
QuantC: A C-Like Language for Quantum

Computing

Tyler Burkett

June 30, 2022

1 Introduction

In this project, I contribute two major deliverables. First, I define a new pro-

gramming language QuantC, which aims to provide a single uniform interface

to write code that executes on both a classical and quantum computer. Second,

I implement a compiler for QuantC in C++ with the aid of several standard

compiler-writing tools. I used Flex and Bison to implement a lexical analyzer

and parser. I also used the LLVM library to generate the classical portions of

code, with the gcc compiler serving as both a preprocessor and linker, in order

for the compiler to create executable programs that can run on a standard com-

mand line on a Linux computer. To test the quantum components of the code

generated, I ran a quantum virtual machine (QVM) provided as a part of the

ForestSDK from Riggetti Computing as a local server on the same machine.

Quantum computing appears to be the next big paradigm in computation,

given the growing body of quantum algorithms and their ability to provide

significant computational speed-up compared to classical algorithms [7]. Pro-

grammers will need programming languages and toolkits that help them write

1

semantically correct code for new quantum computing systems. By establish-

ing clear distinctions between classical and quantum code alongside additional

compile-time checks, QuantC aims to be a user-friendly language for developing

programs on future quantum-enabled systems.

2 Background on Quantum Computing

This section does not intend to fully discuss quantum mechanics and quantum

information theory but rather to provide an overview of several terms and con-

cepts discussed throughout this paper. For exploring these topics further, a

source like [8] is better suited.

Qubits are the basis of data storage for a quantum computer, analogous to

a bit for a classical computer. Qubits have the property that they can take on

more state values than the 0 or 1 values of a bit. Instead, a qubit’s state can

take on various values, which a vector within a Hilbert space better describes. A

Hilbert space is a vector space equipped with an inner product and norm. The

Hilbert space for a qubit is a 2-dimensional complex vector space, and any state

of the qubit is represented as a linear combination, also called a superposition,

of two basis states |0〉 =

1

0

 and |1〉 =

0

1

.

Due to physical constraints on qubits, we add the additional constraint that

the weight of |0〉 in any qubit state is real and non-negative. Additionally,

qubit state vectors are normalized. Specifically, the state of a qubit |ψ〉 is

then described as |ψ〉 = cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉, where 0 ≤ θ ≤ π and

0 ≤ φ < 2π [5]. These constraints lead to a representation of a qubit’s state

space by what is called a Bloch sphere. Figure 1 illustrates this space. On the

other hand, the only state value a bit can take on corresponds to |0〉 and |1〉.

The Bloch sphere helps illustrate how qubits differ from bits’ capacity to hold

2

information.

Figure 1: A visual representation of the state space of a qubit [5]

The notation used to describe the base states of a qubit is Bra-Ket notation,

also known as Dirac notation. A ket (|〉) refers to a 2n-element complex column

vector and is used to represent the state of n qubits, whereas a bra (〈|) refers to

the adjoint (conjugate transpose) of a ket. Consequently, a bra refers to a linear

functional and is used to describe operations like measurement. In combination,

the notation allows us to know what operation is implicitly performed between

them; |〉 |〉 is a tensor product, 〈| |〉 is an outer product, and |〉 〈| is an inner

product.

Although the state vector formalism is sufficient to describe qubit states, it

becomes less effective when talking about qubits whose states are not entirely

known. For example, consider applying one of two operations onto a qubit q2

based on the measured result of another qubit q1. If the measurement result

from q1 was unknown for some reason, the exact state of the qubit q2 is not

known. Instead, q2 would statistically be in one of two states dependent on

the measured value of q1. We refer to the possible states that q2 can be in as

pure states. We refer to q2 being in this statistical ensemble of pure states

as being in a mixed state. In this case, we could use the density-matrix for-

malism to describe the state of q2 more easily. Formally, consider the set of

pure states { | ψi〉 } that q2 could be in with probability pi. The density ma-

3

trix ρ that represents the mixed state of q2 is defined as ρ ≡
∑
i pi |ψi〉 〈ψi|. A

mixed state represented by a density matrix does not necessarily correspond to a

qubit’s physical state. In the previous example, the density matrix for q2 corre-

sponds to its mixed state, but q2 is only ever physically one of the possible pure

states. Still, the resultant density matrix directly encodes information about

the probability of the qubit collapsing to a specific base state when measured,

even though the qubit’s pure state is unknown. Both the density-matrix and

state-vector formalism are mathematically equivalent [8], so which one to use is

often a matter of preference.

Two categories of operations affect qubits. First, square unitary matrices

represent operations manipulating the state of a qubit. These unitary opera-

tions are reversible. Because of reversibility, one can think of these operations

as quantum gates, similar to logical gates in classical circuits with the same

number of inputs as outputs. Second are non-unitary measurement operations.

Measurement operations cause a given qubit to collapse into a basis state with

a certain probability. For a specific example, consider the state of a qubit

|ψ〉 = α |0〉 + β |1〉. For a measurement that causes this qubit to collapse into

either |0〉 or |1〉, the probability that this qubit is in one of those states after the

measurement is ‖α‖2 and ‖β‖2, respectively. Measurements are non-reversible

and usually appear at the end of some chain of unitary operators to obtain

a binary value from qubits. These measurement operations describe special,

non-reversible gates applied to one or more qubits.

An interesting consequence of the nature of qubits leads to the concept of

entanglement. Entanglement refers to the situation where two or more qubits

become associated in such a way that each state cannot be described indepen-

dently of one another. For example, consider that the state of a 2-qubit system

could be 1√
2
|00〉+ 1√

2
|11〉, where |αβ〉 is shorthand for |α〉 |β〉. In this 2-qubit

4

system, there is no way to factor this state description into a product of two

independent qubit states. Furthermore, measuring one qubit in this described

configuration forces the other qubit to have the same value. In other words, al-

though only one qubit is measured, entanglement causes the other qubit’s state

to be modified as well, in this case measured. This entanglement property of

qubits opens up possibilities for developing new algorithms, such as communi-

cation or encryption. However, entanglement can also lead to problems if, for

example, it is between ancilla qubits, additional qubits introduced to convert

an otherwise irreversible computation to a reversible one, and result qubits in

a computation. Unwanted entanglement sometimes forces us to uncompute

ancilla qubits before measuring, applying a set of unitary operations on ancilla

and result qubits that are the reverse of a previous step of computation that

entangled them.

Understanding unitary operators and measurements to be gates allows for a

description of quantum computations as circuits. Figure 2 shows some common

unitary operations in both their matrix and symbol gate representations. These

gates, taken together, can be used to perform various operations, even classical

operations like addition.

However, some constraints make computation with qubits more restrictive

than with bits. Specifically, these constraints are known as the no-cloning and

no-deleting theorem. These theorems state that there exists no unitary opera-

tion U such that U(|φ〉 |0〉)→ |φ〉 |φ〉 (cloning) or U(|φ〉 |φ〉)→ |φ〉 |0〉 (deleting)

for an arbitrary quantum state |φ〉. These constraints mean that storing quan-

tum states is not nearly as easy as classical bits, leading to the circuit model

being an appropriate choice for modeling quantum computation.

5

Figure 2: Common logic gates [9]

The circuit model of quantum computation is just the starting point of

quantum computation. The abstract quantum computation model typically

involves a classical computer extended with quantum instructions and access to

registers of qubits, referred to as a QRAM [6]. One way to extend the classical

computer is by communicating with a coprocessor: a quantum computer that

implements only the quantum instructions and qubit registers. The classical

computer executes the classical instructions as expected and sends quantum

instructions to the quantum computer. A quantum computer’s instructions

correspond to the unitary and measurement operations mentioned above, along

6

with state preparation operations that set qubits into at least one base state,

usually |0〉. These quantum instructions thus also describe quantum circuits.

After finishing execution, the quantum computer returns any resulting classical

values to the classical computer. When performing operations that involve

classical memory, different desgins for quantum computers vary. We can expect

the classical computer to handle all classical operations and store any classical

values needed by the quantum computer itself, transmitting them when needed.

However, it is also possible that the quantum computer has the capacity to

handle some classical operations and memory on its own [10] to reduce the cost

of multiple accesses to the quantum computer.

3 Programming Language Features and Seman-

tics of QuantC

My design of QuantC aims to achieve several goals. The first goal is to make a

clear separation between classical and quantum code. A programmer should be

able to identify what sections of code are meant to run on a quantum computer

versus a classical computer. The distinction will hopefully reduce programming

errors by making these sections of code easy to distinguish.

The second goal is to minimize the overhead of learning a new language.

The primary method of achieving this goal is making QuantC a dialect of a

preexisting language rather than a new language entirely. Not only does the

similarity reduce the chances of programming errors, but it also eases the burden

of modifying preexisting code from the base language to QuantC.

The final goal of QuantC is to abstract communication between the classi-

cal and quantum computer while still providing a clear mapping between code

and machine instructions. Given the receny and current scale limitations of

7

quantum computers [4], code written in QuantC needs to map closely with

lower-level instruction sets as much as possible. How quantum instructions are

communicated is less important than ensuring that the instructions perform

as expected. Abstracting communication between the classical and quantum

computers eases the burden on the programmer during development without

affecting code correctness.

3.1 A Superset of C Inspired by CUDA

The design of CUDA, a C dialect implemented by Nvidia to write programs

that can utilize a GPU, inspires the design of QuantC. In CUDA, a function

marked with a global keyword encapsulates code meant to execute on the

GPU. Both the code inside the global function and the invocation of that

function inside other regular C/C++ functions mostly resemble their regular

counterparts. CUDA also includes additional syntax to accommodate differ-

ences in code execution on a GPU versus a CPU, namely SIMD code execution.

QuantC adopts these broader aspects of CUDA in its language design. Any

valid C program should also be a valid QuantC program. Changes to the syn-

tax and grammar of C are only extensions. The semantics of classical portions

of code remains unchanged, only affecting areas of code specific to QuantC.

3.2 Assumptions about the Quantum/Classical Architec-

ture

QuantC makes several assumptions about the relationship between quantum

and classical computers. The quantum computer operates as a co-processor to

the classical computer. The classical computer sends the quantum computer

a set of instructions to run. The quantum computer, in turn, executes the

instructions and returns some classical value(s) to the classical computer. The

8

quantum computer and the classical computer do not share memory. The quan-

tum computer contains some classical memory and can perform some classical

instructions on that memory. QuantC does not expect the quantum computer

to execute classical instructions with the same performance as the classical com-

puter. The communication between the two types of computers is synchronous.

This last assumption is primarily due to the lack of syntax for asynchronous

operations in C. Given that current quantum computing systems usually ne-

cessitate remote access, future work may relax this assumption, as detailed in

Section 6.1.

3.3 The quantum Keyword

In the QuantC grammar, the quantum keyword is a storage class specifier,

associated with type information to define how a function or variable is stored in

memory and linked during the linking step. A quantum function is a function

denoted with the quantum keyword, which represents a set of quantum opera-

tions to be executed on a quantum computer. Likewise, a quantum variable is

a variable denoted with the quantum keyword, which represents a collection of

qubits in a quantum computer. Quantum variables can only appear inside quan-

tum functions. For reference later in the document, a classical function and

classical variable refer to the same constructs without the quantum keyword.

3.4 Semantics of Quantum Functions

A quantum function can take both classical and quantum variables as argu-

ments. The quantum keyword in arguments denotes them as quantum values,

identical to how quantum variables are declared. However, quantum arguments

can only be passed by reference, denoted with &, similar to how pass-by-reference

is denoted in C++. Only quantum arguments can use the pass-by-reference syn-

9

tax. Classical arguments for quantum functions operate identically to regular

C function arguments.

1 quantum void basic_function(int value1, quantum int &value2) {

2 ...

3 }

Figure 3: An example of a permissible quantum function signature in QuantC

Any quantum function can contain a call to any other quantum function,

excluding recursive calls. Forward declarations of quantum functions are disal-

lowed in the translation unit they appear in, so circular calls are by necessity

also disallowed. However, classical functions can only contain calls to quantum

functions with exclusively classical arguments. None of these classical arguments

may be pointers. A quantum function can also contain classical control struc-

tures like if/else and while statements. A quantum function may only return

a classical value like a classical function, regardless of which kind of function

the call appears in.

All return types, arguments, and variables defined for a quantum function

can only be of a built-in type. These built-in types include bool. This re-

striction is primarily due to how limited classical resources may be for a quan-

tum computer, which may prevent structured types from being stored inside

the quantum computer. In addition, quantum computers may have addressing

restrictions that make structured types impossible. Due to the no-cloning the-

orem, a quantum computer must ensure that non-unary quantum operations

do not reference the same qubit multiple times. Again, it may be impossible

to enforce this rule at compile time in the presence of structured types. Local

quantum variables are implicitly reset at the end of a quantum function to pre-

vent entanglement with qubits outside the function, because these qubits are

reused.

10

Quantum functions compile to a quantum intermediate representation (IR)

suitable to send to a quantum computer. The QuantC compiler stores this

quantum IR as a part of the final executable program in a format that the

quantum computer can receive and process into the final machine instructions

before execution. QuantC leaves the specific quantum IR format(s) undefined.

For example, a compiler could store the quantum IR in either a machine-specific

binary or text-based machine-independent format.

At calls to quantum functions inside classical code, rather than generating

a regular C function call, a QuantC compiler inserts a call to a library function

to handle communication between the classical and quantum computers. This

function takes at minimum the generated IR, the name of the quantum function

called at the corresponding location in code, and any values passed as arguments

to the quantum function. Any additional parameters or implementation details

of this built-in function are left undefined.

3.5 Semantics of Quantum Variables

Quantum variables represent a collection of qubits inside the quantum computer.

Quantum variables cannot be assigned a value after declaration. Quantum vari-

ables can accept classical integer values as initializers. QuantC defines the order

of significance and size of integer values and literals to match those properties

of the classical C types, usually MSB first and 32 bits long. The ith classical

bit of the value being either 0 or 1 initializes the ith qubit of the variable to

either |0〉 or |1〉, respectively. An uninitialized quantum variable is equivalent

to the variable being zero-initialized. These semantics ensure that every quan-

tum variable always refers to the same set of qubits throughout the lifetime

of a quantum function. Quantum variables also accept non-classical values as

initializers, though the semantics are necessarily different from the prior case.

11

Section 3.6 covers this case of initializers in detail.

Array variables can also be declared as quantum, but their declared size

and any values used to index them must be constant at compile time. Pointer

variables cannot be declared quantum. This restriction is due to addressing

limitations by quantum computers discussed in Section 3.4. Quantum arrays

accept initializer lists of classical values like C arrays. An entry in the quantum

array follows the same initialization semantics as the corresponding entry in the

initializer list. Any entries not defined in the initializer list are zero-initialized.

3.6 Quantum Operations and Expressions

Quantum operations correspond to applying a quantum gate to a set of

qubits. Some quantum operations also take an additional classical value. These

operations correspond to parametric gates, generic gates whose effects are

partially defined by a classical value representing an angle (in radians). Con-

sequently, these classical values must be floating-point numbers. Parametric

gates are often generalized versions of other non-parametric gates. For para-

metric gates, the terms “unary” and “binary” are used only concerning their

quantum arguments; quantum gates do not operate on gate parameters.

12

1 // Unary Gates

2 %I myQubits; // Identity (No change)

3 %X myQubits; // X-Gate (Bitwise NOT extended to qubits)

4 %Y myQubits; // Y-gate

5 %Z myQubits; // Z-Gate

6 %H myQubits; // Hadarmard

7 %PHASE(angle) myQubits; // Phase

8 %S myQubits; // S-Gate

9 %T myQubits; // T-Gate

10 %RX(angle) myQubits; // Rotate-X Gate

11 %RY(angle) myQubits; // Rotate-Y Gate

12 %RZ(angle) myQubits; // Rotate-Z Gate

13 %M myQubits; // Measurement

14
15 // Binary Gates

16 myQubits ^ myOtherQubits // Controlled NOT (X) gate

17 myQubits <> myOtherQubits // Swap Gate

18 myQubits <I> myOtherQubits // Imaginary Swap Gate

19 myQubits <P>(angle) myOtherQubits // Parameterized Swap Gate

Figure 4: The set of quantum operations defined in QuantC

A quantum expression is a combination of quantum variable identifiers

and quantum operations. Quantum expressions can only appear in quantum

functions. Since the value of qubits cannot be copied, the resulting value of a

quantum expression is the set of (possibly value-modified) qubits involved in

the expression. Quantum operations correspond to applying a quantum gate to

the qubits operated on. The one exception to this rule is the measurement op-

eration. The measurement operation takes a quantum expression and results

in a classical integer value corresponding to the collapsed states of the qubits

inside the quantum expression. Quantum operations apply a side effect (the

corresponding quantum gate) to quantum variables contained in the expression.

However, instead of evaluating to the value of the quantum variables (which

cannot be copied or measured without modifying them), quantum operations

return “references” to those quantum variables. The compiler handles theses

“references” during code generation.

When the initializer of a quantum variable declaration is a quantum expres-

sion, the semantics of the declaration differs from that of a classically-valued

13

initializer. In this case, the initialization follows a move semantics; the new

quantum variable defined in the declaration takes ownership of the qubits as-

sociated with the quantum variable used in the initializer. Consequently, the

quantum variable in the quantum expression cannot appear more than once

inside the expression, and further statements within the current scope cannot

reference that variable. Classical values in the initializer, such as parameters to

certain quantum operations, remain unaffected by declarations; later statements

can reference these values. The type of the newly declared quantum variable

must match the type of the variable used in the expression. These semantic

rules prevent the case of multiple identifiers referring to the same set of qubits

and later used together in the same quantum expression.

1 quantum bool a = 0;

2 quantum bool b = 0;

3
4 quantum bool c = %H a; // Allowed; "a" is moved to "c".

5 quantum bool d = %H a; // Error; "a" in no longer available.

Figure 5: An example of declarations with simple quantum expressions.

QuantC provides a new declaration syntax for expressions containing multi-

ple quantum variables to move each quantum variable to a new name. QuantC

borrows this syntax from the C++ structured binding assignment. Figure 6

depicts this syntax. The number of identifiers in the declaration must match

the number of unique quantum variable identifiers in the initializer expression.

QuantC bases the mapping of an old variable to a new one on their order in the

initializer; the leftmost variable becomes the first declaration, the next leftmost

variable becomes the second declaration, and so on. The types of each newly

declared quantum variable correspond to the types of the quantum variables

they map to in the initializer. This declaration syntax otherwise follows the

same semantics as declarations using quantum expressions.

14

1 quantum bool a = 0;

2 quantum bool b = 0;

3
4 // a <> b => a = 1, b = 0

5 // qubits of "a" and "b" are moved to "c" and "d", respectively

6 // c renames a = 1, d renames b = 0

7 auto [c, d] = a <> b;

Figure 6: An example of the new declaration syntax. Note the move semantics
of the last declaration; the values of a and b have swapped, but the qubits
associated with a and b go to c and d.

For initializers containing quantum arrays, the constant index counts as part

of a unique identifier in a quantum expression. However, the newly declared

quantum variable refers to the entire array after the declaration. This choice of

semantics with arrays prevents a compiler from needing to track invalid indices

in quantum arrays. Otherwise, the semantics of initializing with quantum arrays

remains identical to non-array quantum variables.

1 quantum bool a[2];

2 quantum bool b[2] = a[1] <> a[2]; // Allowed;

3 quantum bool c[2] = a[1] <> a[2]; // Error; "a" is no longer available

Figure 7: An example of array declarations with quantum expressions.

3.7 Operation Modifiers

QuantC also defines some operation modifiers that change how quantum

operations affect quantum variables. When prepended to a quantum operation,

the inverse modifier > causes the operation applied to be the inverse of the given

operation. The inverse of a given unitary matrix U always exists; the inverse of

U is the conjugate transpose of U . When appended to a quantum operation, the

control modifier +C(cQubits) causes the quantum variable cQubits to control

the operation. For the classical analog to a controlled gate, given a reversible

classical gate G operating on bits b with control bits c, the controlled version

15

CG on applies G to b if all bits of c are 1.

For a given unitary matrix U , we can construct the corresponding controlled

unitary matrix CU controlled by a single qubit as a composition of the following

matrices

CU =

 [I] [0]

[0]† [U]


where [I] is the 2× 2 identity matrix and [0] is a 2× dim(U) matrix of zeros.

1 %H myQubits; // Regular Hadamard gate

2 ~>%H myQubits; // Inverse of the Hadamard gate

3 %H +C(myOtherQubits) myQubits; // Hadamard gate controlled by other qubit(s)

Figure 8: The operation modifiers available in QuantC and their corresponding
circuit diagram.

16

4 Sample Programs and Outputs

1 int printf (const char * format, ...);

2
3 quantum bool hello_quantum() {

4 quantum bool my_quant = 0;

5 return %M (%H my_quant);

6 }

7
8 int main() {

9 return printf("%d\n", hello_quantum());

10 }

Figure 9: The “Hello, Quantum!” program, which uses a single qubit as a
random number generator. The output of the program should be either “0” or
“1” with equal probability.

1 int printf (const char * format, ...);

2
3 int quantum bell_state() {

4 quantum bool q1 = 0, q2 = 0;

5 return %M (%H q1 ^ q2);

6 }

7
8 int main() {

9 return printf("%d\n", bell_state());

10 }

Figure 10: The “Bell state” [8] program, which demonstrates a simple form
of entanglement. The output of the program is either “0” or “3” with equal
probability. These values correspond to the values 0x00 and 0x11 respectively;
the qubit values can never be measured to be 0x01 or 0x10.

17

1 // Qubits may only be passed by reference.

2 void quantum toffoli_001(quantum bool(&x)[3], quantum bool &y) {

3 // Negate qubits 0 and 1

4 // Precedence: [] before %X

5 %X x[0]; %X x[1];

6
7 // "+C" is an quantum operation modifier on %X (NOT gate);

8 // it connects the qubits of x as control qubits to NOT

9 %X +C(x) y;

10 %X x[0]; %X x[1]; // Uncompute; same precedence as first line

11 } // toffoli_001

12
13 // The other Toffoli gate functions follow a similar pattern, except

14 // for how the qubits of x control the NOT gate

15 // (i.e. are negated before control)

16 void quantum toffoli_101(quantum bool(&x)[3], quantum bool &y) {

17 %X x[1];

18 %X +C(x) y;

19 %X x[1]; // Uncompute

20 } // toffoli_101

21
22 void quantum toffoli_010(quantum bool(&x)[3], quantum bool &y) {

23 %X x[0]; %X x[2];

24 %X +C(x) y;

25 %X x[0]; %X x[2]; // Uncompute

26 } // toffoli_010

27
28 void quantum toffoli_100(quantum bool(&x)[3], quantum bool &y) {

29 %X x[1]; %X x[2];

30 %X +C(x) y;

31 %X x[1]; %X x[2]; // Uncompute

32 } // toffoli_100

Figure 11: The “Simon’s Problem” program (part 1). Simon’s Problem [7] is
as follows: given a classical function f : { 0, 1 }n → { 0, 1 }n with the property
f(x) = f(y) ⇐⇒ (x = y ∨ y = x ⊕ s) for a fixed unknown s ∈ { 0, 1 }n,
determine s with as few queries as possible. This section depicts some of the
quantum functions used to build the function f for the quantum computer.

18

1 // Example Oracle: s = 110 (binary)

2 void quantum black_box(quantum bool(&x)[3], quantum bool(&y)[3]) {

3 toffoli_001(x, y[0]);

4 toffoli_101(x, y[0]);

5 toffoli_010(x, y[1]);

6 toffoli_100(x, y[1]);

7 toffoli_001(x, y[2]);

8
9 %X +C(x) y[2];

10 } // black_box

11
12 int quantum simons_algorithm_step() {

13 quantum bool x[3] = {0,0,0};

14 quantum bool y[3] = {0,0,0};

15 int result;

16
17 %H x;

18 black_box(x, y);

19 %M y;

20 %H x;

21
22 // Determine result by measuring x

23 result = %M x;

24 return result;

25 } // simons_algorithm_step

Figure 12: The “Simon’s Problem” program (part 2). This section depicts the
quantum function for f (black box)and the steps to query it.

19

1 // From this point on, program is classical code and should

2 // thus follow standard C precedence

3 int classic_black_box(int x) {

4 switch(x) {

5 case 0: case 6:

6 return 0;

7 case 1: case 7:

8 return 1;

9 case 2: case 4:

10 return 2;

11 case 3: case 5:

12 return 4;

13 default: return -1; // error

14 }

15 } // classic_black_box

16
17 // Attempt to solve the system of equations as a mtrix using

18 // Gaussian Elimination and back substitution

19 void solveMatrix_mod2(int a[2][3]) {

20 int m = 2, n = 3;

21
22 // Gaussian Elimination mod 2

23 int row, column, rows_after;

24 for(row=0; row<m-1; row++){

25 for(rows_after=row+1; rows_after<m; rows_after++) {

26 int term = a[rows_after][row];

27 for(column=0; column<n; column++) {

28 int value = (a[rows_after][column] - term * a[row][column]) % 2;

29 a[rows_after][column] = (value == -1) ? 1 : value;

30 } // column

31 } // rows_after

32 } // row

33
34 // Back substitution mod 2

35 for(row=m-1; row>=0; row--) {

36 for(rows_after=row-1; rows_after>=0; rows_after--) {

37 int term = a[rows_after][row];

38 for(column=n-1; column>0; column--) {

39 int value = (a[rows_after][column] - term * a[row][column]) % 2;

40 a[rows_after][column] = (value == -1) ? 1 : value;

41 } // column

42 } // rows_after

43 } // rows

44
45 } // solveMatrix_mod2()

46
47 #define THIRD_BIT_MASK 0x4

48 #define SECOND_BIT_MASK 0x2

Figure 12: The “Simon’s Problem” program (part 3). This section depicts the
function f as classical code and a function for solving systems of equations. The
classical section of code calls simons algorithm step multiple times to form a
system of equations to solve for s. For this particular f , s = 1102 = 6.

20

1 #define FIRST_BIT_MASK 0x1

2
3 int main() {

4 // Since we are using a 3 bit in/out oracle, perform the quantum step twice

5 int s = 0;

6 int i;

7
8 int step1_result = simons_algorithm_step();

9 int step2_result = simons_algorithm_step();

10
11 // Solve system of equations to determine all but the last bit of s

12 int matrix[2][3];

13 if (step2_result > step1_result) { // Swap rows

14 int temp = step1_result;

15 step1_result = step2_result;

16 step2_result = temp;

17 }

18 matrix[0][0] = (step1_result & THIRD_BIT_MASK) >> 2;

19 matrix[0][1] = (step1_result & SECOND_BIT_MASK) >> 1;

20 matrix[0][2] = step1_result & FIRST_BIT_MASK;

21 matrix[1][0] = (step2_result & THIRD_BIT_MASK) >> 2;

22 matrix[1][1] = (step2_result & SECOND_BIT_MASK) >> 1;

23 matrix[1][2] = step2_result & FIRST_BIT_MASK;

24 // Current compiler causes SEGFAULT when this functin is ran

25 solveMatrix_mod2(matrix);

26
27 // For this case, easiest guess is top row of solved matrix

28 // Take all but the last bit

29 for (i = 0; i < 1; i++) {

30 s = (s ^ matrix[0][i]) << 1;

31 }

32 s <<= 1;

33
34 // Check result with classical version of oracle to decide guess for last bit

35 if (classic_black_box(s) != classic_black_box(0)) {

36 s += 1;

37 }

38
39 // Print guess (probability of guessing right > 1/2)

40 printf("guess for ’s’ = %d\n", s);

41 return 0;

42 }

Figure 12: The “Simon’s Problem” program (part 4). This section depicts the
classical code to query the quantum version of f and attempt to guess s. We
note that f only needs to be queried O(n) number of times in order to form a
guess for s. The output should be guess for ’s’ = 6 more than half of the
time.

21

(a) The circuit diagram for the simons -

problem step function.

(b) The circuit diagram for the block box function.

(c) The circuit diagram for the toffoli 001 function. The other similarly named func-
tions have a similar circuit diagram, with each qubit of x having different combinations
of X gates applied before and after the central gate.

Figure 12: The “Simon’s Problem” program (part 5). This section depicts the
circuit diagrams for the quantum components of the program. The last step of
converting the values of measured value of x into an integer is omitted.

22

5 Implementation of a Compiler for QuantC

I wrote all code for this project in C++. I compiled the code with gcc using

the C++17 standard. For the most part, I designed the code to avoid requiring

platform-specific features, relying on libraries and compiler tools to abstract the

process away from the machine as much as possible.

When run on the command line, the compiler takes the path to the QuantC

file to compile. The compiler assumes that the programmer includes a main

function in the program. At each step, the compiler generates intermediary files

in the /tmp/Quantc/ directory. These intermediary files include the prepro-

cessed QuantC program, the generated IR, the object files generated from the

IR, and the final executable a.out. Currently, the compiler does not have any

other command-line arguments to modify the behavior of any of these steps.

5.1 Preprocessor

Since QuantC does not modify the preprocessing directives, the compiler calls

gcc to take the initial QuantC program and preprocess it. Along with its use

as a linker (Section 5.7), gcc enables QuantC programs to link with standard

C library code that classical sections of code can use.

1 std::string preprocess_command = "gcc -E -P ";

2 std::string preprocessed_file = cd + "/" + file_name + ".i";

3
4 preprocess_command += std::string(argv[1]) + " -o " + preprocessed_file;

5
6 if (system(preprocess_command.c_str()) == EXIT_FAILURE) {

7 std::cout << "Error preprocessing file";

8 return -1;

9 }

Figure 13: Compiler code illustrating how the compiler calls gcc

23

5.2 Lexical Analyzer

To create the scanner, I defined the token regular expressions and actions in

a Flex scanner description file, then generated the scanner tables with Flex.

The token regular expression and actions are a modified version of the Lex

specification for C provided by Jutta Degener [2]. The scanner description file

also contains additional modifications to have Flex generate the scanner as a

C++ class. Due to how the parser generated by Bison (detailed in the next

section) expects to call the scanner for the next token, I added a shim for the

scanner to operate with the parser. This shim consists of a scanner class that

inherits from the one generated by Flex, with a token-generation method having

a signature that the parser expects.

5.3 Parser

To create the parser, I defined the grammar rules and actions in a Bison gram-

mar file, then generated the parser tables with Bison. The grammar rules and

actions are a modified version of the Yacc specification for C provided by Jutta

Degener [3]. The grammar file also contains additional modifications to have

Bison generate the parser as a C++ class. I also utilized the Bison-defined

“variants” class with the parser to allow the scanner to pass near-arbitrary se-

mantic values, such as the values of literals, back to the parser in addition to the

type of token the scanner generates. Although it is useful, this “variants” class

results in the need for the shim mentioned in the previous section. Specifically,

the parser expects the scanner to have a method with the following signature.

1 int Scanner::lex(Parser::semantic_type *yylval);

The scanner lex method does not typically take an argument. By providing

the scanner shim for the parser, the scanner can return additional semantic

values for tokens via ‘yylval‘. The scanner peforms this action by calling the

24

‘emplace‘ method on the variant as follows.

1 // The semantic value be of any type or class defined in parser specs

2 auto semanticValue = SemanticValueClass(...);

3 yylval->emplace<SemanticValueClass>(semanticValue);

The variant functions like a C union, allocating a shared memory location to

store values of multiple types in a single object. The parser specification defines

the semantic value of each token, which in turn specifies all the expected data

types the variant can store. The following example illustrates how the parser

defines these semantic values and how they can be used to build an abstract

syntax tree.

1 // Both terminal (tokens) and non-terminal symbols can have

2 // semantic values associated with them

3 %token <TokenTypeA> TOKEN_A

4 %token <TokenTypeB> TOKEN_B

5 %token <TokenTypeC> TOKEN_C

6 %nterm <TreeNodeA> ntermA

7 %nterm <TreeNodeB> ntermB

8 ...

9 %%

10 ...

11 // Grammar rule

12 ntermA : TOKEN_A TOKEN_B

13 {

14 // Grammar action

15 // $1, $2 are the semantic values of the tokens

16 // produced by the scanner.

17 // $$ is the value of the non-terminal symbol

18 $$ = TreeNodeA($1, $2);
19 }

20 ;

21
22 ntermB : ntermA TOKEN_C

23 {

24 // Other grammar rules access the semantic value of a non-terminal

25 // identically to tokens’ semantic value.

26 $$ = TreeNodeB($1, $2);
27 }

28 ;

Figure 14: An extract of an example Bison grammar file illustrating how gram-
mar rules can build AST nodes using the variant semantic values.

25

5.4 Abstract Syntax Tree (AST)

I implement the abstract syntax tree (AST) as a set of C++ classes. Each

class represents a node of the AST. These nodes take advantage of inheritance

to create categories of nodes that mirror QuantC’s grammar. There are six

main categories of nodes that inherit from a generic AST node class (ASTNode):

translation units (TranslationUnitNode), declarations (DeclNode), function

arguments (ArgDeclNode), types (TypeNode), statements (StmtNode), and ex-

pressions (ExprNode). All other nodes that represent more concrete parts of

grammar, such as for loops and binary expressions, directly or indirectly inherit

from one of these node categories.

The constructors of these nodes take smart pointers to other nodes to form

the AST. By taking smart pointers to generic category nodes, AST nodes take

advantage of method overriding when invoking a sub-node’s methods for later

compilation steps. Smart pointers also trivialize memory management for arbi-

trary trees, making the parser’s task of building the AST easier than if I used

regular pointers. Specifically, I designed the AST with C++ shared ptr smart

pointers to allow for multiple pointers to a single object. Since some structures

in the grammar have optional components, I defined node classes representing

the lack of a specific class of node, such as NullExprNode. Each category node

instantiates the corresponding null node as a singleton, justifying the need for

shared ptr over other smart pointers.

The base node ASTNode defines several static methods and members used by

nodes in later steps. Additionally, ASTNode defines the interface nodes interact

with to perform the later steps. Since all nodes inherit from ASTNode, they can

access these static methods and members. For semantics checking, ASTNode

maintains a symbol table and a set of helper methods to assist in discovering

semantic errors. For code generation, the ASTNode maintains several LLVM

26

data structures, such as an IR builder.

The AST nodes take advantage of a feature of the LLVM library to enable

a form of class introspection. The nodes achieve this introspection by requiring

the base class to define an enumerated type ASTNodeKind and a property of that

new type nodeKind. Each subclass then defines a static method classof, which

takes a pointer to an ASTNode and compares the nodeKind property to one or

more of the enumerated values of ASTNodeKind. By defining these components

in the AST nodes, the LLVM template function isa uses the classof method

of the provided AST node class to determine class information about an AST

node object at run-time.

The final AST always has the TranslationUnitNode as the root node for a

valid program. TranslationUnitNode serves as the main interface that the com-

piler interacts with to perform later steps of compilation. Figure 15 illustrates

how the compiler combines the scanner, parser, and TranslationUnitNode to

build the AST of a QuantC program.

1 std::cout << "Creating scanner\n";

2 Scanner test_scanner(quant_c_file, std::cout);

3 std::cout << "Creating parser\n";

4 TranslationUnitNode ast;

5 Parser test_parser(test_scanner, ast);

6 int parse_result = test_parser.parse();

Figure 15: Compiler code for building a QuantC program’s AST

5.5 Semantics Checking

I implement semantics checking as a method called checkSemantics in each

AST node. Semantics checking begins when the compiler calls the Transla-

tionUnitNode node’s isSemanticsCorrect method. This method calls the

TranslationUnitNode node’s checkSemantics method, which in turn calls the

sub-nodes’ own checkSemantics method. The process of semantics checking

27

continues recursively.

If information needs to flow to different parts of the AST, the nodes provide

two methods to achieve this flow. First, nodes store information about identi-

fiers, such as variable or function names, in the symbol table semanticTable,

which maps the identifier to a SymbolInfo object. The SymbolInfo object

stores the identifier’s type and kind information. Kind refers to the purpose an

identifier serves in the code. For example, whether the identifier is a variable

value, function name, or label.

Classes for type and kind classes encapsulate type information for identifiers.

The Kind class stores an enumerated value for the identifier’s kind. The Type

class is more complicated. The Type class stores three enumerated values for

the type, corresponding to the simple type (e.g. integer, character, float), the

storage type (e.g. extern, static, quantum), and a quality type (specifically

if it is volatile and/or constant). The Type class defines multiple construc-

tors for different categories of variables, namely scalar values, arrays, functions,

and pointers. In addition to the previous enumeration values, constructors for

the non-scalar types also take additional parameters, such as size and a smart

pointer to an element type for array types.

For the second method of semantic information flow, nodes pass other kinds

of semantic information between themselves via public members defined in each

class. In many cases, semantics checking does not need these class-specific mem-

bers. More complicated cases like BlockNode need to pass information about

expected return statement types to other sub-blocks and return statements,

justifying the need for this ad hoc method of information flow. In this second

method, nodes inspect and create more class-specific pointers if necessary using

the isa and cast functions provided by LLVM (Section 5.4). The class-specific

pointers allow a parent node to interact with their sub-nodes’ semantic-specific

28

members accordingly.

5.6 Code Generation

I implement code generation in a similar manner to semantics checking. Given

that the compiler needs to generate two different IRs in a combined manner, each

node defines both a codegen and quantum codegen method to handle each type

of code generation separately. The compiler always starts code generation by

calling the codegen method of the root TranslationUnitNode in an AST. The

code-generation methods, like checkSemantics, proceed recursively through the

AST.

5.6.1 Classical Code Generation

For classical code generation, each node has a codegen method. I take advantage

of the LLVM core libraries to ease defining these methods.

The ASTNode class stores static members to several LLVM data structures.

First is the LLVMContext, which manages data such as type tables for the other

data structures. Next is the LLVMModule object, which acts as a container for

other LLVM objects that ultimately represent the code the compiler will gen-

erate. Finally, the Builder object handles the operations to insert instructions

into the LLVMModule. ASTNode also maintains a static table of Value pointers

codegenTable for methods to easily access values associated with identifiers.

The codegen method optionally takes two pointers as arguments: one to an

LLVM Value object used for parent structures, such as blocks, and the other

to an LLVM Type object for type information if needed. The latter argument

comes into play when generating instructions to allocate memory for variables

due to how nested the syntax can get for variable declarations. The codegen

returns a pointer to a LLVM Value object, corresponding to the resulting LLVM

29

instruction objects returned when calling the methods of Builder. Expression

nodes commonly use this return value for code generation since instructions

commonly refer to the results of instructions generated by nested expressions.

Using these data structures, code generation in most cases exclusively involves

a node calling the codegen method(s) of its sub-nodes, then calling methods on

Builder to generate additional instructions.

The resulting code generated is LLVM IR, an architecture-independent in-

struction language written in a static single-assignment (SSA) format. This

format enables the LLVM libraries to include predefined optimization routines.

However, this project does not currently take advantage of those optimizations.

Figure 16 illustrates the format the LLVM IR the compiler generates. Once the

compiler generates the LLVM IR, it calls the LLVM tool llc to generate an

object file from the LLVM IR. Figure 17 details these code-generation steps in

the compiler.

1 int add(int a, int b) {

2 return a + b;

3 }

1 define i32 @add(i32 %0, i32 %1) {

2 %3 = alloca i32

3 %4 = alloca i32

4 store i32 %0, i32* %3

5 store i32 %1, i32* %4

6 %5 = load i32, i32* %3

7 %6 = load i32, i32* %4

8 %7 = add nsw i32 %5, %6

9 ret i32 %7

10 }

Figure 16: An example of LLVM IR for a simple C function.

30

1 // Generate LLVM IR for code

2 ast.setName(std::string(original_path.stem()));

3 ast.codegen();

4
5 // Pull IR from Module into string stream, then write to file

6 std::string IR_file_name = cd + "/" + file_name + ".ll";

7 std::string output_content;

8 llvm::raw_string_ostream instruction_stream(output_content);

9 instruction_stream << *(ASTNode::LLVMModule);

10 instruction_stream.flush();

11 std::fstream output_file(IR_file_name, std::fstream::out);

12 output_file << output_content;

13 output_file.close();

14
15 // Generate an object file from the IR

16 std::string obj_command = "llc -relocation-model=pic --filetype=obj ";

17 obj_command += IR_file_name;

18 if (system(obj_command.c_str()) == EXIT_FAILURE) {

19 std::cout << "Error generating object file";

20 return -1;

21 }

Figure 17: Compiler code for code generation.

5.6.2 Quantum Code Generation

For quantum code generation, each node has a quantum codegen method. I

created all the data structures in these sections of code. Whenever code genera-

tion reaches a FuncDefNode (a function definition), that node’s codegen method

first checks the function’s type definition to see if its storage type is quantum.

If the function has quantum storage, the codegen method performs an entirely

separate code generation sequence.

In this alternate sequence, the method creates a QuantumContext object, a

class meant to operate similar to the LLVM Builder class to handle code gener-

ation for quantum functions. The function codegen method then calls methods

on the QuantumContext object to provide information about the function name

and arguments. The function codegen method then calls the quantum code-

gen method of the body node, passing the QuantumContext object by reference

to allow lower-level statement and expression nodes to use built-in methods

31

to build the quantum instructions. The quantum codegen method returns a

custom QuantumValue object, serving an analogous purpose to the return type

for codegen. The quantum codegen method also maintains its own version of

codegenTable. Once the body quantum codegen method returns, the codegen

method concludes by calling the genQUIL method on the QuantumContext object

to get a string value for the generated quantum IR. At this point, the code-

gen method also copies information from QuantumContext about the number

of qubits allocated for local variables, for use when generating calls to quantum

functions. The codegen method concludes by using the LLVMModule object to

store the quantum IR string as a string literal inside the final LLVM IR. In the

case of multiple quantum functions, the code generation methods all store their

generated quantum IR into one string value.

The generated quantum IR is Quil [10], an architecture-independent quan-

tum instruction language. Figure 19 provides an example of the kind of Quil

IR generated by the compiler.

1 quantum int example_func(quantum bool (&qubits)[2]) {

2 %H qubits;

3 qubits[0] ^ qubits[1];

4 return %M qubits;

5 }

1 DECLARE example_func_ro BIT[2];

2
3 DEFCIRCUIT example_func qubits_0 qubits_1:

4 MOVE example_func_ro 0;

5 H qubits_0; H qubits_1;

6 CNOT qubits_0 qubits_1;

7 MEASURE qubits_0 example_func_ro[0];

8 MEASURE qubits_1 example_func_ro[1];

9 RESET 0;

10 RESET 1;

Figure 18: An example of a quantum function and its generated Quil IR.

32

5.6.3 Handling Classical Calls to Quantum Functions

Similar to how I handle code generation with quantum functions, function call

expressions handle quantum functions as a separate case in code generation. In

CallExprNode (function call expression), the codegen method recursively calls

the codegen method of its argument expressions. Then it checks if the function

to be called has a quantum storage type. If so, instead of generating a call to this

function in LLVM IR, it generates a call to a classical function quant com, which

takes the name of the function, the generated quantum IR string, the number

of qubits allocated by quantum functions, and the argument expressions. The

compiler links in the quant com library code when constructing the executable

(detailed in Section 5.7).

The quant com function handles packaging the quantum IR into a message

to send to a quantum computer. It generates a call to the quantum function

in the provided quantum IR based on the name of the quantum function and

the number of previously allocated qubits. In principle, quant com would han-

dle various protocols to transmit the IR. For testing, however, quant com only

handles a single type of quantum computing setup, as detailed in Section 5.8.

33

1 quantum int quant_func() {

2

3 }

4
5

6
7 int result = quant_func();

1 @.quant.str = private unnamed_addr constant i8* c"DEFCIRCUIT quant_func:\n"

2 @.str = private unnamed_addr constant i8* c"quant_func\0A\00"

3 @qubit_alloc = private global i32

4
5

6
7 %0 = load i32, i32* @qubit_alloc

8 %result = call i32 (i8*, i8*, i32, ...)

9 @quant_com(i8* getelementptr inbounds (i8, i8* @.str),

10 i8* getelementptr inbounds (i8, i8* @.quant.str,

11 i32 %0)

Figure 19: An example of the LLVM IR generated to handle a call to a quantum
function from classical code.

5.7 Linker

Like preprocessing, the compiler defers the task of linking to gcc. Code gener-

ation produces object files that are identical to an object file generated by gcc.

By using gcc to link the object file, the compiler can generate executables that

include code from the C standard library, in addition to standalone executables.

5.8 Verifying the Implementation

I conducted testing in an ad-hoc manner. Testing consists of manually compiling

and running a selection of both C code and QuantC programs to verify expected

IR outputs and executable behavior. I acquired most of the C test programs

from a publicly available database of C compiler test cases [1]. I wrote additional

test cases when necessary to test code generation of certain C constructs, such

as if statements, isolated from others. Section 4 depicts the QuantC programs

I tested.

34

To test the behavior of these QuantC programs, I installed the Riggetti

Computing ForestSDK and configured its QVM included to run as a back-

ground process. I configured the QVM to set up an HTTP API and connect

to the default localhost:5000 port. I hard-coded the quant com function to

process messages to this kind of QVM on that port. The qpu driver function

packages the quantum IR into a JSON message and sends it to the QVM. To

handle communication, it uses the cURL library to transmit the JSON message

and handle the response message. If the response message indicates that the

transmitted IR has executed successfully, quant com converts the response into

a JSON object with the jsoncpp library. It then parses that object to get the

resulting binary string if the quantum function returns a value. It concludes

by converting the binary string into an integer value, which it returns. At the

location of the call to quant com, the code generated handles casting the return

value to the appropriate type.

6 State of the Project

At the time of writing, the QuantC compiler is only partially complete. I have

completely defined the QuantC scanner and parser to implement the language’s

necessary syntactical structures. However, the parser only has actions defined

to build a complete AST for the examples programs in Section 4, outside of

some simple expression substitutions like binary operations. The compiler only

defines a minimal set of semantics checks. These semantics checks primarily

consist of setting identifiers’ type information and checking that functions that

return a value always reach a return statement. The compiler can generate

code described in previous sections for the example programs, but I do not

expect any program containing other syntactical structures to compile correctly.

Quantum functions cannot generate code for most classical language constructs.

35

Quantum functions also do not handle assignment with quantum expressions.

All the example QuantC programs compile as expected. The example pro-

grams also perform as expected, though I need to verify my implementation of

Simon’s algorithm to ensure the correct output is not due to the small example

function used in the program. In particular, I am not sure if the code I wrote

to solve the system of equations and derive the guess value is entirely correct,

though the intended meaning of the code is straightforward.

6.1 Future Work

First, I want to finish implementing the language features and semantic checks

for the QuantC compiler as described in Section 3. This process first entails

implementing the code generation for the unimplemented language features.

Afterward, I need to implement the semantics checks in full. When implement-

ing the semantics checks, I intend to further research best practices regarding

implementing semantics checking with ASTs to improve the quality of code.

My plan is to focus on implementing semantics checks and code generation for

quantum functions before moving to classical code.

After finishing with the current QuantC compiler as specified, I need to con-

sider how to handle asynchronous communication channels efficiently. Quantum

computers currently operate as shared resources similar to computational nodes

in HPC systems. Thus, I/O latency is usually the most significant overhead in

a quantum program’s run time. One solution is to introduce a variation of

async/await syntax, as implemented by C++ and JavaScript.

QuantC also faces a hurdle with linking quantum functions. As defined,

QuantC does not provide a mechanism to link quantum functions from outside

the translation unit statically. I need to modify the compiler to export the Quil

IR to a separate file to implement this linking. Afterward, I need to create a

36

custom Quil linker for the Quil IR. Quil does have an INCLUDE instruction that

operates similarly to the C preprocessor statement. However, that instruction

alone is insufficient to generate a fully linked Quil IR. Assuming I could imple-

ment this Quil linker, I could modify the compiler to read the linked Quil output

and insert the string content into the LLVM module. The final steps of writing

the LLVM IR to a file and converting it into an object file would proceed as

implemented.

At the moment, QuantC limits the ability to reassign a quantum variable’s

qubits to a new variable to a one-to-one mapping. A possible addition is adding

syntax that would let qubits be arbitrarily bound to a new set of quantum

variables — for example, combining a set of quantum variables into a single one

or dividing a quantum variable between a set of new ones. I need to research

more quantum algorithms to determine how useful this new feature would be.

I could also consider the ability to denote quantum functions containing only

quantum variables and expressions. If the compiler is able to determine that

a quantum function has that property, it could permit operation modifiers on

calls to that quantum function. I could achieve this feature by adding a new

storage specifier like quantum gate to indicate to the compiler to further check

for classical statements within a quantum function. Quil already supports this

concept directly with DEFCIRCUIT code. This change would therefore entail

minimal changes to code generation. The toffoli quantum functions in Figure

11 are prime candidates for this feature.

37

References

[1] c-testsuite. 2018. url: https://github.com/c-testsuite/c-testsuite.

[2] Jutta Degener. 1995. url: https://www.lysator.liu.se/c/ANSI-C-

grammar-l.html.

[3] Jutta Degener. 1995. url: https://www.lysator.liu.se/c/ANSI-C-

grammar-y.html.

[4] Marco Fellous-Asiani et al. “Limitations in quantum computing from re-

source constraints”. In: PRX Quantum 2.4 (2021), p. 040335.

[5] Andreas Ketterer. “Modular variables in quantum information”. PhD the-

sis. Oct. 2016, p. 209.

[6] Emmanuel Knill. Conventions for quantum pseudocode. Tech. rep. Los

Alamos National Lab., NM (United States), 1996.

[7] Ashley Montanaro. “Quantum algorithms: an overview”. In: npj Quantum

Information 2.1 (2016), pp. 1–8.

[8] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum

information. 2002.

[9] Rxtreme. Dec. 2019. url: https://commons.wikimedia.org/wiki/

File:Quantum_Logic_Gates.png.

[10] Robert S Smith, Michael J Curtis, and William J Zeng. “A practical quan-

tum instruction set architecture”. In: arXiv preprint arXiv:1608.03355

(2016).

38

