
QuantC: A C-Inspired Language for
Quantum Computing

Tyler Burkett

4/20/2022Department of Computer Science - Keeping Current 1

Demo

4/20/2022Department of Computer Science - Keeping Current 2

Quantum Computing: Qubits

• Qubits are like bits, but are based on some quantum phenomenon with a binary set

of states when measured.

• Can store 0 and 1 like a regular bit, but can also be in a superposition of 0 and 1.

• Measuring a qubit causes it to collapse into either a 0 or 1 if it’s in a superposition.

4/20/2022Department of Computer Science - Keeping Current 3

Quantum Computing: Gates and Measuring

• A common representation of computations on qubits is as a circuit, with operations represented

as quantum logic gates.

• Quantum circuits are just as computationally powerful as classical circuits.

• However, quantum circuits do have some constraints classical versions don’t have.

• Gates/circuits must be reversible; at minimum, the # outputs = # inputs.

• Gates can’t be used to copy or delete arbitrary quantum states.

4/20/2022Department of Computer Science - Keeping Current 4

4/20/2022Department of Computer Science - Keeping Current 5

Examples of Quantum Gates
Classically Equivalent Gates

NOT (a.k.a X-gate)

XOR

(a.k.a Controlled NOT, CNOT)

AND (a.k.a Toffoli gate, CCNOT)

Purely Quantum Gates

Hadamard gate

𝑁𝑂𝑇 gate

4/20/2022Department of Computer Science - Keeping Current 6

Full AdderEntanglement Circuit

00 →
00 + |11⟩

2

Simple Circuit Examples

Crash Course in Quantum
Mechanics

• Value of a qubit is represented by a normalized
vector in ℂ2

• First coefficient is always taken to be real

• Gates are unitary matrices in ℂ2
𝑛×2𝑛

• Unitary: 𝑈𝑈† = 𝑈†𝑈 = 𝐼

• Measurement corresponds to randomly picking
a base state, where the probability of picking it
is based on the coefficient in the qubit vector

4/20/2022Department of Computer Science - Keeping Current 7

|𝜓⟩ = sin
𝜃

2
|0⟩ + cos

𝜃

2
𝑒𝑖𝜙|1⟩

0 =
1
0
, 1 =

0
1

Design Goals of QuantC

• Create a language with syntax to support creating programs with both
classical and quantum components.

• Minimize the overhead for learning the language.
• Extend an existing language, rather than start from scratch.

• Make distinguishing the two parts of code clear.

• Avoid overloading the meaning of existing symbols for quantum code.

• Abstract communication between the classical and quantum computers.

4/20/2022Department of Computer Science - Keeping Current 8

4/20/2022Department of Computer Science - Keeping Current 9

CUDA as an Inspiration for Extending C

4/20/2022Department of Computer Science - Keeping Current 10

Assumptions about Architecture

• The quantum computer operates as a coprocessor
to the classical computer.

• There is no shared memory between the two
computers.

• Quantum computer contains some classical
memory and can perform some classical
instructions.

• The two computers communicate via a synchronous
communication channel.

Storage Classifier: quantum

• The keyword quantum applied to functions distinguishes classical code and
quantum code. This keyword is a storage class specifier in the C grammar.

• Quantum functions and quantum variables refer to those constructs with this
keyword applied to them.

• Quantum variables can only appear inside quantum functions.

4/20/2022Department of Computer Science - Keeping Current 11

4/20/2022Department of Computer Science - Keeping Current 12

Semantics of Quantum Function

• A quantum function can take both
classical and quantum values as
arguments

• Quantum arguments necessarily use
pass-by-reference semantics, denoted
with an & like in C++. QuantC reserves
this syntax for pass by reference for
quantum arguments.

• Quantum functions cannot contain
recursive calls and must have a
definition.

• Quantum functions also only permit built-
in types.

• Otherwise, they follow the same
grammatical and semantical rules as
classical functions.

Calling Quantum Functions

• When calling a quantum function in classical
code, the compiler substitutes it with a call to
a function to transmit the compiled quantum
code to the quantum computer.

• The quantum intermediate representation (IR)
is stored inside the classical code and
transmitted to the quantum computer when
needed.

• It’s assumed that any additional translation
from the quantum IR to quantum machine
instructions is handled by the quantum
computer itself.

• Only functions with exclusively classical
arguments with pass-by-value semantics can
be called from classical code.

4/20/2022Department of Computer Science - Keeping Current 13

Semantics of Quantum Variables

4/20/2022Department of Computer Science - Keeping Current 14

• Quantum variables can only be
assigned a value at declaration.

• Classical expression initialize the
corresponding qubits to one of the
base state. The 𝑖𝑡ℎ bit of the
expressions initializes the 𝑖𝑡ℎ qubit.

• Uninitialized variables are 0
initialized.

• Quantum arrays must have a
compile-time constant size.

• Initialization of quantum arrays with
initializer lists follow the same rule as
other classical expressions for each
entry.

Quantum Operations (Unary)

4/20/2022Department of Computer Science - Keeping Current 15

Quantum Operations (Binary)

4/20/2022Department of Computer Science - Keeping Current 16

4/20/2022Department of Computer Science - Keeping Current 17

Quantum Expressions

• A quantum expression is a combination of
quantum variable identifiers and operations.

• These correspond to gates applied to qubits.
• These gate applications occur as side effects of

the expressions; there is no need to assign the
expression to another variable.

• Measurement operations and calls to quantum
functions are the only expressions which can
take quantum expressions and result in a
classical value

• All others quantum operations take a quantum
expression and result in another.

4/20/2022Department of Computer Science - Keeping Current 18

Declarations using Quantum Expressions

• Quantum expression can also be used
as initializers, but they follow a move
semantics instead.

• Future statements cannot reference
quantum variable inside of such an
initializer. The same is true for other
expressions inside the same initializer.

• The initialized declaration takes
ownership of the qubits of the quantum
variable inside the expression.

• The declared declaration must have the
same type as the quantum variable in
the initializer.

4/20/2022Department of Computer Science - Keeping Current 19

Declarations using Quantum Expressions (Cont.)

• QuantC adds a structured binding assignment to declare new variables for
quantum expressions with multiple quantum variables.

• Each instance of indexing a quantum arrays counts as a unique identifier,
but the corresponding declaration takes ownership of the entire array.

Quantum Operations (Modifiers)

4/20/2022Department of Computer Science - Keeping Current 20

Implementation

4/20/2022Department of Computer Science - Keeping Current 21

4/20/2022Department of Computer Science - Keeping Current 22

Preprocessing, Lexical Analyzer, and Parser

• The compiler calls gcc to handle preprocessing.
• QuantC does not modify preprocessor directives.

• I generate the scanner and parser with Flex and Bison, respectively
• I define the token regular expressions and actions in a Flex scanner description file.

• I define the grammar rules and actions in a Bison grammar file.

• These files are modified versions of Lex and Yacc files from Jutta Degener.

• Both the scanner and parser include options to generate them as C++ code
rather than the default C

• This choice of language enables the scanner and parser to take advantage of
Bison’s version of variants, which allow for near arbitrary semantic values to pass
between the two through a common interface.

4/20/2022Department of Computer Science - Keeping Current 23

4/20/2022Department of Computer Science - Keeping Current 24

Abstract Syntax Tree (AST)

• I implement the AST as a set of C++ classes
• I take advantage of class inheritance to create categories of nodes that mirror

QuantC’s grammar

• The constructors of these nodes take smart pointers to other nodes to form
the AST

• Smart pointers ease memory management compared to regular pointers and
manually creating and deleting nodes.

• These pointers alongside the class inheritance allow nodes to access the methods of
a range of different subnodes through a generic pointer.

4/20/2022Department of Computer Science - Keeping Current 25

Abstract Syntax Tree (AST) (Cont.)

• The base AST node defines static methods and member used by other
nodes in later steps of compilation

• This node also defines the interface nodes interact with to perform later steps.

• These static items include a symbol table and helper methods for semantics check,
along with LLVM data structures for code generation.

• The base AST nodes also implements other components to take advantage
of a class introspection feature provided by the LLVM library.

• All of the other AST nodes use this feature to perform specific actions based on
subnodes’ type information during semantics checking and code generation.

4/20/2022Department of Computer Science - Keeping Current 26

Semantics Checking

• AST nodes define checkSemantics methods to handle semantics
checking.

• Each method involves recursively calling the semantic checking method on its
subnodes, then using the information generated from that to perform additional
checks if needed.

• There are two main mechanisms for information about semantics to flow
between nodes.

• For the common case of information related to identifiers, the static symbol table
stores their type and kind information.

• For other cases, such as blocks checking return statements, nodes implement
additional public members to handle passing information between themselves.

4/20/2022Department of Computer Science - Keeping Current 27

Code Generation (Classical Code)

• AST nodes define a codegen method to handle code generation.
• These methods use the LLVM library to handle most of the work.

• The static LLVM structures in the base node maintain contextual information, collect
instructions to create a complete module, and provide an interface to create and
insert new instructions into the module.

• The output of code generation is LLVM IR
• This IR is architecture independent.

• This IR is formatted into static single-assignment. Though not currently used, this
format enables applying further optimizations to the final output.

• Once generated, the compiler uses a provided IR compiler llc to convert this into an
object file.

4/20/2022Department of Computer Science - Keeping Current 28

Code Generation (Quantum Code)

• AST nodes also define a quantum_codegen method to handle code
generation for quantum functions.

• When generating code for quantum functions, the codegen method for a function
instead creates a separate builder for the quantum IR.

• The function passes its own name and type information to the builder.

• When ready, the function node calls the quantum_codegen method of its body node
and passes the builder to the method by reference.

• Once the body node returns, the function node calls a method on the builder to
generate a string containing the quantum IR.

• After all the quantum functions are generated, the collection of quantum IR
strings are stored as a single string literal inside the LLVM module.

• For this compiler, the output IR is Quil.

• Quil is another architecture independent IR which the compiler assumes can be
interpreted by the quantum computer

4/20/2022Department of Computer Science - Keeping Current 29

Handling Classical Calls to Quantum Functions

• When classical code generation reaches a function call, the function call
node check to see if the function is a quantum function

• If so, the call expression generates a call to a helper function quant_com.
• This function takes the following

• The name of the quantum function

• The quantum IR string

• The number of qubits allocated by the quantum functions

• Any arguments passed to the quantum function

• This function handles packaging the IR and a call to the necessary function
in a message to transmit to the quantum computer

• If the IR is successfully executed, the helper function parses the resulting message
to create the necessary return value.

4/20/2022Department of Computer Science - Keeping Current 30

Linker

• The compiler also calls gcc to handle linking the generated object file into an
executable.

• Since preprocessing and linking are handled by gcc, the compiler can
generate programs that include code from the standard C library.

4/20/2022Department of Computer Science - Keeping Current 31

Testing

• Testing was done ad hoc.
• I used a combination of my own programs and regular C programs from an online

repository to form the set of test programs.

• Testing consisted of manually compiling and running these programs with my
compiler to verify the output match expectations.

• For the quantum computer, I installed the Riggetti Computing ForestSDK to
run the provided quantum virtual machine (QVM) on my local machine.

• The QVM runs as a local server with an HTTP API on a localhost port.

• The quant_com function currently handles communicate with this setup only, using
cURL and JSON libraries to handle communications.

4/20/2022Department of Computer Science - Keeping Current 32

Final Demo

4/20/2022Department of Computer Science - Keeping Current 33

State of Project

• The QuantC compiler is partially complete
• The demo programs depict the primary structures the compiler can handle.

• The scanner and parser have complete definitions for their tokens and grammar
rules, I have not implemented all of the necessary actions to completely parse any
arbitrary program.

• Semantics checking is also minimal, primarily consisting of determining type and
control flow information needed in code generation.

4/20/2022Department of Computer Science - Keeping Current 34

Future Work

• Next Steps
• Finish implementing the compiler for QuantC as defined.

• Integrate asynchronous channels into QuantC.

• Determine a method for linking quantum functions.

• Consider adding syntax to combine or split quantum variables when declaring new
variables.

• Consider adding a keyword to mark quantum functions without classical code that
can work with operation modifiers.

