Master’s Project Report

AjaxWordPro: A Multi User Word Processor
Kausalya Madhusudhanan
Advisor: Dr. Raphael Finkel

Department Of Computer Science
University Of Kentucky
March 10, 2008

Acknowledgements

I would like to express my sincere and deep gratitude to my advisor, Dr. Raphael Finkel,
Dean of the Graduate Studies, University of Kentucky. His wide knowledge and his
logical way of thinking have been of great value for me. His stimulating suggestions and
encouragement helped me at every stage of my project. His understanding, encouraging
and personal guidance have provided a good basis for this master’s project. His extensive
discussions around my work and interesting explorations in operations have been very
helpful for the completion of my project.

I would like to thank my parents, Mr. Madhusudhanan and Mrs. Jayanthi
Madhusudhanan. They have always supported and encouraged me to do my best in all
matters of life.

I would like to thank all FCKeditor team members for providing a high quality
JavaScript editor, which is integrated in my project.

I would like to thank Paul Johnston and his team members for implementing the RSA
data security MD5 message digest algorithm, which is integrated in my project.

Kausalya Madhusudhanan
March 10", 2008.

Contents

Background

Requirements
Implementation decision
Implementation details
Screen shots

What I learned

What was hard to implement?

References

12

19

29

30

30

1. Background

This project reports on the design and implementation of AjaxWordPro, a multi-user
web-based word processor using the Asynchronous JavaScript and XML (Ajax)
technique. This technique creates web pages that are more responsive than traditional
web applications by exchanging small amounts of data with the server behind the scenes,
so that the entire web page does not have to be reloaded.

Free text corresponds to unformatted text. Free text seems to be a powerful way of
communication, because our day-to-day activity of sending emails, blogging and instant
messaging involves free text. A text editor is a program used for editing plain text files.
Documents created by a word processor generally contain file-format-specific “control
characters” that enable text formatting. Commonly used single-user interactive text-editor
applications include Notepad and Emacs, and word-processor applications include
Microsoft Office Word and OpenOffice Writer.

People also need groupware applications to perform collaborative or group tasks [1].
People need to collaborate with each other to work on the same document to get things
done quickly and efficiently. A collaborative multi-user word processor allows several
people to edit a document at the same time using different computers [1].

2. Requirements

The requirements of our multi-user web-based word processor are as follows:

¢ Provide the look and feel of a single-user word processor.

e Provide basic formatting tools to edit the documents by incorporating
FCKeditor, an open-source WYSIWYG text editor that can be used in web
pages.

e Work from a web browser on any operating system and on any device,
irrespective of the user’s location and machine.

e Allow multiple users to connect to a central server, create, modify and store text
documents on the server and graphically edit the contents of the document using a
web browser.

Display the presence of other users accessing the same document.

Allow the user to view the content changes of a document synchronously.

Allow the user to view the lock changes of a document asynchronously.

Provide implicit release of a lock, if the user is inactive for more than one hour.
Distribute the contents of a file to all its current users, thereby allowing them to
modify the contents, without manually separating the documents into smaller
parts.

® Provide secure transmission of username and password.

® Provide secure password storage on the server database.

The additional features of AjaxWordPro are as follows:

e [t allows the user to modify the contents of the file by holding a lock explicitly on
the editing region; the user may decide when to make the updates available for
other users.

e [t suggests plausible replacements for words that are likely to be misspelled.
e [t can perform a full-text word search.

3. Implementation Decisions

3.1 Asynchronous JavaScript and XML (Ajax)

AjaxWordPro uses Ajax to build dynamic web pages on the client. Ajax incorporates

[5]:

e Standards-based presentation using CSS;
¢ Dynamic display and interaction using the Document Object Model (DOM);
® Asynchronous data retrieval using XMLHttpRequest.

BT, ’

HTML + CSS Data

Browser (client)
Data store,
backend

processing

Server

Figure 1[5]: Classic web application model

I User Interface I

Web or XML
l 1 server
] 2 Http Request ‘ f
I i I Data store
) backend
XML Dat .
Browser ata processing
(client)
Server

1. JavaScript call

2. HTML + CSS data
Figure 2 [5]: Ajax Web application model

2

Client
1 1
ﬁ ‘M
3
Time
3
3

Server ‘M a

98]

2. User activity

System processing

4. Data transmission
Figure 3[5]: Classic web application model (synchronous)

Client: Browser Ul

User activity\ . [\ . [\ . f
Ajax Engine X / 5 X / 5 X /)
. . | A | A4 4 >
Client-side | | u [
. 3 3 [|3
processing [
Time ’
L Lo
| |3 \ s o vp3
Server > > Y
4 4 4
Input
Display

Data transmission
Server-side processing

5 22 I =

Figure 4[5]: Ajax Web Application Model (asynchronous)

In the traditional web-application model, once an interface is loaded, user interaction
comes to a halt every time the application needs something from the server. An Ajax web
application eliminates the start-stop-start-stop nature of interaction by introducing an
intermediary called an Ajax engine between the user and the server. This engine is
responsible for both rendering the interface the user sees and communicating with the
server on the user’s behalf. The Ajax engine allows the user’s interaction with the
application to happen asynchronously, independent of communication with the server.
Therefore, the user is not blocked until the browser gets the requested response from the
server. By exchanging small amounts of data, the web page becomes highly responsive
and interactive without reloading [11].

3.2 Scripting Languages

3.2.1 Client-Side Scripting Language: JavaScript

AjaxWordPro uses JavaScript as a client-side scripting language. JavaScript provides
Ajax function calls. JavaScript sends data to and accepts data from the server using the
XMLHttpRequest object [11]. The HTML DOM defines a standard set of objects for

HTML, which includes a window object, a document object, a navigator object and a
history object. All HTML elements, along with their containing text and attributes, can be
accessed through the DOM [14]. A JavaScript program may use the DOM properties and
methods to change the contents of a web page on the fly, which enables a web
programmer to create interactive web applications.

Examples

1. Setting an attribute of window object can modify the status of the web

browser:
Window.status = “Here is a new status message”;

2. Setting an attribute of document object can change the text, URL and target
attribute of a link:

Document .getElementById(‘e_id’) .innerHTML="new_1link";
Document .getElementById(‘e_id’) .href=
“http://cs.uky.edu";

Document .getElementById(‘e_id’) .target="_blank”;

Where e__id is the identifier of a link element

3.2.2 Server-Side Scripting Language: PHP

AjaxWordPro employs PHP on the server. PHP stands for Hypertext Preprocessor
[12]. It is an object-oriented scripting language that runs on the web server. PHP
generated HTML pages, but allows the server to perform computation to insert content
into those pages. It has several database functions that enable programs to communicate
with databases for storing and retrieving information.

3.3 Database

AjaxWordPro stores the information in a database on the server. The data includes the
contents of the documents, user information and file information. This project uses the
My Sqgl database management system [12].

3.4 FCKeditor

AjaxWordPro presents editable documents to users via FCKeditor. FCKeditor is an
open-source, What You See Is What You Get (WYSIWYG) HTML editor [4]. FCKeditor

is compatible with most internet browsers, such as IE 5.5+, Mozilla 1.3+, Netscape 7+
and Opera 9.5+. It is easy to install and customize for web developers and for web users.
Its main features are as follows [7]:

Multi-browser capability.

Automatic browser detection and customization.
Plugin support.

CSS support for integration with the website.
Text formatting: alignment, bullets, fonts.

Cut, Paste, Paste as Plain Text, Undo and Redo.
Right-click context-menu support.

3.5 Overall design

3.5.1 Concurrency control

AjaxWordPro uses exclusive (write) locks for concurrency control. Locks grant write
privilege on areas of shared documents [3]. Users need to hold a lock over the data before
editing the data.

Although locks allow starvation due to the fact that the server chooses the user to hold the
lock in an arbitrary way, the server does not prevent any other user from accessing other
parts of the shared document [9]. AjaxWordPro notifies the user when other users
access the same document, so the users can coordinate their work to avoid starvation.

We choose to lock the document at the granularity of individual paragraphs. When a user
introduces a new paragraph, it is considered as part of the previous paragraph for locking
purposes. There is an implicit empty paragraph at the start and end of each document.

3.5.2 Server Operations
AjaxWordPro’s server, written in PHP, has these responsibilities.

Authenticate the user.

Retrieve the requested file from the database.

Save the contents of a open file into the database.

Keep track of locks acquired by the users and enforce a locking policy.

Grant locks that do not conflict with other locks currently held.

Release locks automatically that are held for more than one hour without activity
on the associated data.

3.5.3 Client Operations

The AjaxWordPro client, written in JavaScript and residing in the user’s browser,
communicates with the server to:

e Establish a connection to the server.

e On user request, send a post submission to the server to open a document, fetch
the document contents, save a document, close a document, delete a document,
lock a paragraph, unlock a paragraph, and perform a spell check on the contents
of the document.

® On a periodic basis, fetch the lock status of the document from the server and
display that information to the user.

3.5.4 Client-server communication

When the user performs an action that requires communication with the server, the client
creates an instance of the XMLHt tpRequest type, in which it packages a request that it
submits to the server for processing. The client sets up a callback function. The server
generates a response and sends it to the client. When the client receives a response from
the server, the client executes the callback function, which consults the response and
reflects the changes back to the user.

10

Client

Server

Post
Get input Create a new I
from user XMLHttpRequest
instance
<
Respond

Update web Extract Data
page

Figure 5[13]: Client - Server Architecture of AjaxWordPro

3.6 Accessing a shared document

The client sends the user’s identity to the server for authentication. Once the
user’s identity is verified, the user can perform actions to access the shared
document.

When the user opens a document, the client requests the document from the
server. The server responds with the content of the document.

The server also sends information about the locked areas in the document. This
information specifies the username and font color of other users editing this
document. The client colors the locked paragraphs with different colors to
distinguish one user from another. The client’s locked paragraph is always green,
an inconsistent paragraph (to be discussed later) is always red, and a paragraph
that is not locked by any user is black.

Every client needs to acquire a lock before modifying the document. Whenever a
client starts editing the document, the server checks for a lock on the paragraph
the client is trying to modify. If the paragraph is not locked, the server allows the
client to edit its contents and implicitly grants the lock. If it is locked, the server
consults the timestamp of the client holding the lock. People tend to take a break
not more than one hour. So, if the client acquires the lock for more than one hour,
there are chances that the user computer is down or the browser application is
broken making the user inactive for more than one hour. If the user is active for
more than one hour with a locked paragraph, then the chances of saving the

11

contents at least once during the time is very high, which in turn updates the
timestamp of the lock preventing the server from automatically releasing the lock.
If that client has held the lock for more than one hour, the server grants the lock to
the new client. If not, the server denies the lock, and the client disallows editing
on that paragraph.

e The user can explicitly requests a lock on the whole document. If the document is
not shared by any other user, the server grants the lock for the whole document. If
not, the request is denied.

e The client requests lock status every 5 seconds and displays it to the user by
coloring paragraphs.

e The user can explicitly fetch the current contents of the document.

¢ The user can explicitly request a lock on a paragraph.

¢ The user can explicitly release a lock on a paragraph.

3.7 Secure Socket Layer

AjaxWordPro uses the Secure Sockets Layer (SSL) protocol to transmit sensitive
information to the server [15]. SSL in the web server provides support for the https
protocol. When the client requests a secure page, the web server sends its public key with
an SSL certificate. SSL Certificate uses SHA-1 with RSA algorithm for encryption and
server authentication. The browser checks whether the certificate is still valid and is
related to the web server. The browser then uses the key to encrypt a random symmetric
encryption key S and sends it to the server. The server decrypts S using its private key.
From that point forward, all communication between the client and the server is
encrypted with S [18]. Thus, SSL provides mechanisms for encrypting the transmitted
data and authenticating the server for security purposes [16].

4. Implementation details

4.1 Database Tables

4.1.1 User Information

The server maintains information about the users in the user_info table in the
database. Every user is associated with a user identifier, username, password and color of
the text used for locking. For security purposes, the server computes the digest of the
password using the MDS5 [19] algorithm and stores the digest in the database. Since the
server stores the digest of the password, a hacker cannot easily retrieve the password
from the digest present in the database. Interactive mechanisms for registering users are
beyond the scope of this project. Therefore, user information is entered manually in the
database.

12

Field Name Datatype Description
Username Varchar(50) Name of the user.
Password Varchar(32) Digested password:

MD)5 digest in hex.
Userld Int(11) User Identifier.
Primary key.
Font_color Varchar(8) Color of text to
display a lock. The
format of the color
is ‘#RRGGBB’,
where R- Red, G-
Green and B- Blue.

Table 1: user_ info table structure

4.1.2 File Information

The server stores the file information in the £ile_info table of the database. Each file
is associated with a unique identifier, file name and contents. Files are named in a flat
(non-hierarchical) name space.

Field Name Datatype Description
File_name Varchar(25) Name of the file
File_data Blob Contents of the file
File_id Int(11) File identifier:

primary key

Table 2: £ile_info table structure
4.1.3 User-File Information
The server maintains a user_file_info table to keep track of which user can access

which file by storing the user identifier, file identifier and an attribute that defines
whether the file is open or not.

Field Name

Datatype

Description

User_Id

Int(11)

User Identifier

13

File Id Int(11) File identifier

In_use Int(1) 0: The file is not in
use for this user.

1: The file is in use
for this user

Table 3: user_file_info table structure

4.1.4 Lock Information

The server maintains a lock_info table to keep track of locks. Each entry in the
lock_info table is associated with the user identifier, file identifier, paragraph
identifier of the paragraph and timestamp of the lock. The server predefines a few
paragraph identifiers that indicate a starting paragraph, an ending paragraph, a locked
file, and a file with no locks at present.

A user is allowed to hold only one lock on a document. Whenever the client requests a
locked resource, the server checks the timestamp of the user who last acquired the lock. If
the difference between the current time and the timestamp of the lock is greater than one
hour, then the server grants the lock to the new user. Therefore, it is necessary for a user
to save the contents of the editing region periodically so as to update the timestamp,
thereby preventing the server from releasing the lock.

Field Name Datatype Description
User_Id Int(11) User Identifier
File_Id Int(11) File identifier
Para_Id Int(20) Paragraph identifier
of the paragraph

Timestamp Timestamp Time at which data
was last locked or
saved.

Table 4: 1ock_info table structure

4.1.5 Session Information

The server maintains the session information of the user. The server ensures that only one
session exists for every user. Each session is associated with the user identifier and the
timestamp at which the session was created.

14

Field Name Datatype Description

User_Id Int(11) User Identifier

Timestamp Timestamp Time at which the
session was created.
Table 5: session_info table structure

4.1.6 History Information

The server maintains a list of the latest users of all paragraphs of the file in the history
table. The purpose of this table is to provide information about inconsistent paragraphs to
the user. The table structure contains information related to user identifier, file identifier,
paragraph identifier and the time at which the paragraph was last saved.

Field Name Datatype Description
User_Id Int(11) User identifier
File Id Int(11) File identifier
Para_Id Int(20) Paragraph identifier
of the paragraph
Timestamp Timestamp Time at which data
was last saved.

Table 6: history table structure

4.2 Locking a Paragraph

The locking granularity of the concurrency control mechanism is a paragraph. Finer
granularity locking is less constraining to the clients but entails greater overhead [10].
Whenever the user starts editing a paragraph, the server locks the paragraph. In order to
decrease the likelihood of the user trying to access a locked paragraph, the client displays
locked paragraphs in colors associated with the users who have locked them. Whenever
the user tries to modify the contents of an unlocked paragraph, the client sends the MD5
hash of its copy of the paragraph contents to the server to verify that the contents have
not changed since the last time the client fetched that paragraph. The server checks
whether the paragraph is consistent with the information in the file_info table of the
database. If so, the server grants the lock; otherwise the server notifies the client, which
displays the paragraph in red to show that the local copy is inconsistent with the true
copy. In that case, the user may choose to fetch a fresh copy of the file.

The user releases the lock by shifting the cursor from the locked paragraph to a new

paragraph. The client then sends the new contents of the modified paragraph so the server
can update the file_data field of the file_info table. When the server releases the

15

lock, the server modifies an entry in the history table to record the latest user of the
modified paragraph.

Users can either explicitly or implicitly release locks. If the user has decided not to edit a
particular paragraph, the client can voluntarily release the lock, after which the server
deletes the tuple from the user_file_info table corresponding to this user. By
modifying the content of a paragraph, the user implicitly requests the lock. On shifting
from one paragraph to other, the user implicitly releases any lock. Thus, deadlock is
never possible, since the user releases any lock before acquiring a new one.

4.3 Opening a document

As the user types in the name of the file to be opened, the client asynchronously acquires
from the server and displays those file names whose prefix matches the typed-in word.
From the list of filenames, the user can choose a file to open. Then the server fetches the
information from the file info table and sets the in_use attribute of
user_file_info table to one for the client. If the user was already modifying some
other file, the client prompts the user to save the contents of that file before proceeding
with the new one. The server creates an entry in the lock_info table with the
paragraph identifier set to that special value indicating that the user has opened the file
but has not yet acquired any locks. The client retrieves the lock status information from
the server and displays it to the user by coloring paragraphs as appropriate.

4.4 Creating a new file

The client sends the server a request to create a new file with the name specified by the
user. If a file with that name already exists, the server reports an error. If not, the server
creates a new file for the user and adds an entry in the £file_info table. The server
adds an entry in the user_file_info table of the database and sets the in_use field
of the entry to 1.

4.5 Sharing a file

The client sends a request to open a file with the name specified by the user. If the file
name matches an existing file, then the file is implicitly shared. The server creates an
entry in the lock_info table with the paragraph identifier set to that special value
indicating that the user has opened the file for reading. The server adds an entry in the
user_file_info table of the database and sets the in_use field of the entry to 1. If
the file name does not exist, the server reports an error. If the file is in use by some other
users, then the server sends the contents of the file along with the user name and the font
color related to other users accessing the file. The client displays each locked paragraph
with the font color of the user who has locked that paragraph.

16

4.6 Saving a file

The client sends the contents of the modified paragraph to the server. The server updates
the file_info table of the database. The server updates the timestamp field of
lock_info table of database for that lock.

4.7 Closing a file

The client sends the request to close a file to the server. If the user holds the lock for any
paragraph in the file, the client gives a warning about the unsaved contents of the file.
The server modifies the entry in the user_file_ info table of the database. The
server sets the in_use field of the table entry to 0. The server removes the entry in the
lock_info table of the database.

4.8 Deleting a file

The client sends a request to the server to delete a file. The server checks the
user_file_info table for other users for that file. If the client is the only one
accessing the file, then the server deletes the entry from user_file_info table and
deletes the file from the file_info table. If not, the server deletes only the entry from
the user_file_info table.

4.9 Searching for a word in a file

The user may interactively search for a word. The client prompts the user to enter the
search word. The client searches the full text of the file for the specified word and
highlights the word. The client allows the user to cancel the highlight on search results.
The server is not involved in word searches.

4.10 Spell check

When the user requests a spell check, the client forwards the request to the server. The
server uses Aspell [17] to spell-check the file and returns a list of misspelled words to the
client. The client performs a search for all the misspelled words, which it displays to the
user in a highlighted format. Users can right-click on the misspelled word to get
suggestions for that word. The client acquires the list of alternative spellings from the
server only when the user right-clicks. The client allows the user either to ignore the
misspelled word or select one of the suggested words. Any correction applies
immediately to all instances of that word.

4.11 Editing a file

17

A user may edit a file only after acquiring a lock. The client can acquire a lock either on
the entire file or on those paragraphs that are not locked by other users. Whenever the
user starts editing a paragraph, the client sends the identifier of the paragraph to the
server to check whether it is locked or not. If it is not locked, the server grants the lock to
the client and the client changes the font color of the paragraph to green to let the user
know that the client has acquired a lock on this paragraph. The server updates the
paragraph-identifier field of the 1ock_info table with the new paragraph-identifier
value.

4.12 Fetching the content update of a file

On user request, the client sends a request to the server to fetch the current contents of the
file. Before sending the request, the client ensures that it has sent any local changes to the
server and released its lock.

4.13 Plugins

The client adds five plugins in FCKeditor to handle the events performed by the user on
the document. They are as follows.

e Key handler: This plugin is responsible for handling key-press events. The client
identifies the key strokes of the user on the paragraph, and depending upon the
current lock status of the paragraph, the client requests the lock to the server. If
the lock is not available, the client prevents the propagation of the key event.

® Lock handler: This plugin handles the “on selection change” event. Whenever the
paragraph receives its focus, the client triggers this event. This handler is
responsible for releasing the current lock.

e Paragraph delete: This plugin is responsible for merging two paragraphs when the
user types either the backspace or the delete key.

e Paragraph enter: This plugin is responsible for splitting a paragraph when the user
types the enter key.

e Suggest: This plugin is responsible for retrieving the suggestions for the
misspelled word and displaying them in the context menu of the word. When the
user selects the suggested word, the plugin replaces the misspelled word with the
suggested word.

4.14 Undo and redo operation

e The client allows the user to undo and redo the operations performed within a
locked paragraph. When the user releases the lock, the client sends the paragraph
contents to the server to update the file contents in the database, and the user
cannot undo or redo any operations performed in a released paragraph.

18

Future work

AjaxWordPro can be modified to allow the users to lock a part of a paragraph, so
that multiple users can work on the same paragraph.

It can be modified to allow the users to perform the cut, paste, backspace and
delete operations across paragraphs.

It can be modified to allow a user to forcibly release the locks of other users
working on the same document.

It can be enhanced to support some text formatting options such as font editing,
bullets, alignment.

It can be modified to have some interactive mechanisms to register new users.

It can be enhanced with features for exporting and importing documents.

It can be modified to have a tree-structured filename space rather than a flat name
space.

5. Screen shots

Enter username and password and click submit button

19

%2 Untitled Document - Mozilla Firefox E@gj

File Edit Wiew History Bookmarks Yahoo! Tools Help

- - @}J I_/;l} L https:{flacalhostfwardpraf _:“_. v [l@'

[———
5 E . . r it Detail
|Usel |F1 ee |Im:on51stent ;AJ'(]K \‘ Ol'(lPl'O ﬁ —

Password ““““'1

Editor [FAQ][About Us | |Centact Us

Update

Enter a File name

=

Transferting data from localhost, .. localhost g%

Figure 6: User Authentication

e Authenticate a user.

After the server verifies the user’s identity, the server allows the user to perform
operations. The status text box displays the current operation performed by the

20

user (Figure 7). A user can close the session by clicking the logout link at the top
of the window.

%2 Untitled Document - Mozilla Firefox

File Edit Yiew History Bookmarks ‘ahoo! Tools Help

= - @;“J I_/;j‘ L1 https:)flocalhost/wordprof _::"..‘. & LCJ'

4D . 1 .n
|User |Free |Iu|:nnsistent .) - ks
Ajax WordPro

e Mame: mill
Idessages:

Melcome to AjaxWordPro

Sawve

Check Spell

Highlight Key Update
Lock File

Enter a File name

Transferting data from localhost. .. localhost &%

Figure 7: User is authenticated

¢ Open an existing file

The user types in the name of the file. As the user types in the name, the user sees
a list of file names having the matching prefix of the file name (Figure 8). The

21

user clicks on the required file or types in the file name and clicks the open button
to view the contents of the file. The user sees what paragraphs are locked and by
whom by referring to the table displayed at the top left corner of the screen
(Figure 9).

%2 Untitled Document - Mozilla Firefox

File Edit ‘“iew Higtory Bookmarks ¥ahoo! Tools Help

- - l\{"J I_/ET 1 https:iflocalhostfwordpro) _:“:. = B | @v. ..,_

Welcome userd, [logout]

User |Free |Inconsistent :\j ax “'Ol.(l Pl.o i]{le Mame: null
essages

Melcome to AjaxWordPro

Editor [FAQ][MM

[Hew Ml Close |

Check Spell

R0

Highlight Key
Lock File

Enter a]

-
|

File Name

Jawa

avaScript

Read localhost localhost i

Figure 8: Auto-suggestion of file names

22

titled Docume Mozilla Firefox g@

File Edit ‘“iew History Bookmarks Yahoo! Tools Help

- e lg(:f;l L?j L] https:{flocalhostfwordprof :_;'ﬁ.‘ |.>' @' i

|Us er Em/e_lhc&sistent

User

Welcome userA, [logout]

File Mame: JavaScript
IMeszages:

Melcome to AjaxWordPro
=» File 'Jawajcript' was
opened successfully

Editor [FAQ] [About Us ||Centact Us

T

JavaScript is a scripting language most oten used for client-side web development. [twas the originating dialect of the

Check Spell ECMASCript standard. 1tis a dynamic, weakly typed, prototype-based language with firstclass functions. JavaScriptwas
influenced by many languages and was designed to look like Java, but be easier far non-programmers to wark with.[1][2]

Highlight Ke Update The language is best known for its use inwebsites (as client-side JavaScript) but is also used to enable scripting access
to abjects embedded in other applications {for example Microsoft Gadgets in the Windows Sidebar).

JavaScript, despite the name, is essentially unrelated to the Java programming language though bath have the common
C syntax, and JavaScript copies many Java names and naming canventions. The language was renamed fram LiveScript
in a co-rmarketing deal between Metscape and Sun in exchange for Metscape bundling Sun's Java runtime with their
then-dominant browser. The key design principles within JavaSeript are inherited from the Self pragramming language.

Enter a File name

Read localhost localhost &%

Figure 9: File is opened by the user

23

¢ Lock a paragraph
The user starts editing the paragraph. The server grants the lock to the user for editing
purposes. The font color of the paragraph is green (Figures 10 and 11).

titled Document - Mozilla Firefox

File Edit Yiew History Bookmarks ‘Yahoo! Tools Help

s = @;“—] L?j‘ L1 https:)flocalhostwordprof _1_~_'_. v =3 ._ @v [= ._

User |Free [Inconsistent

User

Welcome userd, [logout]
File Mame: JavaZcript
IMessages:

color

Welcome to AjaxWordPro
=» File 'Jawaicript' was
opened successfully

[Home)| earor | (A J (sewr us) Contoct U

B I U | & | @)

[New Jl Close

[N ey
e m

—_— JavaSeti @ scripting language most often used for clientside weh development. Itwas the originating drrtestof the

Check Spell CMAScript standard. Itis a dynamic, weakly typed, prototype-based language with firskclass functions. JavaScript wa
e —— | influenced by many languages and was designed to look like Java, but be easier for non-programmers to work with.[1
to objects emhediediretharapolications for example Microsoft Gadgets in the WindowsStetedrarT

ertanguade is best known for its use inwehsites (as client-zside JavaScripf hutis also used to enahle scriptineratcess

Highlight Ke

JavaScript, despite the name, is essentially unrelated to the Java programming language though bath have the commaon
: syntax, and JavaScript copies many Java names and naming conventions. The language was renamed from LiveScript
Enter a File name in a co-marketing deal between Netscape and Sun in exchange for Metscape bundling Sun's Java runtime with their

JavaScript then-dominant browser. The key design principles within JavaScript are inherited from the Self programming language.

=,

localhost s

Read localhost

Figure 10: Locked acquired by the user

24

ntitled Document - Mozilla Firefox @@@

File Edt Wiew History Bookmarks Yahoo! Tools Help

o - |;£-f;i| I_/;_“ || https:,l’,l’localhost!fwordpro,l’_ “ v| [@' . .'<_ :
#" Untitled Document &3 | ™ untitled Document i

=
User |Free |Inconsistent

Welcome userA, [logout]
File Mame: JavaScript
Idessages:

|

User color

=r Please release the -~
lock using CTREL4HFZ and

then update the contents

=» Inconsistent v

userB

Close
e

Delete

Save

= e e e Jawas

Check Spell Share ChAScript standard. Itis a dynamic, weakly typed, prototype-based language with first-class functions. JavaScript was
e —— R —— influenced by many languages and was designed to look like Java, hut be easier for non-programmers to wark with.[1][2

Highlight Ke
Lock File

Update

: C gyra® and JavaScript caopies many Java names and naming conventions. The language was renamed fram
Enter a File name weScriptin a co-marketing deal between Metscape and Sun in exchange for Netscape bundling Sun's Java runtime wi

JavaScript |rthe-dom|nantbrowser. The key design principles within JavaScript are inherited from the Self programming

localhost &%

Figure 11: Displays an inconsistent paragraph and another locked paragraph.

25

e Save the file

To save the file, the user clicks the “save” button. The status box displays the
message “File Saved” after successful completion (Figure 12).

File Edit Yiew History Bookmarks ‘Yahoo! Tools Help

- - -@J Sj .|_| I_jttps:,l’,l’_localhos_t,l’wordpro,l’] ‘: l}' @' g «

0:. Untitled Document Q 0:. Untitled Document: -

I — Welcome userd, [logout]

User |Free (Inconsistent _‘j& X “701 PI'O File Mame: TavaScript
- e 8

pdated... ~
=» Crying to sawve
sJavalicript

=» File Saved

color

us erB

Editor [FAQ][About Us

B 7 U|vw ~[&|E)

Centact Us

A|'

JavaScript is a scripting language most often used far clientside web development. [twas the originating dialect of the
ECHMASCript standard. Itis a dynamic, weakly tyned, prototype-based language with first-class functions. JavaScript was
influenced by many languages and was designed to look like Java, hut be easier for non-pragrammers towark with.[1][2]
The language is best known for its use inwehsites {as client-side JavaSeript) but is also used to enahle scripting access
to abjects embedded in other applications {for example Microsoft Gadgets in the Windows Sidebar).

JavaScript, despite the name, is essentially unrelated to the Java programming language though bath have the commaon
C syntax, and JavaScript caopies many Java names and naming conventions. The language was renamed from
LiveScriptin a co-marketing deal hetween Metscape and Sun in exchange for Metscape bundling Sun's Java runtime with
theirthen-dominant browser. The key desian principles within JavaScript are inherited from the Self programming
language.

localhost &%

Figure 12: Saving a file

26

e Spell check

The user clicks the “check spell” button to highlight the misspelled words. The user
performs a right-click operation on each misspelled word to display a context menu
with the list of suggested words or with “No suggestion”. The user can click on the
suggested word to replace all the occurrences of the misspelled word or ignore the
misspelled word (Figures 13 and 14).

%3 Untitled Document - Mozilla Firefox

File Edit Yiew History Bookmarks ‘Yahoo! Tools Help

. — S T -
5 “ @_AJ I_E_T L1 https:flacalhostfwordpra) =1 [P [gv | E
#*% Untitled Document £3 | 4% Untitled Document =

I —— Welcome userA, [logout]
|User |F1‘ee |Ir||:ur151stent ;&j ax “'Ol.(l Pl'(.' ij{le Mame: JavaScript
e3sages:

spell checked ~
=» Please lock the

content which need to

spell checked i

User color

Editor | [FAQ | (About Us M

|§BIgn

JavaScriptis a scripting language most often used for client-side weh development. Itwas the originating dialect of the
i EChMAScript standard. Itis a dynamic, weakly typed, prototype-based language with first-class functions. JavaScript was
— — influenced by many languages and was designed to look like Java, but be easier for non-programmers to work
with.=1==2= The language is best known for its use inwebsites (as client-side JavaScript) butis also used to enable
scripting access to abjects embedded in other applications {for example Micrasoft Gadgets in the Windows Sidehar).

JavaScript, despite the name, is essentially unrelated to the Java programming language though both have the commoan
C syntax, and JavaScript caopies many Java names and naming conventions. The language was renamed from
Enter a File name LiveScriptin a co-marketing deal between Netscape and Sun in exchange for Metzcape hundling Sun's Java runtime with

: their then-dominant browser. The key design principles within JavaScript are inherited frorn the Self programming
JawaScript [T

' lacakhost ﬁﬁ

Figure 13: Highlight all the misspelled words

27

2 Untitled Document - Mozilla Firefox E@gl

File Edit Wiew History Bookmarks Yshoo! Tools Help

= = @}J éj‘ L https:{flacalhostiwardpra) '.:‘E. = FS v. [oy

£ Untitled Document &3 | 4™ Untitled Document %

[
User |Free |Inconsistent

Welcome userd, [logout]
File Matne: JavaScript
Idessages:

|

User color

zspell checked ~
=»> Please lock the

content which need to

spell checked B

userB

Editor [FAQ][About Us

Centact Us

JavaScript is a scripting language most often used for client-side weh development. It was the originating dialect of the
ECHMAS rj.nlstan.dam_l} iz a dynamic, weakly typed, prototype-based language with first-class functions. JavaScript was
e influenc - Duages and was designed to look like Java, but be easier for non-programrmers to work
— E he
Highlight K.ey Update with =1 HOLEIRS Boe is bestknown for its use in websites (as client-side JavaScript) butis also used to enable

T scripting Excoriated prts embedded in other applications (for example Microsoft Gadgets in the Windows Sidebar).

Javager I st

C syntax, and JavaSeript caopies many Java names and naming conventions. The language was renamed fram
LiveScriptin a co-marketing deal betwean MNetscape and Sun in exchange for Metscape bundling Sun's Java runtime with
their then-dominant browser. The key design principles within JavaScript are inherited from the Self programming
language.

Enter a File na

localhast % .

Figure 14: Context menu with suggestions for misspelled word.

28

e Highlight a search word
The user can highlight a search word by clicking the “Highlight Key” button. The
user enters the word to be highlighted. The user removes the highlight feature on
words using the cancel highlight button (Figures 15 and 16).

g rerer —— AES)

File Edit “iew History Bookmarks Yahoo! Tools Help

e e T .
- - l@_’-J Lﬂ: L https:flocalhost fwordprof & v | [@'
"% Untitled Document 8 2% Untitled Document i

Welcome userA, [logout] 1
File Mame: JTavaScrpt

| — I —
|User |F1'ee |In|:orlsistent

Messages:
User color o

spell checked -~
=> Please lock the

content which need to

spell checked

userB

| Enter the search key

; work e

_— JavaScript evelapment. [twas the originating dialect of the
ECHMASCH jainguage with first-class functions. JavaSeript was
influenced he easier far non-programmers to wark
with.=1==2] ent-side JavaScript) but is also used to enable

sctipting actess 1o OhJects embedded I OMer appNCanans qar example Micrasoft Gadoets in the Windows Sidebar).

JavaScript, despite the name, is essentially unrelated ta the Java pragramming language though both have the commaon
i C syntax, and JavaScript caopies many Java names and naming conventions. The language was renamed from
Enter a File name LiveScriptin a co-marketing deal between Metscape and Sun in exchange for Metscape bundling Sun's Java runtime with

E . their then-dominant browser. The key design principles within JavaScript are inherited from the Self programming
JavaScript language.

.

localhost %

Figure 15: Perform a full-text search and highlight its occurrences

29

% Untitled Document - Mozilla Firefox

File Edit Wiew History Bookmarks Yahoo! Tools Help

& & l\{._f’“J I_E_T L] https:{flocalhostfwordprof bad) v | [[Q—]' %
++ Untitled Document &3 | % Untitled Document =

P — Welcome userd, [logout]

|User |F1-ee |Im:onsistent ‘&j ax “YOP(IPP(' File Hame: JavaScript
User - -] Idessages:

color

spell checked ~
=r Please lock the

content which need to

spell checked B

|§BIgn

JavaScript is a scripting language most often used for client-side web development. twas the originating dialect of the
EChAScript standard. Itis a dynamic, weakly typed, prototype-hased language with first-clazs functions. JavaScriptwas
influenced by many languages and was designed to look like Java, hut be easier for non-programmers to wark

: with.=1==2= The language is best known forits use inwehsites (as client-side JavaScript) but is also used to enable
scripting access to abjects embedded in other applications (for example Microzoft Gadagets in the Windows Sidebar).

JavaScript, despite the name, is essentially unrelated to the Java programming language though both have the common
. C syntax, and JavaScript caopies many Java names and naming conventions. The language was renamed fram
Enter a File name LiveScriptin a co-marketing deal between Metscape and Sun in exchange for Metscape bundling Sun's Java runtime with

5 their then-dominant broweser. The key design principles within JavaScript are inherited frorm the Self programming
JavaScript language

lacalhost %

Figure 16: Searched word is highlighted

6. What I learned

e PHP: This project gave me a wonderful opportunity to learn object-oriented
server-side scripting.

e This project helped me to understand the concept of concurrency control
through locking, which enforces exclusive access rights to a paragraph of the
document for editing.

e This project gave me an opportunity to learn about Ajax and how to implement
Ajax using the JavaScript XMLHttpRequest. From this project, I understood
that interactive web applications can be created without refreshing the web browser
and by transferring minimal amount of information between the client and the
server.

e This project taught me how to generate a good technical report, thereby
communicating my ideas and concepts to the users of the document.

30

7. What was hard to implement?

e Searching a word was hard, if the parts of the word were enclosed by some basic
HTML text formatting tags. For example, if I am trying to search the word
“computer” it was easy to identify the word which had a single HTML tag like
“ computer ". But it was hard to find the word with some text formatting
tags for some characters of the word like “ com<i>pu</i>t<u>er</u>". In
these cases, when a beginning tag was found in the middle of the word, the search
is performed for the remaining part of the word.

e Modifying the source code of FCKeditor, so that the user can perform the undo
and redo operations within a locked paragraph. By default, FCKeditor stores all
the actions performed by the user in the undo array. I created a new function to
flush the contents of the undo array in FCKeditor whenever a lock is acquired or
released.

¢ (reating new event handlers to handle enter, backspace and delete key operations
on a locked paragraph. The source code of FCKeditor had several event handlers
for these events. It was hard to modify the existing event handlers. I created a
user-defined event that fires before existing key-event handlers, to decide whether
to propagate the key-event or not.

® Preventing the user from performing cut, paste, delete and backspace operations
across paragraphs. By default, FCKeditor allows the user to perform these
operations across paragraphs. But these events need to be allowed, if and only if
both the paragraphs are locked by this user. I created a user-defined event which
was fired prior to the execution of existing key event handlers, to decide whether
to propagate the key event or not.

8. References

1. S. Xia, D. Sun, C. Sun, D Chen, and H. F. Shen: "Leveraging single-user applications
for multi-user collaboration: the CoWord approach," In Proceedings of ACM 2004
Conference on Computer Supported Cooperative Work, Nov 6-10, Chicago, IL USA,
pp-162-171.

2. Chengzheng Sun, Steven Xia, David Sun, David Chen, Haifeng Shen, Wentong Cai:
"Transparent adaptation of single-user applications for multi-user real-time
collaboration," ACM Transactions on Computer-Human Interaction, Vol. 13, No. 4,
December 2006, pp.531-582.

3. Sachin Mullick, Raphael Finkel: “MUSE: A Collaborative Editor”, a Master’s project

done in the Department of Computer Science, University of Kentucky, November 50,
1998.

31

4. “FCKeditor Documentation”, http://docs.fckeditor.net/.
5. Jesse James Garrett: “Ajax: A New Approach to Web Applications”, February 2005.

6. Greg Murray: "Asynchronous JavaScript Technology and XML (Ajax) With the Java
Platform", June 9, 2005.

7. “FCKeditor, the text editor for an internet”, http://www.fckeditor.net/.

8. J. Schlichter, U. Borghoff, “Concurrency Control for Multiuser Editors”, ACM, 1992.

9. An Operating System Vade Mecum. Second Edition, Raphael A. Finkel, Prentice
Hall, 1988. Pages 270-272. ftp://ftp.cs.uky.edu/cs/manuscripts/vade.mecum.2.pdf.

10. C. A. Ellis, S. J. Gibbs, “Concurrency Control in Groupware Systems”, ACM, 1989.

11. “JavaScript”, http://w3schools.com/]s, “Ajax”, http://w3schools.com/ajax.

12. By Lee Babin, “ Beginning AJAX with PHP--From Novice to Professional ”,
ISBN13: 978-1-59059-667-8, ISBN10: 1-59059-667-6, 272 pp, Published Oct 2006,
Apress.

13. Rafael Dohms, “Ajax: What is it?”, October 2006.

14. “JavaScript DOM”, www.w3schools.com.

15. “SSL”, www.webopedia.com/TERM/SSL.html

16. Rob, “XAMPP: SSL Encrypt the transmission of passwords with https”, July 15",
2007, http://robsnotebook.com/xampp-ssl-encrypt-passwords.

17. “GNU Aspell”, http://aspell.net/.

18. Yet Another PKI: “How to - private PKI system just with OpenSSL”,
http://www.nissle.ch/ssl/PKI-OpenSSL.pdf.

19. Paul Johnston, Greg Holt, Andrew Kepert, Ydnar, Lostinet, “MDS5 Message Digest
Algorithm Implementation”, version 2.1, 1999-2002,
http://pajhome.org.uk/crypt/md5/md5src.html.

32

