinating a
mixture of PCs and NPCs;

• when an NPC is deciding whether to enter a JB, this de-
cision is not based on his individual personality or de-
sires. Deciding whether to join in depends only on whether
the NPC can participate (whether he has an individual be-
havior which matches the specification of the JB), and not
on whether he wants to.24

A social practice is like a JB in that it is responsible for coordi-
nation and continuity. But it is more general in two ways. First,
a JB coordinates NPCs only, while a social practice can coordi-
nate both NPCs and PCs together. Second, a social practice does
not wrest control from the individual agent, instead it always re-
spects the individual agents’ autonomy. It provides suggestions,
but leaves it up to the individual agent what to do. In Versu, the
social practice is a coordinating entity which is intermediate be-
tween individual agents and a DM, but this coordinating entity
does not wrest control from the individual agents. In Versu, it is
always the individual agents who decide what to do.
What this discussion shows is that the broad question of vir-

tual character autonomy turns out, on closer inspection, to be
divided into three separate questions.
• What sort of entity controls decision making?
• What sort of entity provides coordination between agents?
• What sort of entity provides continuity over time between
the actions of a single agent?

Façade answers all three questions in the same way: the JB
provides coordination, continuity, and is also responsible for
making decisions. In Versu, there are separate answers to these
questions: the social practice provides coordination and conti-
nuity, while the individual agent makes the decisions.
3) The Cost of Content Production: The scenario in Façade

takes about 20 min for the player to complete. This episode
took three plus years to create. A comparable 20-min length
episode in Versu takes about two months to create. Versu also
contains longer episodes. The ghost story, which takes 45–60
min to complete, took six months to produce.
In terms of the number of behaviors, Façade has 30 parame-

trized speech acts created during the three plus years in devel-
opment. Versu, by contrast, has more than 1000 parameterized
actions, authored in one year in development.
We attribute our faster content production time to two main

factors. First, using text output rather than 3-D animated
characters saved us a lot of production time. Second, the
domain-specific language in which we authored behaviors

24See [7, p. 75]: “If all agents respond with intention to enter messages, this
signals that all agents in the team have found appropriate behaviors in their
local behavior libraries.” The only way in ABL for an individual agent’s per-
sonal preferences to affect the decision to join in is if that preference is added
as an explicit precondition: “Note that the preconditions can also be used to
add personality-specific tests as to whether the Woggle feels like playing follow
the leader” [7, p. 78]. As Mateas later acknowledges, “A possible objection
to pushing coordination into a believable agent language is that coordination
should be personality-specific; by providing a generic coordination solution in
the language, the language is taking away this degree of authorial control” [7,
p. 226].

Fig. 4. Different ways of handling three aspects of character autonomy.

(Praxis) was a very high-level declarative language for creating
content. A high-level declarative language can express behavior
more compactly than a procedural language.25

B. Comparisons With Prom Week

“Prom Week” [13] is a social simulation of high-school stu-
dent social life developed by a group at the University of Cal-
ifornia San Diego (UCSD, La Jolla, CA, USA).26 At a high
level, PromWeek has a lot in common with Versu: they are both
aiming to provide interesting individual characters in dramatic
situations. But at the ontological level, there are some funda-
mental differences.
Activity in PromWeek involves a sequence of discrete speech

acts. In Versu, individual actions are coordinated by social prac-
tices which provide meaning to sequences of actions. For ex-
ample, a game of whist involves a sequence of actions by mul-
tiple participants. These actions make sense as a whole because
they are all contributing to the one unifying practice: the game.
A concrete example is as follows: suppose one character sug-

gests to some others that they retire to the drawing room to
listen to some music. Now in Prom Week, this request would
be an individual speech act: others would accept or reject this
proposal, and then the speech act would be over. But in Versu,
this suggestion is part of a larger social practice: the group de-
ciding what they should do next. This larger practice involves
the group as a whole achieving consensus (or failing to achieve
consensus) on what they should do. Others may agree with the
proposal to listen to music, or they may suggest an alternative
pastime (reading, dancing, whist). Others may take sides, at-
tempt to dominate, or back down. In Versu, the simple request
speech act is embeddedwithin a larger practice which gives it in-
telligibility and provides continuity. In PromWeek, by contrast,
behavior is just a sequence of isolated and unrelated speech acts.

C. Situating Versu in Design Space

We conclude this section by relating Versu to other games in
terms of the three separable aspects of character autonomy (see
Fig. 4).
• What sort of entity controls decision making?
• What sort of entity provides coordination between agents?
• What sort of entity provides continuity over time between
the actions of a single agent?

In a choose your own adventure (CYOA), there is one entity
(the static preauthored story graph, functioning as a nonreactive

25Façade is authored in ABL, a procedural domain-specific language built on
top of Java.
26We were advisors on this project, and have had many fruitful discussions

with the developers over the years.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

EVANS AND SHORT: VERSU—A SIMULATIONIST STORYTELLING SYSTEM 129

DM) which decides what happens next, and provides coordina-
tion between agents and continuity between action.
In The Sims, the individual agent decides what to do next. Co-

ordination between agents is limited to individual speech acts.27

In The Sims, there is no continuity between actions over time.
Prom Week is similar in that decisions about what to do are

always made by the individual agent. Coordination between two
agents lasts for the duration of an individual speech act and in-
volves an initiating sentence followed by a response. Again,
there is no continuity between actions over time.
Façade uses a DM to decide what happens next. It uses JBs,

described above, to achieve coordination between agents, and
continuity over time.
Versu uses the social practice to achieve coordination and

continuity, but always lets the individual agents decide what to
do.

XIV. LIMITATIONS AND FURTHER WORK

A. Evaluation

Versu is out now on the App Store for iPad, and soon for
other devices. Although we have not attempted to evaluate the
system through controlled experiments, user feedback has been
very positive. At the time of writing, we have a 5/5 rating on the
U.K. store and a 4/5 rating on the U.S. store.
The press coverage has also been positive. Polygonwrote that

Versu “looked quite simple at first, but became more extraordi-
nary by the moment.” BookRiot described Versu as “a remark-
able set of storytelling tools.” Rock Paper Shotgun wrote “The
simplicity with which it all appears betrays just how complex a
social AI project this really is () The potential for this within
text adventures and interactive fiction seems madly enormous.”
New Scientist wrote that Versu “captures the nuances of social
interaction in a way not seen before.”

B. Limitations of the Agent Model

When using a utility-based decision maker, tweaking the var-
ious desires (there are already over 300 desires in the system) so
that the preferred action scores higher is a difficult and time-con-
suming tuning problem. The inspector helps authors understand
autonomy tuning problems, by showing the scores of each ac-
tion—and the reasons why the action gets the score it does—but
even with this tool, it is a difficult and unrewarding problem.
Another limitation with the system is the way agents’ beliefs

are expressed. To simplify the implementation, all beliefs are
represented as sentences involving a two-place predicate and
a pair of constants. We can represent Mrs. Quinn’s belief that
Lucy is compromised by Frank Quinn, or Darcy’s belief that
the ghost was killed in the study, or Elizabeth Bennett’s belief
that she should not marry Mr. Collins, but we cannot represent:
• beliefs involving universal quantifiers, e.g., “everyone has
become insane”;

• beliefs involving existential quantifiers, e.g., “the murderer
is one of the guests”;

27Performing a speech act spawns an invisible object that lasts only for the
duration of the act, and coordinates the animations and responses of the two
participants.

• beliefs about others’ beliefs, e.g., “Mr. Quinn believes that
Lucy believes that Mrs. Quinn is the murderer.”

C. Limitations of Our Representation of Social Practices

1) Simplifying Assumptions of the Social Model: Our model
of social practices simplifies in two ways. First, the agents have
a shared understanding of the state of the social practices. It
is not possible in this model for two agents to have divergent
understandings of the state of the situation (for example, dis-
agreeing about whose move it is in a game of Chess). Instead of
modeling each individual agent’s beliefs about the state of the
practice, we just model the practice once, and give agents access
to it. Second, even if we did give each agent his own individual
model of the practice, so that they could diverge, there would
still be a shared understanding of the practice: both agents would
agree, for example, that greeting is something you do when you
are sufficiently well acquainted. A deeper model of practices
would allow individual agents to have their own interpretations
of the practice.
2) Multiple Concurrent Practices Complexify Authoring:

One of the striking things about the architecture is that it allows
multiple practices to exist concurrently. Most of the time, there
are many practices running at once, each providing various
options to the agents. It is because there are so many practices
that the player has such a wide range of options at any time.
But this complexity comes at a price: the fact that there are

multiple concurrent practices complicates the tuning and debug-
ging of the scenes. Each action from each practice needs to be
scored against all the other actions from all the other concurrent
practices.
Allowing multiple concurrent practices generates another,

deeper authoring problem. Sometimes something happens that
is so obviously important that all the other things that are going
on should be forgotten, for the moment. For example, in our
murder-mystery episode, when the dead body is discovered,
there may be many other things that were going on: there may
be a budding flirtation between two of the guests, some of
the characters may have become drunk, or violated one of the
norms of Regency England, and may be getting told off. But
when the body is discovered, the affordances from these other
practices should be suppressed. The seriousness of the situation
should mean jokes and flirtations are not even considered. We
currently use a rather simple mechanism for suppressing the
affordances from other practices: a dominating practice is one
which, when active, suppresses the affordances from any other
practices. But this dominating mechanism is too broad and
crude for the case in hand: there are some other practices which
should coexist with the discovery of the body, for example,
weeping at the loss of a loved one. What we really want (but
do not know quite how to implement) is Heidegger’s idea of
a public mood [3], which opens up a range of possibilities
and closes off others. In our example, when the dead body
is discovered, this should create a public mood of shock, and
this mood should reveal various practices (grieving, examining
the body, wondering who could have done such a thing) while
obscuring others (drinking, joking, flirtation).

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

130 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 6, NO. 2, JUNE 2014

D. User-Generated Content

Once she is up to speed with Praxis, a writer can produce a
20-min episode (with a rich variety of end states and the ability
to play from multiple perspectives) in one to two months. Al-
though this is a significant increase in content-production speed
over Façade, for example, the speed of content production is still
an issue for us.
In order to make content production possible in a reasonable

amount of time, we have built, on top of the Praxis language,
an authoring tool called Prompter. Graham Nelson (the author
of the Inform language for interactive fiction [18]) has assisted
in the design and implementation of Prompter, which allows
writers rapidly to create scenes and dialog in a format that re-
sembles a play script. The script is marked up with additional
text, indicating the emotional and evaluative effects of a given
piece of dialog or action. The Prompter software then converts
the script into raw Praxis.
Prompter-generated episodes can also include other, pure-

Praxis files at need, which makes it possible to coordinate gen-
erated data with newly invented social practices, props, and
behavior.
The existence of Prompter has significantly sped up our in-

ternal writing process, making it possible to create a substan-
tially branching 20-min episode in less than a week, rather than
in one to two months, as was formerly the case.
Our next steps include sharing Prompter with beta users and

developing it further as a front end for Versu development, and
releasing it as part of the eventual SDK. The intention is that
skilled and dedicated programmers will be able to add new
Praxis modules, but that people primarily interested in a more
writerly experience with Versu will be able to use Prompter
exclusively and still create compelling new stories.

ACKNOWLEDGMENT

The authors would like to thank T. Barnet-Lamb, C. Gingold,
I. Holmes, I. Horswill, M. Mateas, and G. Nelson for feedback
and guidance throughout the project.

REFERENCES
[1] P. Blackburn,M. de Rijke, and Y. Venema, Modal Logic. Cambridge,

U.K.: Cambridge Univ. Press, 2002.
[2] R. Brandom, Making It Explicit. Cambridge, MA, USA: Harvard

Univ. Press, 1998.
[3] H. Drefyus, Being-in-the-World. Cambridge, MA, USA: MIT Press,

1990.
[4] P. Ekman, “Basic emotions,” 1990.
[5] R. Evans, Introducing Exclusion Logic as a Deontic Logic. Deontic

Logic in Computer Science. New York, NY, USA: Springer-Verlag,
2010.

[6] R. Evans, “Representing personality traits as conditionals,” in Proc.
Artif. Intell. Simul. Behav., 2008, pp. 64–82.

[7] M. Mateas, “Interactive drama, art, artificial intelligence,” Ph.D. dis-
sertation, Schl. Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA,
USA, 2002.

[8] M. Mateas and A. Stern, “Writing Façade: A case study in procedural
authorship,” in Second Person, Role-Playing Story Games Playable
Media. Cambridge, MA, USA: MIT Press, 2007, pp. 183–208.

[9] D. Knuth, Digital Searching. The Art of Computer Programming
Volume 3: Sorting and Searching, 2nd ed. Reading, MA, USA:
Addison-Wesley, 1997.

[10] D. Lewis, “Scorekeeping in a language game,” J. Philosoph. Logic, p.
379, 1979.

[11] P. Maes, “How to do the right thing,” Connection Sci. J., vol. 1, pp.
291–323, 1989.

[12] J. McCarthy and P. Hayes, “Some philosophical problems from the
standpoint of artificial intelligence,”Mach. Intell., vol. 4, pp. 463–502,
1969.

[13] J. McCoy, M. Mateas, and N. Wardrip-Fruin, “Comme il Faut: A
system for simulating social games between autonomous characters,”
in Proc. 8th Digit. Art Culture Conf., 2009, pp. 1–8.

[14] D. McDermott, “PDDL—The planning domain definition language
(version 1.2),” Yale Center for Computational Vision and Control,
New Haven, CT, USA, 1998.

[15] J. R. Meehan, “Tale-spin, an interactive program that writes stories,”
in Proc. 5th Int. Joint Conf. Artif. Intell., 1977, vol. 1, pp. 91–98.

[16] Y. Moses and M. Tenenholtz, “On computational aspects of artificial
social systems,” in Proc 11th DAI Workshop, 1992, pp. 108–131.

[17] D. Nau, Y. Cao, A. Lotem, and H. Muoz-Avila, “SHOP: Simple hier-
archical ordered planner,” in Proc. Int. Joint Conf. Artif. Intell., 1999,
pp. 968–973.

[18] G. Nelson and E. Short, “The Inform 7 Manual,” [Online]. Available:
http://inform7.com/learn/man/index.html

[19] J. Orkin, “Three States and a Plan: The AI of FEAR,” 2006.
[20] J. Rawls, “Two concepts of rules,” Philosoph. Rev., vol. LXIV, pp.

3–32, 1955.
[21] M. Riedl and V. Bulitko, “Interactive narrative: An intelligent systems

approach,” AI Mag., vol. 34, no. 1, 2013.
[22] D. L. Roberts and C. L. Isbell, “A survey and qualitative analysis of re-

cent advances in drama management,” Int. Trans. Syst. Sci. Appl., Spe-
cial Issue on Agent Based Systems for Human Learning, pp. 179–204,
2008.

[23] J. Rosenblatt, “Maximising expected utility for behaviour arbitration,”
in Proc. Austral. Joint Conf. Artif. Intell., 1996, pp. 96–108.

[24] H. Sacks, Lectures on Conversation. Norwell, MA, USA: Kluwer,
1989.

[25] H. Sacks, E. Schlegoff, and G. Jefferson, “A simplest systematics for
the organization of turn-taking for conversation,” Language, vol. 50,
pp. 696–735, 1974.

[26] K. Salen and E. Zimmerman, Rules of Play. Cambridge, MA, USA:
MIT Press, 2003.

[27] R. Schank and R. Abelson, Scripts, Plans, Goals and Understanding:
An Inquiry Into Human Knowledge Structures , ser. Artificial Intelli-
gence. New York, NY, USA: Psychology Press, 1977.

[28] R. Schank and R. Abelson, “Scripts, plans, knowledge,” in Proc. Int.
Joint Conf. Artif. Intell., 1975, vol. 1, pp. 151–157.

[29] T. R. Schatzki, Social Practices: A Wittgensteinian Approach to
Human Activity and the Social. Cambridge, U.K.: Cambridge Univ.
Press, 1996.

[30] E. Short, “NPC conversation systems,” in IF Theory Reader.
Norman, OK, USA: Transcript, 2011.

[31] Z. Somogyi, F. Henderson, and T. Conway, “The execution algorithm
of mercury: An efficient purely declarative logic programming lan-
guage,” J. Logic Programm., vol. 29, pp. 17–64, 1996.

[32] C. Strachey, “Fundamental concepts in programming languages,”
Higher-Order Symbolic Comput., vol. 13, pp. 11–49, 2000.

[33] M. Tomasello, Origins of Human Communication. Cambridge, MA,
USA: MIT Press, 2008.

[34] N. Wardrip-Fruin, Expressive Processing. Cambridge, MA, USA:
MIT Press, 2007.

Richard Evans studied philosophy at Cambridge University, Cambridge, U.K.,
and artificial intelligence at Edinburgh University, Edinburgh, U.K.
He was the CEO of Little Text People and is now a Senior Architect at Linden

Lab, San Francisco, CA, USA. He is the technical architect for Versu. He has
been working on multiagent simulations for 20 years. He was the AI Lead En-
gineer on Black&White and The Sims 3.

Emily Short studied classics and physics at Swarthmore College, Swarthmore,
PA, USA.
She was the Chief Textual Officer at Little Text People and is now a Creative

Director at Linden Lab, San Francisco, CA, USA. She is the creative director
for Versu. She specializes in interactive narrative, especially dialog models. She
is the author of over a dozen works of interactive fiction, including Galatea and
Alabaster, which focus on conversation as the main form of interaction, and
Mystery House Possessed, a commissioned project with dynamically managed
narrative. She is also part of the team behind Inform 7, a natural-language pro-
gramming language for creating interactive fiction.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on June 08,2020 at 17:02:58 UTC from IEEE Xplore. Restrictions apply.

