
 Master’s Project Report

AjaxWordPro: A Multi User Word Processor

Kausalya Madhusudhanan

Advisor: Dr. Raphael Finkel

Department Of Computer Science

University Of Kentucky

March 10, 2008

 2

Acknowledgements

I would like to express my sincere and deep gratitude to my advisor, Dr. Raphael Finkel,

Dean of the Graduate Studies, University of Kentucky. His wide knowledge and his

logical way of thinking have been of great value for me. His stimulating suggestions and

encouragement helped me at every stage of my project. His understanding, encouraging

and personal guidance have provided a good basis for this master’s project. His extensive

discussions around my work and interesting explorations in operations have been very

helpful for the completion of my project.

I would like to thank my parents, Mr. Madhusudhanan and Mrs. Jayanthi

Madhusudhanan. They have always supported and encouraged me to do my best in all

matters of life.

I would like to thank all FCKeditor team members for providing a high quality

JavaScript editor, which is integrated in my project.

I would like to thank Paul Johnston and his team members for implementing the RSA

data security MD5 message digest algorithm, which is integrated in my project.

Kausalya Madhusudhanan

March 10
th

, 2008.

 3

Contents

1 Background

4

2 Requirements

4

3 Implementation decision

5

4 Implementation details

12

5 Screen shots 19

6 What I learned

29

7 What was hard to implement?

30

8 References

30

 4

1. Background

This project reports on the design and implementation of AjaxWordPro, a multi-user

web-based word processor using the Asynchronous JavaScript and XML (Ajax)

technique. This technique creates web pages that are more responsive than traditional

web applications by exchanging small amounts of data with the server behind the scenes,

so that the entire web page does not have to be reloaded.

Free text corresponds to unformatted text. Free text seems to be a powerful way of

communication, because our day-to-day activity of sending emails, blogging and instant

messaging involves free text. A text editor is a program used for editing plain text files.

Documents created by a word processor generally contain file-format-specific “control

characters” that enable text formatting. Commonly used single-user interactive text-editor

applications include Notepad and Emacs, and word-processor applications include

Microsoft Office Word and OpenOffice Writer.

People also need groupware applications to perform collaborative or group tasks [1].

People need to collaborate with each other to work on the same document to get things

done quickly and efficiently. A collaborative multi-user word processor allows several

people to edit a document at the same time using different computers [1].

2. Requirements

The requirements of our multi-user web-based word processor are as follows:

• Provide the look and feel of a single-user word processor.

• Provide basic formatting tools to edit the documents by incorporating

FCKeditor, an open-source WYSIWYG text editor that can be used in web

pages.

• Work from a web browser on any operating system and on any device,

irrespective of the user’s location and machine.

• Allow multiple users to connect to a central server, create, modify and store text

documents on the server and graphically edit the contents of the document using a

web browser.

• Display the presence of other users accessing the same document.

• Allow the user to view the content changes of a document synchronously.

• Allow the user to view the lock changes of a document asynchronously.

• Provide implicit release of a lock, if the user is inactive for more than one hour.

• Distribute the contents of a file to all its current users, thereby allowing them to

modify the contents, without manually separating the documents into smaller

parts.

• Provide secure transmission of username and password.

 5

• Provide secure password storage on the server database.

The additional features of AjaxWordPro are as follows:

• It allows the user to modify the contents of the file by holding a lock explicitly on

the editing region; the user may decide when to make the updates available for

other users.

• It suggests plausible replacements for words that are likely to be misspelled.

• It can perform a full-text word search.

3. Implementation Decisions

3.1 Asynchronous JavaScript and XML (Ajax)

AjaxWordPro uses Ajax to build dynamic web pages on the client. Ajax incorporates

[5]:

• Standards-based presentation using CSS;

• Dynamic display and interaction using the Document Object Model (DOM);

• Asynchronous data retrieval using XMLHttpRequest.

Server

Web Server

Data store,

backend

processing

HTML + CSS Data

Figure 1[5]: Classic web application model

User Interface

Browser (client)

 6

1 1

2 2

3

3

3

3

Time

Client

1

Server

2. User activity

3. System processing

4. Data transmission

Figure 3[5]: Classic web application model (synchronous)

Http Request

Server

Web or XML

server

Data store,

backend

processing XML Data

User Interface

Browser

(client)

1 2

Ajax Engine

1. JavaScript call

2. HTML + CSS data

Figure 2 [5]: Ajax Web application model

 7

1. Input

2.

In the traditional web-application model, once an interface is loaded, user interaction

comes to a halt every time the application needs something from the server. An Ajax web

application eliminates the start-stop-start-stop nature of interaction by introducing an

intermediary called an Ajax engine between the user and the server. This engine is

responsible for both rendering the interface the user sees and communicating with the

server on the user’s behalf. The Ajax engine allows the user’s interaction with the

application to happen asynchronously, independent of communication with the server.

Therefore, the user is not blocked until the browser gets the requested response from the

server. By exchanging small amounts of data, the web page becomes highly responsive

and interactive without reloading [11].

3.2 Scripting Languages

3.2.1 Client-Side Scripting Language: JavaScript

AjaxWordPro uses JavaScript as a client-side scripting language. JavaScript provides

Ajax function calls. JavaScript sends data to and accepts data from the server using the

XMLHttpRequest object [11]. The HTML DOM defines a standard set of objects for

1. Input

2. Display

3. Data transmission

4. Server-side processing

Figure 4[5]: Ajax Web Application Model (asynchronous)

Client: Browser UI

1 1 1

2 2 2

Server

Time

Ajax Engine

Client-side

processing

User activity

3

3

3

3

3

3

4 4 4

 8

HTML, which includes a window object, a document object, a navigator object and a

history object. All HTML elements, along with their containing text and attributes, can be

accessed through the DOM [14]. A JavaScript program may use the DOM properties and

methods to change the contents of a web page on the fly, which enables a web

programmer to create interactive web applications.

Examples

3.2.2 Server-Side Scripting Language: PHP

AjaxWordPro employs PHP on the server. PHP stands for Hypertext Preprocessor

[12]. It is an object-oriented scripting language that runs on the web server. PHP

generated HTML pages, but allows the server to perform computation to insert content

into those pages. It has several database functions that enable programs to communicate

with databases for storing and retrieving information.

3.3 Database

AjaxWordPro stores the information in a database on the server. The data includes the

contents of the documents, user information and file information. This project uses the

MySql database management system [12].

3.4 FCKeditor

AjaxWordPro presents editable documents to users via FCKeditor. FCKeditor is an

open-source, What You See Is What You Get (WYSIWYG) HTML editor [4]. FCKeditor

1. Setting an attribute of window object can modify the status of the web

browser:
Window.status = “Here is a new status message”;

2. Setting an attribute of document object can change the text, URL and target

attribute of a link:

Document.getElementById(‘e_id’).innerHTML=”new_link”;
Document.getElementById(‘e_id’).href=
“http://cs.uky.edu";
Document.getElementById(‘e_id’).target=”_blank”;

Where e_id is the identifier of a link element

 9

is compatible with most internet browsers, such as IE 5.5+, Mozilla 1.3+, Netscape 7+

and Opera 9.5+. It is easy to install and customize for web developers and for web users.

Its main features are as follows [7]:

• Multi-browser capability.

• Automatic browser detection and customization.

• Plugin support.

• CSS support for integration with the website.

• Text formatting: alignment, bullets, fonts.

• Cut, Paste, Paste as Plain Text, Undo and Redo.

• Right-click context-menu support.

3.5 Overall design

3.5.1 Concurrency control

AjaxWordPro uses exclusive (write) locks for concurrency control. Locks grant write

privilege on areas of shared documents [3]. Users need to hold a lock over the data before

editing the data.

Although locks allow starvation due to the fact that the server chooses the user to hold the

lock in an arbitrary way, the server does not prevent any other user from accessing other

parts of the shared document [9]. AjaxWordPro notifies the user when other users

access the same document, so the users can coordinate their work to avoid starvation.

We choose to lock the document at the granularity of individual paragraphs. When a user

introduces a new paragraph, it is considered as part of the previous paragraph for locking

purposes. There is an implicit empty paragraph at the start and end of each document.

3.5.2 Server Operations

AjaxWordPro’s server, written in PHP, has these responsibilities.

• Authenticate the user.

• Retrieve the requested file from the database.

• Save the contents of a open file into the database.

• Keep track of locks acquired by the users and enforce a locking policy.

• Grant locks that do not conflict with other locks currently held.

• Release locks automatically that are held for more than one hour without activity

on the associated data.

 10

3.5.3 Client Operations

The AjaxWordPro client, written in JavaScript and residing in the user’s browser,

communicates with the server to:

• Establish a connection to the server.

• On user request, send a post submission to the server to open a document, fetch

the document contents, save a document, close a document, delete a document,

lock a paragraph, unlock a paragraph, and perform a spell check on the contents

of the document.

• On a periodic basis, fetch the lock status of the document from the server and

display that information to the user.

3.5.4 Client-server communication

When the user performs an action that requires communication with the server, the client

creates an instance of the XMLHttpRequest type, in which it packages a request that it

submits to the server for processing. The client sets up a callback function. The server

generates a response and sends it to the client. When the client receives a response from

the server, the client executes the callback function, which consults the response and

reflects the changes back to the user.

 11

3.6 Accessing a shared document
• The client sends the user’s identity to the server for authentication. Once the

user’s identity is verified, the user can perform actions to access the shared

document.

• When the user opens a document, the client requests the document from the

server. The server responds with the content of the document.

• The server also sends information about the locked areas in the document. This

information specifies the username and font color of other users editing this

document. The client colors the locked paragraphs with different colors to

distinguish one user from another. The client’s locked paragraph is always green,

an inconsistent paragraph (to be discussed later) is always red, and a paragraph

that is not locked by any user is black.

• Every client needs to acquire a lock before modifying the document. Whenever a

client starts editing the document, the server checks for a lock on the paragraph

the client is trying to modify. If the paragraph is not locked, the server allows the

client to edit its contents and implicitly grants the lock. If it is locked, the server

consults the timestamp of the client holding the lock. People tend to take a break

not more than one hour. So, if the client acquires the lock for more than one hour,

there are chances that the user computer is down or the browser application is

broken making the user inactive for more than one hour. If the user is active for

more than one hour with a locked paragraph, then the chances of saving the

Get input

from user

Update web

page

Create a new

XMLHttpRequest

instance

Extract Data

Server-

side

scripting

(PHP)

MySql

DB

Post

Client Server

Figure 5[13]: Client - Server Architecture of AjaxWordPro

Respond

 12

contents at least once during the time is very high, which in turn updates the

timestamp of the lock preventing the server from automatically releasing the lock.

If that client has held the lock for more than one hour, the server grants the lock to

the new client. If not, the server denies the lock, and the client disallows editing

on that paragraph.

• The user can explicitly requests a lock on the whole document. If the document is

not shared by any other user, the server grants the lock for the whole document. If

not, the request is denied.

• The client requests lock status every 5 seconds and displays it to the user by

coloring paragraphs.

• The user can explicitly fetch the current contents of the document.

• The user can explicitly request a lock on a paragraph.

• The user can explicitly release a lock on a paragraph.

3.7 Secure Socket Layer

AjaxWordPro uses the Secure Sockets Layer (SSL) protocol to transmit sensitive

information to the server [15]. SSL in the web server provides support for the https

protocol. When the client requests a secure page, the web server sends its public key with

an SSL certificate. SSL Certificate uses SHA-1 with RSA algorithm for encryption and

server authentication. The browser checks whether the certificate is still valid and is

related to the web server. The browser then uses the key to encrypt a random symmetric

encryption key S and sends it to the server. The server decrypts S using its private key.

From that point forward, all communication between the client and the server is

encrypted with S [18]. Thus, SSL provides mechanisms for encrypting the transmitted

data and authenticating the server for security purposes [16].

4. Implementation details

4.1 Database Tables

4.1.1 User Information

The server maintains information about the users in the user_info table in the

database. Every user is associated with a user identifier, username, password and color of

the text used for locking. For security purposes, the server computes the digest of the

password using the MD5 [19] algorithm and stores the digest in the database. Since the

server stores the digest of the password, a hacker cannot easily retrieve the password

from the digest present in the database. Interactive mechanisms for registering users are

beyond the scope of this project. Therefore, user information is entered manually in the

database.

 13

Field Name Datatype Description

Username Varchar(50) Name of the user.

Password Varchar(32) Digested password:

MD5 digest in hex.

UserId Int(11) User Identifier.

Primary key.

Font_color Varchar(8) Color of text to

display a lock. The

format of the color

is ‘#RRGGBB’,

where R- Red, G-

Green and B- Blue.

Table 1: user_info table structure

4.1.2 File Information

The server stores the file information in the file_info table of the database. Each file

is associated with a unique identifier, file name and contents. Files are named in a flat

(non-hierarchical) name space.

Field Name Datatype Description

File_name Varchar(25) Name of the file

File_data Blob Contents of the file

File_id Int(11) File identifier:

primary key

Table 2: file_info table structure

4.1.3 User-File Information

The server maintains a user_file_info table to keep track of which user can access

which file by storing the user identifier, file identifier and an attribute that defines

whether the file is open or not.

Field Name Datatype Description

User_Id Int(11) User Identifier

 14

File_Id Int(11) File identifier

In_use Int(1) 0: The file is not in

use for this user.

1: The file is in use

for this user

Table 3: user_file_info table structure

4.1.4 Lock Information

The server maintains a lock_info table to keep track of locks. Each entry in the

lock_info table is associated with the user identifier, file identifier, paragraph

identifier of the paragraph and timestamp of the lock. The server predefines a few

paragraph identifiers that indicate a starting paragraph, an ending paragraph, a locked

file, and a file with no locks at present.

A user is allowed to hold only one lock on a document. Whenever the client requests a

locked resource, the server checks the timestamp of the user who last acquired the lock. If

the difference between the current time and the timestamp of the lock is greater than one

hour, then the server grants the lock to the new user. Therefore, it is necessary for a user

to save the contents of the editing region periodically so as to update the timestamp,

thereby preventing the server from releasing the lock.

Field Name Datatype Description

User_Id Int(11) User Identifier

File_Id Int(11) File identifier

Para_Id Int(20) Paragraph identifier

of the paragraph

Timestamp Timestamp Time at which data

was last locked or

saved.

Table 4: lock_info table structure

4.1.5 Session Information

The server maintains the session information of the user. The server ensures that only one

session exists for every user. Each session is associated with the user identifier and the

timestamp at which the session was created.

 15

Field Name Datatype Description

User_Id Int(11) User Identifier

Timestamp Timestamp Time at which the

session was created.

Table 5: session_info table structure

4.1.6 History Information

The server maintains a list of the latest users of all paragraphs of the file in the history

table. The purpose of this table is to provide information about inconsistent paragraphs to

the user. The table structure contains information related to user identifier, file identifier,

paragraph identifier and the time at which the paragraph was last saved.

Field Name Datatype Description

User_Id Int(11) User identifier

File_Id Int(11) File identifier

Para_Id Int(20) Paragraph identifier

of the paragraph

Timestamp Timestamp Time at which data

was last saved.

Table 6: history table structure

4.2 Locking a Paragraph

The locking granularity of the concurrency control mechanism is a paragraph. Finer

granularity locking is less constraining to the clients but entails greater overhead [10].

Whenever the user starts editing a paragraph, the server locks the paragraph. In order to

decrease the likelihood of the user trying to access a locked paragraph, the client displays

locked paragraphs in colors associated with the users who have locked them. Whenever

the user tries to modify the contents of an unlocked paragraph, the client sends the MD5

hash of its copy of the paragraph contents to the server to verify that the contents have

not changed since the last time the client fetched that paragraph. The server checks

whether the paragraph is consistent with the information in the file_info table of the

database. If so, the server grants the lock; otherwise the server notifies the client, which

displays the paragraph in red to show that the local copy is inconsistent with the true

copy. In that case, the user may choose to fetch a fresh copy of the file.

The user releases the lock by shifting the cursor from the locked paragraph to a new

paragraph. The client then sends the new contents of the modified paragraph so the server

can update the file_data field of the file_info table. When the server releases the

 16

lock, the server modifies an entry in the history table to record the latest user of the

modified paragraph.

Users can either explicitly or implicitly release locks. If the user has decided not to edit a

particular paragraph, the client can voluntarily release the lock, after which the server

deletes the tuple from the user_file_info table corresponding to this user. By

modifying the content of a paragraph, the user implicitly requests the lock. On shifting

from one paragraph to other, the user implicitly releases any lock. Thus, deadlock is

never possible, since the user releases any lock before acquiring a new one.

4.3 Opening a document

As the user types in the name of the file to be opened, the client asynchronously acquires

from the server and displays those file names whose prefix matches the typed-in word.

From the list of filenames, the user can choose a file to open. Then the server fetches the

information from the file_info table and sets the in_use attribute of

user_file_info table to one for the client. If the user was already modifying some

other file, the client prompts the user to save the contents of that file before proceeding

with the new one. The server creates an entry in the lock_info table with the

paragraph identifier set to that special value indicating that the user has opened the file

but has not yet acquired any locks. The client retrieves the lock status information from

the server and displays it to the user by coloring paragraphs as appropriate.

4.4 Creating a new file

The client sends the server a request to create a new file with the name specified by the

user. If a file with that name already exists, the server reports an error. If not, the server

creates a new file for the user and adds an entry in the file_info table. The server

adds an entry in the user_file_info table of the database and sets the in_use field

of the entry to 1.

4.5 Sharing a file

The client sends a request to open a file with the name specified by the user. If the file

name matches an existing file, then the file is implicitly shared. The server creates an

entry in the lock_info table with the paragraph identifier set to that special value

indicating that the user has opened the file for reading. The server adds an entry in the

user_file_info table of the database and sets the in_use field of the entry to 1. If

the file name does not exist, the server reports an error. If the file is in use by some other

users, then the server sends the contents of the file along with the user name and the font

color related to other users accessing the file. The client displays each locked paragraph

with the font color of the user who has locked that paragraph.

 17

4.6 Saving a file

The client sends the contents of the modified paragraph to the server. The server updates

the file_info table of the database. The server updates the timestamp field of

lock_info table of database for that lock.

4.7 Closing a file

The client sends the request to close a file to the server. If the user holds the lock for any

paragraph in the file, the client gives a warning about the unsaved contents of the file.

The server modifies the entry in the user_file_info table of the database. The

server sets the in_use field of the table entry to 0. The server removes the entry in the

lock_info table of the database.

4.8 Deleting a file

The client sends a request to the server to delete a file. The server checks the

user_file_info table for other users for that file. If the client is the only one

accessing the file, then the server deletes the entry from user_file_info table and

deletes the file from the file_info table. If not, the server deletes only the entry from

the user_file_info table.

4.9 Searching for a word in a file

The user may interactively search for a word. The client prompts the user to enter the

search word. The client searches the full text of the file for the specified word and

highlights the word. The client allows the user to cancel the highlight on search results.

The server is not involved in word searches.

4.10 Spell check

When the user requests a spell check, the client forwards the request to the server. The

server uses Aspell [17] to spell-check the file and returns a list of misspelled words to the

client. The client performs a search for all the misspelled words, which it displays to the

user in a highlighted format. Users can right-click on the misspelled word to get

suggestions for that word. The client acquires the list of alternative spellings from the

server only when the user right-clicks. The client allows the user either to ignore the

misspelled word or select one of the suggested words. Any correction applies

immediately to all instances of that word.

4.11 Editing a file

 18

A user may edit a file only after acquiring a lock. The client can acquire a lock either on

the entire file or on those paragraphs that are not locked by other users. Whenever the

user starts editing a paragraph, the client sends the identifier of the paragraph to the

server to check whether it is locked or not. If it is not locked, the server grants the lock to

the client and the client changes the font color of the paragraph to green to let the user

know that the client has acquired a lock on this paragraph. The server updates the

paragraph-identifier field of the lock_info table with the new paragraph-identifier

value.

4.12 Fetching the content update of a file

On user request, the client sends a request to the server to fetch the current contents of the

file. Before sending the request, the client ensures that it has sent any local changes to the

server and released its lock.

4.13 Plugins

The client adds five plugins in FCKeditor to handle the events performed by the user on

the document. They are as follows.

• Key handler: This plugin is responsible for handling key-press events. The client

identifies the key strokes of the user on the paragraph, and depending upon the

current lock status of the paragraph, the client requests the lock to the server. If

the lock is not available, the client prevents the propagation of the key event.

• Lock handler: This plugin handles the “on selection change” event. Whenever the

paragraph receives its focus, the client triggers this event. This handler is

responsible for releasing the current lock.

• Paragraph delete: This plugin is responsible for merging two paragraphs when the

user types either the backspace or the delete key.

• Paragraph enter: This plugin is responsible for splitting a paragraph when the user

types the enter key.

• Suggest: This plugin is responsible for retrieving the suggestions for the

misspelled word and displaying them in the context menu of the word. When the

user selects the suggested word, the plugin replaces the misspelled word with the

suggested word.

4.14 Undo and redo operation

• The client allows the user to undo and redo the operations performed within a

locked paragraph. When the user releases the lock, the client sends the paragraph

contents to the server to update the file contents in the database, and the user

cannot undo or redo any operations performed in a released paragraph.

 19

 Future work

• AjaxWordPro can be modified to allow the users to lock a part of a paragraph, so

that multiple users can work on the same paragraph.

• It can be modified to allow the users to perform the cut, paste, backspace and

delete operations across paragraphs.

• It can be modified to allow a user to forcibly release the locks of other users

working on the same document.

• It can be enhanced to support some text formatting options such as font editing,

bullets, alignment.

• It can be modified to have some interactive mechanisms to register new users.

• It can be enhanced with features for exporting and importing documents.

• It can be modified to have a tree-structured filename space rather than a flat name

space.

5. Screen shots

• Enter username and password and click submit button

 20

Figure 6: User Authentication

• Authenticate a user.

After the server verifies the user’s identity, the server allows the user to perform

operations. The status text box displays the current operation performed by the

 21

user (Figure 7). A user can close the session by clicking the logout link at the top

of the window.

 Figure 7: User is authenticated

• Open an existing file

The user types in the name of the file. As the user types in the name, the user sees

a list of file names having the matching prefix of the file name (Figure 8). The

 22

user clicks on the required file or types in the file name and clicks the open button

to view the contents of the file. The user sees what paragraphs are locked and by

whom by referring to the table displayed at the top left corner of the screen

(Figure 9).

 Figure 8: Auto-suggestion of file names

 23

 Figure 9: File is opened by the user

 24

• Lock a paragraph
The user starts editing the paragraph. The server grants the lock to the user for editing

purposes. The font color of the paragraph is green (Figures 10 and 11).

Figure 10: Locked acquired by the user

 25

Figure 11: Displays an inconsistent paragraph and another locked paragraph.

 26

• Save the file

To save the file, the user clicks the “save” button. The status box displays the

message “File Saved” after successful completion (Figure 12).

 Figure 12: Saving a file

 27

• Spell check

The user clicks the “check spell” button to highlight the misspelled words. The user

performs a right-click operation on each misspelled word to display a context menu

with the list of suggested words or with “No suggestion”. The user can click on the

suggested word to replace all the occurrences of the misspelled word or ignore the

misspelled word (Figures 13 and 14).

 Figure 13: Highlight all the misspelled words

 28

Figure 14: Context menu with suggestions for misspelled word.

 29

• Highlight a search word
The user can highlight a search word by clicking the “Highlight Key” button. The

user enters the word to be highlighted. The user removes the highlight feature on

words using the cancel highlight button (Figures 15 and 16).

Figure 15: Perform a full-text search and highlight its occurrences

 30

 Figure 16: Searched word is highlighted

6. What I learned

• PHP: This project gave me a wonderful opportunity to learn object-oriented

server-side scripting.

• This project helped me to understand the concept of concurrency control

through locking, which enforces exclusive access rights to a paragraph of the

document for editing.

• This project gave me an opportunity to learn about Ajax and how to implement

Ajax using the JavaScript XMLHttpRequest. From this project, I understood

that interactive web applications can be created without refreshing the web browser

and by transferring minimal amount of information between the client and the

server.

• This project taught me how to generate a good technical report, thereby

communicating my ideas and concepts to the users of the document.

 31

7. What was hard to implement?

• Searching a word was hard, if the parts of the word were enclosed by some basic

HTML text formatting tags. For example, if I am trying to search the word

“computer” it was easy to identify the word which had a single HTML tag like

“ computer ”. But it was hard to find the word with some text formatting

tags for some characters of the word like “ com<i>pu</i>t<u>er</u>”. In

these cases, when a beginning tag was found in the middle of the word, the search

is performed for the remaining part of the word.

• Modifying the source code of FCKeditor, so that the user can perform the undo

and redo operations within a locked paragraph. By default, FCKeditor stores all

the actions performed by the user in the undo array. I created a new function to

flush the contents of the undo array in FCKeditor whenever a lock is acquired or

released.

• Creating new event handlers to handle enter, backspace and delete key operations

on a locked paragraph. The source code of FCKeditor had several event handlers

for these events. It was hard to modify the existing event handlers. I created a

user-defined event that fires before existing key-event handlers, to decide whether

to propagate the key-event or not.

• Preventing the user from performing cut, paste, delete and backspace operations

across paragraphs. By default, FCKeditor allows the user to perform these

operations across paragraphs. But these events need to be allowed, if and only if

both the paragraphs are locked by this user. I created a user-defined event which

was fired prior to the execution of existing key event handlers, to decide whether

to propagate the key event or not.

8. References

1. S. Xia, D. Sun, C. Sun, D Chen, and H. F. Shen: "Leveraging single-user applications

for multi-user collaboration: the CoWord approach," In Proceedings of ACM 2004

Conference on Computer Supported Cooperative Work, Nov 6-10, Chicago, IL USA,

pp.162-171.

2. Chengzheng Sun, Steven Xia, David Sun, David Chen, Haifeng Shen, Wentong Cai:

"Transparent adaptation of single-user applications for multi-user real-time

collaboration," ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4,

December 2006, pp.531-582.

3. Sachin Mullick, Raphael Finkel: “MUSE: A Collaborative Editor”, a Master’s project

done in the Department of Computer Science, University of Kentucky, November 5
th

,

1998.

 32

4. “FCKeditor Documentation”, http://docs.fckeditor.net/.

5. Jesse James Garrett: “Ajax: A New Approach to Web Applications”, February 2005.

6. Greg Murray: "Asynchronous JavaScript Technology and XML (Ajax) With the Java

Platform", June 9, 2005.

7. “FCKeditor, the text editor for an internet”, http://www.fckeditor.net/.

8. J. Schlichter, U. Borghoff, “Concurrency Control for Multiuser Editors”, ACM, 1992.

9. An Operating System Vade Mecum. Second Edition, Raphael A. Finkel, Prentice

Hall, 1988. Pages 270-272. ftp://ftp.cs.uky.edu/cs/manuscripts/vade.mecum.2.pdf.

10. C. A. Ellis, S. J. Gibbs, “Concurrency Control in Groupware Systems”, ACM, 1989.

11. “JavaScript”, http://w3schools.com/js, “Ajax”, http://w3schools.com/ajax.

12. By Lee Babin, “ Beginning AJAX with PHP--From Novice to Professional ”,

ISBN13: 978-1-59059-667-8, ISBN10: 1-59059-667-6, 272 pp, Published Oct 2006,

Apress.

13. Rafael Dohms, “Ajax: What is it?”, October 2006.

14. “JavaScript DOM”, www.w3schools.com.

15. “SSL”, www.webopedia.com/TERM/SSL.html

16. Rob, “XAMPP: SSL Encrypt the transmission of passwords with https”, July 15
th

,

2007, http://robsnotebook.com/xampp-ssl-encrypt-passwords.

17. “GNU Aspell”, http://aspell.net/.

18. Yet Another PKI: “How to - private PKI system just with OpenSSL”,
http://www.nissle.ch/ssl/PKI-OpenSSL.pdf.

19. Paul Johnston, Greg Holt, Andrew Kepert, Ydnar, Lostinet, “MD5 Message Digest

Algorithm Implementation”, version 2.1, 1999-2002,

http://pajhome.org.uk/crypt/md5/md5src.html.

