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Abstract

Given an image, we propose to use the appearance of
people in the scene to estimate when the picture was taken.
There are a wide variety of cues that can be used to address
this problem. Most previous work has focused on low-level
image features, such as color and vignetting. Recent work
on image dating has used more semantic cues, such as the
appearance of automobiles and buildings. We extend this
line of research by focusing on human appearance. Our ap-
proach, based on a deep convolutional neural network, al-
lows us to more deeply explore the relationship between hu-
man appearance and time. We find that clothing, hair styles,
and glasses can all be informative features. To support our
analysis, we have collected a new dataset containing im-
ages of people from many high school yearbooks, covering
the years 1912–2014. While not a complete solution to the
problem of image dating, our results show that human ap-
pearance is strongly related to time and that semantic infor-
mation can be a useful cue.

1. Introduction
The time when an image was captured has a dramatic, al-

beit usually indirect, impact on the appearance of the image.
Time impacts a wide variety of more immediate causes,
such as: the lighting conditions, the weather, the season,
the age of individuals, biases in photographic viewpoints
(e.g., the recently introduced “selfie stick”), trends in cam-
era technology (e.g., the decline in the use of film and the
rise in popularity of fisheye lens cameras), and trends in the
appearance of objects. This last element has received grow-
ing interest lately, with exciting work exploring the time-
dependence of architectural styles [13] and automobile ap-
pearance [14]. We propose to continue this research direc-
tion by investigating the time-dependence of human appear-
ance, including facial appearance and clothing styles.

While our goal is to explore the relationship between
human appearance and time, we take a discriminative ap-
proach. Specifically, we propose algorithms which use hu-
man appearance to estimate the date when an image was

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

0.00

0.05

0.10

0.15

0.20

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

0.00

0.05

0.10

0.15

0.20

Figure 1: Our work explores the relationship between hu-
man appearance and time. Given a photo containing a hu-
man, we train discriminative models to estimate the year the
image was captured. Using these models, we investigate
which aspects of human appearance are most dependent on
time.

captured (Figure 1). The task of automatically assigning
a date to an image has received significant attention re-
cently [5, 13, 14, 17]. Coming full circle, we use the models
we train discriminatively to investigate the relationship be-
tween human appearance and when an image was captured.

To support this effort, we constructed a large dataset con-



(a) Yearbook-Face Dataset (b) Yearbook-Torso Dataset (c) Yearbook-Random Dataset

Figure 2: Sample images from our Yearbook datasets.

taining images of people over a 100 year span by processing
a collection of digitized high school yearbooks. The result
is a dataset of approximately 600 000 images of people in
the time period ranging from 1912 to 2014. We use this
dataset to both train our model and to evaluate its perfor-
mance.

Main Contributions The main contributions of this work
are:
• introducing a dataset containing timestamped images

of people captured over a 100 year span,
• proposing an approach, based on deep convolutional

neural networks, to estimate when an image was cap-
tured directly from raw pixel intensities, and
• providing a detailed evaluation, both quantitative and

qualitative, of the learned models for a variety of dif-
ferent settings.

2. Related Work
We provide an overview of work in three related areas:

studying human appearance, spatial and temporal modeling,
and learning with convolutional neural networks.

Studying Human Appearance The study of human ap-
pearance is fundamental in the field of computer vision.
Traditional tasks in this domain include face recognition
and verification [21], estimating pose [7], predicting age
and gender [15, 26], and interpreting fashion [19, 22]. Is-
lam et al. [9] found that ethnicity and other appearance at-
tributes, such as facial expressions and hair styles, are re-
lated to geographic location. Inspired by this study, our
work focuses on the relationship between human appear-
ance and time. Ginosar et al. [6], which was developed
concurrently and independently from our work, considers

the same relationship. Like our work, they use yearbook
imagery. However, they use weakly-supervised data-driven
techniques to analyze appearance trends. In our work we fo-
cus on the task of dating imagery using human appearance
and show that our discriminative models capture semantics,
such as clothing and hair styles, that are typical of different
eras.

Spatial and Temporal Modeling A significant amount
of work has tried to characterize the relationship between
the appearance of objects and how it changes with re-
spect to location and time. For example, analyzing fashion
trends [19], characterizing city identity [2, 29], estimating
geo-informative features [3, 9, 24], and automatic image ge-
olocalization [8, 25]. Recently dating historical imagery has
received a lot of attention [5, 13, 14, 17]. Palermo et al. [17]
introduce a method for dating historical color images using
hand-designed color features. Lee et al. [13] find visual pat-
terns in the architecture of buildings, relate them to certain
time periods, and show how they can be used to date build-
ings. We develop methods for dating imagery which take
advantage of human appearance.

Learning with Convolutional Neural Networks Convo-
lutional neural networks have recently become the most
popular machine learning algorithm in computer vision due
to their ability to learn custom feature hierarchies for a given
task. Such networks are designed to take advantage of a
two dimensional input, employing a series of convolutional
layers for extracting features at different spatial locations.
They have achieved state-of-the-art results for many vision
tasks, including object recognition [20], scene classifica-
tion [28], and 3D image understanding [23]. We build on
this success and explore their application to dating imagery.



Figure 3: Visualizing the distribution over time of images
in our Yearbook datasets.

3. A Dataset of Timestamped People Images

We constructed a large dataset of timestamped images of
people from digitized school yearbooks, which were made
available by the Daniel Boone Regional Library.1 The year-
books contain images of the students, faculties, and staff
members from eight high schools in Boone and Callaway
County, Missouri for many years, from 1912 to 2014. Each
yearbook was digitally scanned page-by-page and uploaded
to a photo sharing website. In total, the collection contains
372 yearbooks, each clearly labeled with the year it was
created, and 62 939 digitized pages. We detected people in
each yearbook page and extracted three different types of
patches (see below for details) to build the three datasets
of timestamped images we use for evaluation. This section
describes the construction process for these datasets.

3.1. Yearbook-Face Dataset

To construct the Yearbook-Face dataset, we detected
faces [1, 4] using the Dlib C++ Library [11] and extracted
the corresponding patches (dilating the detection bounding
box by 25%). This resulted in 571 686 face patches, each
with a known year. We show example images from the
dataset in Figure 2a. In Figure 3, we visualize the distri-
bution of the timestamped face patches with respect to year.
More images are found in recent years; we conjecture that
this is due to two factors: rising student populations and
missing yearbooks from early years.

1http://www.dbrl.org/reference/
community-school-yearbook-archive

3.2. Yearbook-Torso Dataset

Starting with the detections from the previous section,
we created a dataset of torso patches, which we refer to as
Yearbook-Torso. To construct this, we dilated the detection
bounding boxes by 35% to the left and right, 25% in the
up-direction, and 80% in the down-direction. We discarded
dilated patches that fall outside the image boundaries. This
process resulted in 565 069 timestamped torso images. We
show several sample torso images in Figure 2b and the dis-
tribution of images with respect to year in Figure 3.

3.3. Yearbook-Random Dataset

We also constructed a dataset, Yearbook-Random, that
contains random patches sampled from the yearbook pages.
To construct this dataset, we filtered out pages with more
than five faces and randomly sampled ten patches, of size
250×250, from each. This resulted in 264 840 timestamped
patches. Figure 2c shows example patches and Figure 3
shows their distribution over time. This dataset will serve as
a baseline for comparison, to highlight the extent to which
we are able to learn in a way that is related to human ap-
pearance, not just the appearance of the yearbook page.

4. From Human Appearance to Year
We take a discriminative approach to learn the relation-

ship between human appearance and the year. Specifically,
we learn to predict the year an image was captured using a
deep convolutional neural network (CNN). We begin with
a brief overview of the use of CNNs for similar prediction
tasks and then describe our methods in detail.

4.1. Background

Our approach uses the CNN architecture proposed by
Alex Krizhevsky et al. [12] as a foundation. This archi-
tecture has eight layers with trainable parameters: five con-
volutional layers followed by three fully connected layers,
each connected in a feed-forward manner. Rectified linear
units (ReLU) are used as the non-linear activation function
between layers. Max pooling and local response normal-
ization layers are interspersed amongst the convolutional
layers. The first two fully connected layers use dropout,
a strategy used to prevent overfitting.

This CNN architecture was originally developed for ob-
ject recognition and trained on 1.2 million images from the
ImageNet ILSVRC-2012 challenge [18]. The final fully
connected layer has 1 000 output dimensions correspond-
ing to the 1 000 possible object classes. During training,
a softmax loss function (softmax function followed by a
multinomial logistic loss) is used to optimize the network
parameters with stochastic gradient descent.

To adapt this architecture to a new classification task, the
only change necessary is to modify the final fully connected

http://www.dbrl.org/reference/community-school-yearbook-archive
http://www.dbrl.org/reference/community-school-yearbook-archive
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Figure 4: Accuracy of the networks over the colored (left) and grayscale (right) images.

layer to have the correct number of output classes for the
new task. Then the network’s weights can be fine-tuned on
new training data by randomly initializing the weights of the
modified final layer and using the weights from an existing
model to initialize all other layers.

Following the approach outlined above, we train three
different color-based networks face2year, torso2year, and
patch2year, one for each dataset defined in Section 3. We
generate a training and testing split using the following
strategy. Starting from the full set of images, we filter im-
ages outside the time period of 1950 to 2014, and randomly
pick 1 400 images from every year, splitting each into 80%
for training, 10% for validation, and 10% for testing.

To modify the architecture described in the previous sec-
tion, we update the final fully connected layer to have 65
outputs corresponding to the 65 years in the period of 1950
to 2014. The network weights are initialized and fine-tuned
from the weights of a network originally trained for object
classification [18].

We follow this strategy and create a set of three
additional grayscale-based networks, gray face2year,
gray torso2year, and gray patch2year by replacing the
color input image with a grayscale input image during
training and testing.

4.2. Implementation Details

Our networks are implemented using the Caffe [10] deep
learning framework. We use the CaffeNet reference net-
work architecture, a variant of AlexNet, and initialize using
pre-trained networks from the Caffe Model Zoo.2 Our net-
works were trained on an NVIDIA Tesla K40 GPU for 24
hours each. The full network definition, network weights,

2http://caffe.berkeleyvision.org/model_zoo.html

Table 1: The accuracy of different networks.

Network Top 1 Top 5 Top 10
face2year 29.9% 66.4% 82.8%
torso2year 41.6% 75.8% 89.8%
patch2year 23.1% 57.4% 74.9%

gray face2year 27.1% 58.5% 74.0%
gray torso2year 28.7% 59.6% 74.8%
gray patch2year 11.5% 33.7% 49.1%

and the output from our methods will be made available on-
line for all networks http://cs.uky.edu/˜salem/
face2year/.

5. Evaluation
We evaluated the quantitative and qualitative properties

of our six networks. We found that the color-based networks
achieve higher accuracy than the grayscale-based networks.
However, the grayscale-based networks appear to do a bet-
ter job of capturing semantics of human appearance.

5.1. Quantitative Evaluation

Using the testing splits defined above, we evaluated the
accuracy of the predictions made by our various networks.
The “Top 1” column of Table 1 shows the percentage of
correct predictions for each network. The “Top 5” column
shows the percentage for which the correct answer was one
of the five most likely years, the “Top 10” column is defined
similarly. Figure 4 shows how the accuracy changes as the
threshold, k, for “Top k” is varied.

Our results show that torso2year performs the best, fol-
lowed by face2year then patch2year. The accuracy us-
ing the color images (left) is substantially higher than

http://caffe.berkeleyvision.org/model_zoo.html
http://cs.uky.edu/~salem/face2year/
http://cs.uky.edu/~salem/face2year/
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Figure 5: Analysis of the impact of color. (a) Without color, the network focuses on semantic properties, resulting in a
prediction closer to the ground truth of 1980. (b) The same experiment repeated for the corresponding torso image.

for grayscale images (right). In addition, these results
show that the patch-based prediction for the color im-
ages (patch2year) is much higher, relatively, than for the
grayscale images (gray-patch2year). We conjecture that
there are strong cues in the colors of the images, due to
differences in the photographic process for capturing and
printing the older yearbooks, that the color-based networks
are exploiting. However, for the grayscale-based networks,
gray-patch2year gives significantly lower accuracy.

Figure 5 shows the predictions of various networks for a
color image from a 1980 yearbook. Reasonable predictions
are given by the grayscale-based networks, but the color-
based networks are very confident that the image was from
the 1990s or 2000s. We suspect the color-based networks
make a poor prediction because color images are not com-
monly found in this collection until the mid-1990s. There-
fore, this unusually early color image is predicted to be
from much later than it truly was. Given these results, and
our interest in semantics of appearance, we focus on the
grayscale-based networks for the remainder of this work.

5.2. Discovering Mid-level Visual Elements

To investigate what our networks are learning, we use
deep pattern mining [16] to find the visual elements of im-
age patches that are both representative and discriminative.
We extracted features by pushing the images through the
trained model of gray torso2year and taking the output of
the “fc6” layer which is of dimension 4 096. Then, we use
the Apriori algorithm to find the set of patterns, P , that have
the following two conditions:

support(P ) > supportmin,

confidence(P → pos) > confidencemin.

For this experiment, we used 0.1% as the minimum sup-
port and 70% as the minimum confidence. We processed

Figure 6: Discriminative mid-level visual elements found
using deep pattern mining.

Figure 7: Visualizations that highlight regions of the image
(unoccluded) that have the largest impact on the predicted
distribution over years. Occluded image regions have little
impact on the prediction.

100 images from each year in the period 1950–2014 and
found that many of the discriminative clusters have patches
capturing semantic details of human appearance. Figure 6
show several such examples.
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Figure 8: Each row contains the five faces with the highest
probability of being from the specified year.

5.3. Image-Dependent Sensitivity Analysis

To better understand what our networks have learned, we
perform a form of sensitivity analysis, inspired by [27], us-
ing the gray face2year network. Given a query image, we
slide an 11 × 11 window (size of the receptive field of the
first convolutional layer neuron) across the input image, set-
ting all pixel intensities under the window to be the mean
value and then passing the resulting image through the net-
work. For each location, we record the Euclidean distance

(a) From ’90s but looks like from ’60s.

(b) From ’60s and looks like from ’60s.

(c) From ’90s and looks like from ’90s.

Figure 9: A timeless sense of style? (a) Two individuals
from the ’90s predicted to have the highest probability of
being from the ’60s. (b,c) For comparison, individuals pre-
dicted to have the highest probability of being from their
respective decades.

between the output vector of the filtered image and that of
the original image. Intuitively, regions that significantly im-
pact the prediction will cause larger output changes when
they are blocked. Figure 7 shows examples of the output
of this analysis. Regions that did not impact the prediction
are colored black and regions that do are left unoccluded.
We find that this analysis often highlights shirt collars, eye
glasses, and hair.

5.4. Finding Representative People

Here we explore further what the gray face2year net-
work is learning by looking at individuals that lead to ex-
treme predictions. Figure 8 shows, for every fifth year, the
five individuals with the most confident predictions to be
from that year. For example, the top row contains three
women and two men for which the network has the greatest
confidence that they are from 1965. One step further, we ex-



plore people that are “out of time”; they appear to be from
an era from which they are not. Figure 9 shows three sets of
people: 1) people from the 1960s that look most like people
from the 1960s, 2) people from the 1990s that look most
like people from the 1960s, and 3) people from the 1990s
that look most like people from the 1990s. These predic-
tions were obtained by summing yearly probabilities from
gray face2year. While it is difficult to know for sure, the
network seems to have identified differences in shirt collars
and hair styles that are typical of the respective eras.

6. Conclusion
We introduced a large dataset of timestamped images of

people and used it to evaluate the performance of a CNN-
based strategy for estimating when an image was captured.
We found that when applied to color or grayscale images
the networks were able to predict the year from images of
faces and torsos with better performance than when pro-
vided with random patches. While some of this is likely due
to the more consistent input layout (centered faces), through
several experiments we show that the networks learn se-
mantic aspects of appearance, both clothing styles and hair
styles that are typical of different eras. This is especially
true when the input imagery is grayscale, since the network
cannot rely on color alone to make predictions.

While our interest was in understanding trends in hu-
man appearance, it is impossible using current techniques
to completely isolate these changes from changes in camera
technology. We are actively exploring approaches to over-
come this and to further extend this methodology to general
Internet images and to other object classes, such as house-
hold products and vehicles.
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