
Story Graphs

Authorship

This data set contains the details of three different story graphs for the same simple story
domain. They were generated by Stephen G. Ware of the Narrative Intelligence Lab
(cs.uky.edu/~sgware) at the University of New Orleans in 2018 using supercomputing resources
made available by the Louisiana Optical Network Infrastructure, or LONI (loni.org).

This data is released under the Creative Commons Attribution 4.0 International license. In
summary, that means you can use, share, and adapt it for your own purposes, but you must
credit the original author. A license file with full details is distributed with these files.

Story Domain

The story begins with the protagonist, or player, seeking medicine to heal their sick
grandmother. The player’s goal is to obtain the medicine and return home. The story ends when
the player achieves that goal or dies trying.

This domain has a Medieval setting and includes four discrete locations:

• Cottage: The house where the player lives with his or her grandmother.
• Market: A market where the merchant sells goods and is protected by the guard.
• Camp: The bandit’s camp.
• Crossroads: A central location connecting the other three locations to one another.

The domain features four characters:

• Player: The protagonist.
• Merchant: A merchant who is selling medicine and a sword.
• Guard: The town guard who protects the market and punishes criminals.
• Bandit: A bandit who wants to steal things of value.

The domain features 6 items:

• Medicine: A tonic that can heal the player’s grandmother, for sale by the merchant.
• PlayerCoin: A coin given to the player that can be used to purchase items.
• BanditCoin: A coin stashed in a chest in the bandit’s camp.
• GuardSword: The guard’s sword.
• BanditSword: The bandit’s sword.
• MerchantSword: The merchant’s sword, which is for sale.

The domain features 1 container:

• Chest: A chest in the bandit’s camp.

States

A state is defined as an assignment of one value to each the following fluents:

• alive(<character>) = <boolean>
Whether that character is currently alive.

• armed(<character>) = <boolean>
Whether that character has a weapon.

• criminal(<character>) = <boolean>
Whether that character has committed a crime.

• location(<character>) = <place>
That character’s current location.

• location(<item>) = <character OR container>
The character who currently has that item or the container it is currently stored in.

The initial state for this story domains is:

• alive(Bandit) = True

• alive(Guard) = True

• alive(Merchant) = True

• alive(Player) = True

• armed(Bandit) = True

• armed(Guard) = True

• armed(Merchant) = True

• armed(Player) = False

• criminal(Bandit) = True

• criminal(Guard) = False

• criminal(Merchant) = False

• criminal(Player) = False

• location(Bandit) = Camp

• location(BanditCoin) = Chest

• location(BanditSword) = Bandit

• location(Guard) = Market

• location(GuardSword) = Guard

• location(Medicine) = Merchant

• location(Merchant) = Market

• location(MerchantSword) = Merchant

• location(Player) = Cottage

• location(PlayerCoin) = Player

Beliefs

In addition to what is actually true, states track a limited number of character beliefs:

• believes(Guard, criminal(Merchant)) = <boolean>

Whether the Guard believes that the Merchant is a criminal.
• believes(Guard, criminal(Player)) = <boolean>

Whether the Guard believes that the player is a criminal.
• believes(Guard, location(Bandit)) = <place>

Where the Guard believes that the Bandit is currently located.
• believes(Player, location(Bandit)) = <place>

Where the Player believes that the Bandit is currently located.
• believes(Bandit, location(BanditCoin)) = <character or container>

Where the Bandit believes the BanditCoin is currently located.
• believes(Merchant, location(BanditCoin)) = <character or container>

Where the Merchant believes the BanditCoin is currently located.
• believes(Bandit, location(Medicine)) = <character or container>

Where the Bandit believes the Medicine is currently located.
• believes(Bandit, location(Player)) = <place>

Where the Bandit believes the Player is currently located.
• believes(Bandit, location(PlayerCoin)) = <character or container>

Where the Bandit believes the PlayerCoin is currently located.
• believes(Merchant, location(PlayerCoin)) = <character or container>

Where the Merchant believes the PlayerCoin is currently located.

This is the initial state of all character beliefs. Note that Null represents “does not know.”

• believes(Guard, criminal(Merchant)) = False

• believes(Guard, criminal(Player)) = False

• believes(Guard, location(Bandit)) = Null

• believes(Player, location(Bandit)) = Null

• believes(Bandit, location(BanditCoin)) = Chest

• believes(Merchant, location(BanditCoin)) = Null

• believes(Bandit, location(Medicine)) = Merchant

• believes(Bandit, location(Player)) = Crossroads

• believes(Bandit, location(PlayerCoin)) = Player

• believes(Merchant, location(PlayerCoin)) = Null

Goals

An author goal represents the designer’s constraints on the narrative. For these simple stories,
there are two author goals:

• alive(Player) = False

• location(Player) = Cottage AND location(Medicine) = Player

The story ends when one of these two author goals is achieved.

The Player’s goal is:

• location(Player) = Cottage AND location(Medicine) = Player

The Merchant’s goals are:

• location(PlayerCoin) = Merchant AND criminal(Merchant) = False
• location(BanditCoin) = Merchant AND criminal(Merchant) = False
• location(Merchant) = Market

The Guard’s goals are:

• alive(Bandit) = False AND criminal(Guard) = False
• If criminal(Player) then alive(Player) = False AND criminal(Guard) = False
• location(Guard) = Market

The Bandit’s goal is:

• location(BanditCoin) = Bandit OR location(BanditCoin) = Chest
• location(PlayerCoin) = Bandit

• location(Medicine) = Bandit

• location(Bandit) = Camp

Character goals are listed from highest to lowest priority. For example, the Bandit wants to be
at the Camp, but he will leave the Camp if he thinks he can achieve a higher priority goal, such as
getting the Medicine.

Actions

A state can change via one of several actions. Every action has preconditions that must be true
before it can happen and effects which change the state. Every action also specifies under what
conditions an “observing” character sees the action happening. Every action also specifies one
or more “consenting” characters who must have a motivation to take the action.

attack(<attacker>, <victim>, <place>)

Preconditions:
• alive(<attacker>) = True

• location(<attacker>) = <place>

• alive(<victim>) = True

• location(<victim>) = <place>

• armed(<attacker>) = True OR armed(<victim>) = False

Effects:

• alive(<victim>) = False

• If criminal(<victim>) = False then criminal(<attacker>) = True
Observing: Any <character> for which location(<character>) = <place>
Consenting: <attacker>

buy(<buyer>, <item>, <coin>, <place>)

Preconditions:
• alive(<buyer>) = True

• location(<buyer>) = <place>

• location(<item>) = Merchant

• location(<coin>) = <buyer>

• location(Merchant) = <place>

Effects:
• location(<item>) = <buyer>

• location(<coin>) = Merchant

Observing: Any <character> for which location(<character>) = <place>
Consenting: <buyer> and Merchant

loot(<looter>, <item>, <victim>, <place>)

Preconditions:
• alive(<looter>) = True

• location(<looter>) = <place>

• location(<item>) = <victim>

• alive(<victim>) = False

• location(<victim>) = <place>

Effects:
• location(<item>) = <looter>

Observing: Any <character> for which location(<character>) = <place>
Consenting: <looter>

report(<reporter>, <bandit_place>, <reporter_place>)

Preconditions:
• alive(<reporter>) = True

• location(<reporter>) = <reporter_place>

• alive(Guard) = True

• location(Guard) = <reporter_place>

• believes(<reporter>, location(Bandit)) = <bandit_place>

Effects:
• believes(Guard, location(Bandit)) = <bandit_place>

Observing: Any <character> for which location(<character>) = <reporter_place>
Consenting: <reporter>

rob(<robber>, <item>, <victim>, <place>)

Preconditions:
• alive(<robber>) = True

• location(<robber>) = <place>

• armed(<robber>) = True

• location(<item>) = <victim>

• alive(<victim>) = True

• location(<victim>) = <place>

• armed(<victim>) = False

Effects:
• location(<item>) = <robber>

• If criminal(<victim>) = False then criminal(<robber>) = True
Observing: Any <character> for which location(<character>) = <place>
Consenting: <robber>

take-out(<taker>, <item>, Chest, Camp)

Preconditions:
• alive(<taker>) = True

• location(<taker>) = Camp

• location(<item>) = Chest

Effects:
• location(<item>) = <taker>

Observing: Any <character> for which location(<character>) = Camp
Consenting: <taker>

walk(<walker>, <from>, <to>)

Preconditions:
• alive(<walker>) = True

• location(<walker>) = <from>

Effect:
• location(<walker>) = <to>

Observers: Any <character> for which location(<character>) = <from> OR
location(<character>) = <to>

Consenting: <walker>

Axioms

There are also several axioms which are applied after an action occurs to update the state.
These are not optional and must be applied if they can be. Axioms only have preconditions and
effects. Everyone observes axioms, and nobody needs to consent for them to happen.

armed(<character>)

Preconditions:
• location(GuardSword) = <character> OR

location(BanditSword) = <character> OR
location(MerchantSword) = <character>

• armed(<character>) = False

Effect:
• armed(<character>) = True

unarmed(<character>)

Preconditions:
• location(GuardSword) != <character>

• location(BanditSword) != <character>

• location(MerchantSword) != <character>

• armed(<character>) = True

Effect:
• armed(<character>) = False

wants-justice(Guard, <character>)

Preconditions:
• alive(Guard) = True

• believes(Guard, criminal(<character>)) = True

Effect:
• criminal(<character>) = True

see-character-at(<observer>, <target>, <place>)

Preconditions:
• alive(<observer>) = True

• location(<observer>) = <place>

• location(<target>) = <place>

• believes(<observer>, location(<target>)) != <place>

Effect:
• believes(<observer>, location(<target>)) = <place>

see-character-not-at(<observer>, <target>, <place>)

Preconditions:
• alive(<observer>) = True

• location(<observer>) = <place>

• location(<target>) != <place>

• believes(<observer>, location(<target>)) = <place>

Effect:

• believes(<observer>, location(<target>)) = Null

see-item-on(<observer>, <item>, <character>, <place>)

Preconditions:
• alive(<observer>) = True

• location(<observer>) = <place>

• location(<item>) = <character>

• believes(<observer>, location(<item>)) != <character>

• location(<character>) = <place>

Effect:
• believes(<observer>, location(<item>)) = <character>

see-item-not-on(<observer>, <item>, <character>, <place>)

Preconditions:
• alive(<observer>) = True

• location(<observer>) = <place>

• location(<item>) != <character>

• believes(<observer>, location(<item>)) = <character>

• location(<character>) = <place>

Effect:
• believes(<observer>, location(<item>)) = Null

see-item-in(<observer>, <item>, Chest, Camp)

Preconditions:
• alive(<observer>) = True

• location(<observer>) = Camp

• location(<item>) = Chest

• believes(<observer>, location(<item>)) != Chest

Effect:
• believes(<observer>, location(<item>)) = Chest

see-item-not-in(<observer>, <item>, Chest, Camp)

Preconditions:
• alive(<observer>) = True

• location(<observer>) = Camp

• location(<item>) != Chest

• believes(<observer>, location(<item>)) = Chest

Effect:
• believes(<observer>, location(<item>)) = Null

About the Story Graphs

A story graph is a directed, labeled graph with two kinds of edges. A node 𝑛 in the graph
represents a state, a unique configuration of people, places, and items in the story world.

A temporal edge 𝑛1
𝑎
→ 𝑛2 may exist from node 𝑛1 to node 𝑛2 for action 𝑎 if the preconditions of

𝑎 are satisfied in 𝑛1 and 𝑛2 is the state that would result from applying the effects of 𝑎 to 𝑛1 and
then applying any relevant axioms. When action 𝑎 requires Player’s consent, that edge is called
a player action. When action 𝑎 requires any other (non-player) character’s consent, that edge is
called an NPC action. An action can be both a player action and an NPC action if it requires both
player and non-player consent (e.g. buy(Player, Medicine, PlayerCoin, Market) requires
the consent of both Player and Merchant); these are called mixed actions. Actions requiring only
the player’s consent are player only actions, while those requiring only the consent of NPCs are
NPC only actions.

An epistemic edge 𝑛1
𝑐
→ 𝑛2 may exist from node 𝑛1 to node 𝑛2 via character 𝑐 if, when the world

is in state 𝑛1, character c believes the world to be in state 𝑛2. When following an epistemic edge,
character 𝑐’s beliefs become true. For example, if the following propositions are true in 𝑛1:

• location(Bandit) = Camp

• believes(Guard, location(Bandit)) = Crossroads

• believes(Player, location(Bandit)) = Market

And 𝑐 is the Guard, then the following propositions will be true in 𝑛2:

• location(Bandit) = Crossroads

• believes(Guard, location(Bandit)) = Crossroads

• believes(Player, location(Bandit)) = Crossroads

Note that no second order beliefs (beliefs about beliefs) are tracked. In the above example, the
Guard does not reason about where he thinks the player thinks the bandit is—or rather, the
Guard always assumes the player believes the bandit is wherever the guard thinks the bandit is.

There are three story graphs in this data set. For every state in all three story graphs, there
always exists a temporal edge for every player only action whose preconditions are satisfied in
that state. In other words, if we consider a story graph as a map of an interactive narrative, then
it is always possible for a player to take any action whose preconditions are satisfied. Different
story graphs have different policies about mixed edges.

The Full Story Graph

The full story graph represents a large space of many possible narratives that could take place
in this story domain. NPC actions exist in this story graph when the action can be explained for
all the consenting NPCs. An action is explained for some character 𝑐 when 𝑐 believes the action
will causally contribute to a plan that achieves one of 𝑐’s goals, where that plan is 3 or fewer
steps long. When in state 𝑛 and checking whether action 𝑎 can be explained for character 𝑐, one
first follows the epistemic edge from 𝑛 for 𝑐 (if it exists) and then searches for a temporal path

of 3 or fewer edges that ends in a state where one of 𝑐’s goals is achieved. In short, this means
that an action is explained when all the characters who take that action think it will help them
achieve one of their goals. For full details, see the following paper:

Alireza Shirvani, Rachelyn Farrell, Stephen G. Ware. “Combining Intentionality and
Belief: Revisiting Believable Character Plans.” In Proceedings of the 14th AAAI
International Conference on Artificial Intelligence and Interactive Digital Entertainment,
pp. 222-228, 2018.

The full graph contains mixed actions only when they can be explained for all the NPCs who
must consent (e.g. the Merchant will only sell something to the Player when the Merchant
expects that action to contribute to achieving one of her goals).

Note that, even though NPCs only form plans of length 3, this often leads to plans that seem
longer. For example, in the initial state, the Bandit is at the Camp and believes the Player is at
the Crossroads (though the Player is actually at the Cottage). The Bandit can form a 2 step
plan to get the PlayerCoin: first walk to the Crossroads and then rob the Player. The Bandit
cannot form a 3 or fewer step plan to get the Medicine. However, as soon as the Bandit walks
to the Crossroads and discovers that the Player is not there, the Bandit can now form a 3 step
plan to get the Medicine: walk to the Market, kill the Merchant, loot the Medicine.

The Pruned Story Graph

The pruned story graph represents a specific interactive story which was generated by starting
with the full story graph and then intelligently removing edges. Details and examples are
described in the following paper:

Stephen G. Ware, Edward T. Garcia, Alireza Shirvani, Rachelyn Farrell. “Multi-Agent
Narrative Experience Management as Story Graph Pruning.” In Proceedings of the 15th
AAAI International Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2019.

For simplicity, we also include a short description of how the graph was pruned below. Edges
were removed according to this algorithm:

For each of the pruning criteria below (in order),

 For each node in the graph,

 For each edge out from that node, if it meets the criteria, prune it.

The pruning criteria are:

1. Shorter Plan Pruning: Given two NPC actions for the same NPC, if both actions can be
explained by a plan that achieves the same goal, but one plan is shorter than the other,
we prune the action that is the start of the longer plan.

2. Lazy NPC Pruning: Given an action by an NPC that can be explained by a plan to
achieve a goal, if there also exists a player action that the NPC believes can be explained
by a plan to achieve the same goal, the NPC action is pruned. In other words, if an NPC
has a way to achieve their goal, but thinks the player is also working to achieve that goal,
the NPC will not act.

3. Unique Ending Pruning: Given two actions by the same NPC, we remove the one
which most reduces the number of endings that are possible. Recall that there are two
possible endings: the player brings the medicine home or the player dies. This pruning
will never remove an NPC’s last action. It is more important that an NPC be seen to
follow through with their plans, even if it means reducing the number of possible
endings.

4. Goal Priority Pruning: If an NPC has two actions, one that achieves goal 𝑔1 and

another that achieves goal 𝑔2, prune the one that is explained by the lower priority goal.
In the earlier list of character goals, goals are listed from highest to lowest priority.

5. Cycle Pruning: If an NPC has more than one action they can take in a state, and one
action is part of a cycle of 3 or fewer edges, remove the edge that is part of a cycle. If
every edge in a cycle is that NPC’s only action, remove the edge that is part of the longest
plan (i.e. it is better to interrupt a plan with 3 more steps left than a plan with only 2
more steps left).

6. Arbitrary Pruning: If an NPC has more than one action left, choose one arbitrarily and
prune the rest. Also, remove all epistemic edges and all outgoing action edges from
terminal states.

7. Dead End Pruning: Given an edge 𝑛1
𝑎
→𝑛2, where a terminal state is reachable from 𝑛1,

a is an NPC action, and a terminal state is not reachable from 𝑛2, remove the edge. This
ensures that the story can always be finished without removing any player only edges.

The Random Story Graph

The random story graph represents a randomly generated story. This graph does not reason
about any character beliefs; it only reasons about the observable fluents and has no epistemic
edges. In every state, all possible player action edges are included. In any given state, there is a
75% chance that a random non-player character action will be included. However, the random
NPC action must not make it such that this plan would no longer be possible: The Player walks
to the Crossroads. The Player walks to the Market. The Player buys the Medicine from the
Merchant. The Player walks to the Crossroads. The Player walks to the Cottage. This
restriction is to ensure that there is at least one feasible way to achieve both endings from the
initial state. Finally, after generating this graph, dead end pruning was applied as for the previous
graph. This is to ensure that the story can always be finished.

File Format

In general, there are two kinds of files: label and structure files. Label files are in .txt format,
and define strings of text, one per line. The first line is line 0, the next is line 1, etc. Structure
files are in .csv format and refer to labels using the line numbers of those labels. All files should
have Unix-style line endings. All of the file names given below exist for all three graphs, prefixed
by the graph’s directory name (though some may be empty). For example, the list of fluents for
the Full Story Graph is in the full directory and named full_fluents.txt; the equivalent list
for the Pruned Story Graph is in the pruned directory and named pruned_fluents.txt, etc.

<graph>_fluents.txt

This file labels all the fluents for the graph. A fluent is an element of a state which can change.
For example, line 0 of pruned_fluents.txt should be alive(Bandit), which is True in states
where the Bandit is alive and False in states where the Bandit is dead. The random graph does
not reason about beliefs, so it has fewer fluents than the full and pruned graphs.

<graph>_values.txt

This file labels all the values that fluents can have in the graph. Values include True, False,
Null, places, characters, items, etc. For example, line 0 of pruned_fluents.txt should be
Bandit, which refers to the character who wants to steal items of value.

<graph>_states.csv

This file defines the values of each fluent for each state node. Each line is a new state, with the
state for node 0 defined on the first line, the state for node 1 defined on the next, etc. Node 0 is
the initial state of the story. Each line has a comma-separated list of values, one per fluent, in
order. Because pruned_fluents.txt has 32 lines, each line of pruned_states.csv has 32
values. The first fluent for the pruned graph (line 0 of pruned_fluents.txt) is alive(Bandit).
The first value on the first line of pruned_states.csv is 11, so this can be read as “In state 0,
fluent 0 has value 11.” Line 11 of pruned_values.txt is True. Thus, in node 0,
alive(Bandit)=True; in other words, the Bandit is alive in the initial state of the story.

<graph>_actions.txt

This file labels all the actions that occur in the graph (i.e. all possible labels for temporal edges).
For example, line 0 of pruned_actions.txt should be attack(Bandit, Guard, Crossroads),
which refers to the action where the Bandit attacks and kills the Guard while both characters
are at the Crossroads.

<graph>_temporal.csv

This file defines all the temporal edges in a graph. The first line defines temporal edge 0, the next
defines temporal edge 1, etc. Each edge has three values separated by commas. The first value,
called the “tail,” is the number of a state in which the action’s preconditions are met. The second
value is the number of the action. The third value, called the “head,” is the number of the state
that results from taking the action. For example, the first line of pruned_temporal.csv is
0,277,1. This means that, in state 0, the preconditions of the 277th action, which is
walk(Player, Cottage, Crossroads), are met, and if that action occurs, the story will now
be in state 1.

<graph>_agents.txt

This file labels all the agents that have beliefs in the graph (i.e. all possible labels for epistemic
edges). For example, line 0 of pruned_agents.txt should be Bandit. The random graph does
not reason about beliefs, and thus has no epistemic edges, so random_agents.txt is empty.

<graph>_epistemic.csv

This file defines all the epistemic edges in the graph. The first line defines epistemic edge 0, the
next defines epistemic edge 1, etc. Each edge has three values separated by commas. The first
value, called the “tail,” is the number of a state in which an agent has beliefs. The second value
is the number of the agent. The third value, called the “head,” is the state which describes the
agent’s beliefs. For example, the first line of full_epistemic.csv is 0,0,1. This means that, in
state 0, agent 0 believes the state to be state 1. According to full_agents.txt, agent 0 is the
Bandit. There are several differences between state 0 and state 1 in full_states.csv. For
example, in state 0, fluent 27 has value 3, but in state 1 fluent 27 has value 4. In other words, in
the initial state of the story, location(Player)=Cottage, but the Bandit believes that
location(Player)=Crossroads. Epistemic edges are only defined when an agent’s beliefs
differ from the actual state. When no epistemic edges exist for an agent, we assume their beliefs
are identical to the actual state. Epistemic edges have been removed from the pruned graph, and
no belief reasoning was done for the random graph, so pruned_epistemic.csv and
random_epistemic.csv are empty.

<graph>_goals.txt

This file labels all the goals that agents can work toward in the graph. For example, line 0 of
pruned_goals.txt should be:

intends(Bandit, (location(BanditCoin) = Bandit | location(BanditCoin) = Chest))

This is the Bandit’s goal that he should either be holding his coin or that it should be in his
chest. Because NPC actions were chosen at random for the random graph, no goal reasoning was
performed, so random_goals.txt is empty.

<graph>_plans.csv

This file defines plans that explain why agents would take certain actions. Recall that an NPC
action will only appear in the full graph if the agent believes it will contribute to achieving one
of its goals. The format for a plan is a sequence of comma-separated values:

• The number of the temporal edge with which this plan is associated
• The number of the agent for whom this plan achieves a goal
• The number of the goal this plan is meant to achieve
• One or more numbers of actions that must be executed next, in order, to achieve that goal

For example, line 0 of pruned_plans.csv should be 1,0,2,241. This means it is associated with
temporal edge 1 (which is defined on the second line of pruned_temporal.csv and is the
temporal edge going from state 0 via action walk(Bandit, Camp, Crossroads) to state 2). The
agent associated with this plan is agent 0, the Bandit. The goal the agent is trying to achieve is
goal 2, intends(Bandit, (location(PlayerCoin) = Bandit | location(PlayerCoin) =
Chest)). There is one other action in the plan, action 241, which is rob(Bandit, PlayerCoin,
Player, Crossroads). In other words, if we ask, “In state 0, why would the Bandit consent to
walk to the Crossroads?” this plan answers with, “Because the Bandit believes he can then rob
the Player of the PlayerCoin.” Note that this plan will not actually work, because the player is
not at the Crossroads. However, the Bandit believes it will work, because the Bandit believes

the Player is at the Crossroads, so it is enough to explain why the Bandit would walk to the
Crossroads.

