QuantC: A C-Inspired Language for
Quantum Computing

Tyler Burkett

"

% University of
Kentucky:.

Demo

% University of
Kentucky:.

Quantum Computing: Qubits

* Qubits are like bits, but are based on some quantum phenomenon with a binary set

of states when measured.

« Can store 0 and 1 like a regular bit, but can also be in a superposition of 0 and 1.

« Measuring a qubit causes it to collapse into either a 0 or 1 if it's in a superposition.

% University of
Kentucky.

Quantum Computing: Gates and Measuring

« A common representation of computations on qubits is as a circuit, with operations represented

as quantum logic gates.
« Quantum circuits are just as computationally powerful as classical circuits.

« However, quantum circuits do have some constraints classical versions don’t have.
« Gates/circuits must be reversible; at minimum, the # outputs = # inputs.

« Gates can'’t be used to copy or delete arbitrary quantum states.

% University of
Kentucky.

Examples of Quantum Gates

Classically Equivalent Gates Purely Quantum Gates

@ NOT (a.k.a X-gate)
Hadamard gate
XOR
(a.k.a Controlled NOT, CNOT)

AND (a.k.a Toffoli gate, CCNOT)

VNOT gate

% University of
Kentucky.

Simple Circuit Examples

Entanglement Circuit Full Adder

100) + |11)
V2

|00) -

I{% Universi tyof
Kentucky.

Crash Course in Quantum

Mechanics
Value of a qubit is represented by a normalized
vector in C? 0) P ,
. . > ole states:
First coefficient is always taken to be real
Gates are unitary matrices in €2 *2"
Unitary: UUT = UTU = | (¥ li+) = 7(@ +i[1))

Measurement corresponds to randomly picking I A li—) =
a base state, where the probability of picking it o7 v o */_
IS based on the coefficient in the qubit vector ?

(0) —[1))

<Y

€T +) =

L (o) + 1)
(0 o\ .
[¥) =sin| 5 ||0) + cos| 7 el®|1) - =

5(10) = 11))

Sl

o= [3.1w=[

% University of
Kentucky.

Design Goals of QuantC

« Create a language with syntax to support creating programs with both
classical and quantum components.

« Minimize the overhead for learning the language.
« Extend an existing language, rather than start from scratch.
« Make distinguishing the two parts of code clear.
» Avoid overloading the meaning of existing symbols for quantum code.

« Abstract communication between the classical and quantum computers.

% University of
Kentucky.

CUDA as an Inspiration for Extending C

Standard C Code C with CUDA extensions

g loba \
/v,:-:d saxpy(int n, Float a, \ c:d saxpy(int n, Float a,

float *x, float *y) float *x, float *y)
{ i

for (int 7 = 0; 1 < n; ++1) it 1 = blockIdx.x*blockDim.x + 1

if (i < n)
}

int N = 1<<20:

udaMemcpylx, dox, M, ﬂﬂmm‘t-rﬂm‘l'iﬂl!]i
:'l':-r""_::"':-r._'ﬂ'- d_y' M. tlld.‘.ﬂl:‘.l:p‘!.ﬂ"m.t'fﬂ[ﬂ"ﬁtfl:.;

sapy(N, 2.0, x, v); Sapayr << < (FG | 2 56-=(N, 2.0, X, ¥);

\ / h:.l’-‘--—::.ﬂ_ﬂ{ﬂ_}r. Ve M, clrd:ﬂﬂ-:pg,l!}t.-riteTnl-b:.t]f/

% University of
Kentucky.

Assumptions about Architecture

« The quantum computer operates as a coprocessor
to the classical computer.

 There is no shared memory between the two
computers.

« Quantum computer contains some classical
memory and can perform some classical
instructions.

« The two computers communicate via a synchronous
communication channel.

Classical Initial State

Commands
(Perform Gate)

Results

Classical Computer

0

(Measurement)

Classical initial state

(a)

Quantum Computer

0

Commands

(Simulate Quantum gate)

Results

GPU ()

(Measurement)

% University of
Kentucky.

Storage Classifier: quantum

« The keyword quantum applied to functions distinguishes classical code and
guantum code. This keyword is a storage class specifier in the C grammar.

« Quantum functions and quantum variables refer to those constructs with this
keyword applied to them.

« Quantum variables can only appear inside quantum functions.

quantum int hello_quantum() {
int a,b;

quantum int g0,ql;

% University of
Kentucky.

Semantics of Quantum Function

« A quantum function can take both
classical and quantum values as
arguments

« Quantum arguments necessarily use
pass-by-reference semantics, denoted
with an & like in C++. QuantC reserves
this syntax for pass by reference for
quan um arguments int quantum quantum_funcl();

« Quantum functions cannot contain quantum void quantum_func2(int a);

recurSIVe Ca”S and Must have a quantum void quantum_func3(quantum int &a);
def|n|t|0n quantum void quantum_func4(quantum int a);

quantum void quantum_funcl();

* Quantum functions also only permit built-
IN types.

* Otherwise, they follow the same
grammatical and semantical rules as
classical functions.

% University of
Kentucky:.

Calling Quantum Functions

« When calling a quantum function in classical
code, the compiler substitutes it with a call to int main() {

a function to transmit the compiled quantum hello_quantum(.

code to the quantum computer. '

« The quantum intermediate representation (IR)

Is stored inside the classical code and
transmitted to the quantum computer when

needed. : _—
char * str_quantc =
* It's assumed that any additional translation
from the quantum IR to quantum machine int main() {
instructions is handled by the quantum quant_com("hello_quantum", "str_quantc", ..

computer itself. }

* Only functions with exclusively classical
arguments with pass-by-value semantics can
be called from classical code.

% University of
Kentucky.

Semantics of Quantum Variables

* Quantum variables can only be
assigned a value at declaration.

 Classical expression initialize the
corresponding qubits to one of the

base state. The i, bit of the _ quantum int a = 2;
expressions initializes the i;; qubit. :3:::32 botlbc

* Uninitialized variables are 0 "
initialized.

quantum bool d[3]

» Quantum arrays must have a quantum bool e[n];
compile-time constant size.

 Initialization of quantum arrays with
Initializer lists follow the same rule as
other classical expressions for each
entry.

% University of
Kentucky.

Quantum Operations (Unary)

%PHASE (angle) ql;
%S ql;
%T ql;

meters (
%RX (angle) ql;
%RY (angle) ql;
%RZ(angle) ql;

This Photo is licensed under CC BY-SA

% University of
Kentucky:.

Quantum Operations (Binary)

<P>(angle) q2;
< q2; 5
<I> q2;

% University of
Kentucky.

Quantum Expressions

* A quantum expression is a combination of
guantum variable identifiers and operations.

« These correspond to gates applied to qubits. ,
quantum 1nt gl;

 These gate applications occur as side effects of [Ig
the expressions; there is no need to assign the) %X (%H ql);
expression to another variable. . e ,
3 int a = %M ql;

« Measurement operations and calls to quantum 4 dnt b = %H ql;
functions are the only expressions which can
take quantum expressions and result in a

classical value
« All others quantum operations take a quantum

expression and result in another.

% University of
Kentucky:.

Declarations using Quantum Expressions

Quantum expression can also be used
as initializers, but they follow a move
semantics instead.

» Future statements cannot reference
guantum variable inside of such an quantum bool a
initializer. The same is true for other quantum bool b
expressions inside the same initializer. quantum bool c

* The initialized declaration takes quantun boot ¢
ownership of the qubits of the quantum
variable inside the expression.

 The declared declaration must have the
same type as the quantum variable in
the initializer.

% University of
Kentucky.

Declarations using Quantum Expressions (Cont.)

QuantC adds a structured binding assignment to declare new variables for
guantum expressions with multiple quantum variables.

« Each instance of indexing a quantum arrays counts as a unique identifier,
but the corresponding declaration takes ownership of the entire array.

quantum bool a
quantum bool b

// qubits of "a"
auto [c, d] = a < b;

quantum bool a[2];

"a" 1s moved to "b"

quantum bool b[2] = a[l] < a[2],

Mall =& n] ~17/a7 1 ah71o
Error; "a'" is no longer available

quantum bool c[2] = a[l] < a[2];

% University of
Kentucky.

Quantum Operations (Modifiers)

% University of
Kentucky.

Implementation

% University of
Kentucky:.

Preprocessing, Lexical Analyzer, and Parser

« The compiler calls gcc to handle preprocessing.
« QuantC does not modify preprocessor directives.

* | generate the scanner and parser with Flex and Bison, respectively
» | define the token regular expressions and actions in a Flex scanner description file.
« | define the grammar rules and actions in a Bison grammar file.
« These files are modified versions of Lex and Yacc files from Jutta Degener.

* Both the scanner and parser include options to generate them as C++ code
rather than the default C
« This choice of language enables the scanner and parser to take advantage of

Bison’s version of variants, which allow for near arbitrary semantic values to pass
between the two through a common interface.

% University of
Kentucky.

auto semanticValue = SemanticValueClass(...);

yylval—emplace<SemanticValueClass>(semanticValue);

itoken <TokenTypeA> TOKEN_A
itoken <TokenTypeB> TOKEN_B
itoken <TokenTypeC> TOKEN_C
%nterm <TreeNodeA> ntermA

%nterm <TreeNodeB> ntermB

ntermA : TOKEN_A TOKEN_B
{

$$ = TreeNodeA($1, $2);

-]

ntermB : ntermA TOKEN_C
[

55 TreeNodeB (51, $2);

% University of
Kentucky:.

Abstract Syntax Tree (AST)

* | iImplement the AST as a set of C++ classes

» | take advantage of class inheritance to create categories of nodes that mirror
QuantC’s grammar

« The constructors of these nodes take smart pointers to other nodes to form
the AST

 Smart pointers ease memory management compared to regular pointers and
manually creating and deleting nodes.

« These pointers alongside the class inheritance allow nodes to access the methods of
a range of different subnodes through a generic pointer.

% University of
Kentucky.

Abstract Syntax Tree (AST) (Cont.)

 The base AST node defines static methods and member used by other
nodes in later steps of compilation
» This node also defines the interface nodes interact with to perform later steps.

 These static items include a symbol table and helper methods for semantics check,
along with LLVM data structures for code generation.

 The base AST nodes also implements other components to take advantage
of a class introspection feature provided by the LLVM library.

« All of the other AST nodes use this feature to perform specific actions based on
subnodes’ type information during semantics checking and code generation.

% University of
Kentucky.

Semantics Checking

« AST nodes define checkSemantics methods to handle semantics
checking.

« Each method involves recursively calling the semantic checking method on its
subnodes, then using the information generated from that to perform additional
checks if needed.

e There are two main mechanisms for information about semantics to flow
between nodes.

« For the common case of information related to identifiers, the static symbol table
stores their type and kind information.

« For other cases, such as blocks checking return statements, nodes implement
additional public members to handle passing information between themselves.

% University of
Kentucky.

Code Generation (Classical Code)

« AST nodes define a codegen method to handle code generation.
* These methods use the LLVM library to handle most of the work.

« The static LLVM structures in the base node maintain contextual information, collect
Instructions to create a complete module, and provide an interface to create and
Insert new instructions into the module.

* The output of code generation is LLVM IR

« This IR Is architecture independent.

« This IR is formatted into static single-assignment. Though not currently used, this
format enables applying further optimizations to the final output.

* Once generated, the compiler uses a provided IR compiler 11c to convert this into an
object file.

% University of
Kentucky.

Code Generation (Quantum Code)

 AST nodes also define a quantum_codegen method to handle code
generation for quantum functions.

« When generating code for quantum functions, the codegen method for a function
iInstead creates a separate builder for the quantum IR.

* The function passes its own name and type information to the builder.

 When ready, the function node calls the quantum_codegen method of its body node
and passes the builder to the method by reference.

* Once the body node returns, the function node calls a method on the builder to
generate a string containing the quantum IR.

* After all the quantum functions are generated, the collection of quantum IR
strings are stored as a single string literal inside the LLVM module.
» For this compiler, the output IR is Quil.

* Quil is another architecture independent IR which the compiler assumes can be
Interpreted by the quantum computer

% University of
Kentucky.

Handling Classical Calls to Quantum Functions

* When classical code generation reaches a function call, the function call
node check to see if the function is a quantum function

 If so, the call expression generates a call to a helper function quant_com.

« This function takes the following
« The name of the quantum function
 The quantum IR string
« The number of qubits allocated by the quantum functions
* Any arguments passed to the quantum function

» This function handles packaging the IR and a call to the necessary function
IN @ message to transmit to the quantum computer

« Ifthe IR is successfully executed, the helper function parses the resulting message
to create the necessary return value.

% University of
Kentucky.

Linker

« The compiler also calls gcc to handle linking the generated object file into an
executable.

« Since preprocessing and linking are handled by gcc, the compliler can
generate programs that include code from the standard C library.

% University of
Kentucky.

Testing

« Testing was done ad hoc.

* | used a combination of my own programs and regular C programs from an online
repository to form the set of test programs.

« Testing consisted of manually compiling and running these programs with my
compiler to verify the output match expectations.

* For the quantum computer, | installed the Riggetti Computing ForestSDK to
run the provided quantum virtual machine (QVM) on my local machine.
« The QVM runs as a local server with an HTTP API on a localhost port.

« The quant_com function currently handles communicate with this setup only, using
cURL and JSON libraries to handle communications.

% University of
Kentucky.

Final Demo

% University of
Kentucky:.

State of Project

« The QuantC compiler is partially complete

The demo programs depict the primary structures the compiler can handle.

The scanner and parser have complete definitions for their tokens and grammar

rules, | have not implemented all of the necessary actions to completely parse any
arbitrary program.

Semantics checking is also minimal, primarily consisting of determining type and
control flow information needed in code generation.

% University of
Kentucky.

Future Work

* Next Steps

Finish implementing the compiler for QuantC as defined.
Integrate asynchronous channels into QuantC.
Determine a method for linking quantum functions.

Consider adding syntax to combine or split quantum variables when declaring new
variables.

Consider adding a keyword to mark quantum functions without classical code that
can work with operation modifiers.

% University of
Kentucky.

