
PFME: A Paradigm Functional Morphology
Engine

Raphael Finkel Gregory Stump
raphael@cs.uky.edu gstump@pop.uky.edu
Dept. of Computer Science Dept. of English
University of Kentucky University of Kentucky

July 4, 2013

1 Introduction

Gregory Stump introduced Paradigm Functional Morphology (PFM) as a
way to express the morphology of natural languages. [1]. Raphael Finkel
built PFME, a web-based engine that generate word forms from language
theories expressed in PFM. This document describes the features of PFME
version 2, which is accessible at http://www.cs.uky.edu/˜raphael/
linguistics/pfm2.cgi. This engine belongs to a suite of web-accessible
tools for computational linguistics called Cats Claw: Computer-Assisted Technol-
ogy Service; Computational Linguist’s Automated Workbench, accessible at http:
//www.cs.uky.edu/˜raphael/linguistics/claw.html.

In the following, we distinguish “must”, “should”, and “may” to denote
whether an item is obligatory, conventional, or optional.

2 Getting started

PFME allows the user to enter a theory describing the morphological structure
of a language in two ways.

• Uploading from a file

• Entering into a text area (preferably by copy and paste)

The easiest way to start is to download one of the PFM theories listed in
the PFME web page and then upload it to PFME via the submit file button.
These theories are intended to display PFME’s function, not linguistic theories
of the languages represented. Not all provide correct results or even reasonable
approaches to the problems they try to solve. However, they are generally
syntactically correct input to the PFM calculator.

1

http://www.cs.uky.edu/~raphael/linguistics/pfm2.cgi
http://www.cs.uky.edu/~raphael/linguistics/pfm2.cgi
http://www.cs.uky.edu/~raphael/linguistics/claw.html
http://www.cs.uky.edu/~raphael/linguistics/claw.html

After receiving a PFM theory, PFME displays (1) the output generated by
the theory, a filled-in text area containing the theory, which you can modify
and re-submit with the submit text button, and (3) a filled-in form, which you
can modify and re-submit with the submit form button.

PFM theories must be encoded in Unicode UTF-8. In particular, rules use
the σ and “→” symbols (Unicode \u03c3 and Unicode \u2192)1. In addition,
theories may use any Unicode characters in representing lexemes and derived
forms, so it is straightforward to generate IPA or words in non-Latin alphabets.

3 Notation

We need to introduce some technical terms in order to describe the notation for
PFM theories.

3.1 Expandables

Many components of a PFM theory are expressed by a shorthand that we call
an expandable. Here is an example:

sg/pl 1/2/3 masc/fem

This example expands to a list containing the following pieces:

sg 1 masc
sg 1 fem
sg 2 masc
sg 2 fem
sg 3 masc
sg 3 fem
pl 1 masc
pl 1 fem
pl 2 masc
pl 2 fem
pl 3 masc
pl 3 fem

An expandable is a space-separated list of elements. Each element is a solidus
(“/”)-separated list of alternatives. Each alternative is either a parenthesized
expandable, an identifier (such as masc or 3 in the example above), or a super-
token. Here are some sample supertokens:

AGR(subject):{1/2/3 masc/fem}
TENSE:{past/present/future}

1 Instead of Unicode \u2192, one may use either Unicode \u279d or the two-character combi-
nation -> .

2

Supertokens must have a name (conventionally in upper case), a colon, and
braces surrounding an expandable; they may include a parenthesized sub-
name.

3.2 Bracketed expandables

A bracketed expandable is an expandable surrounded by brackets, as in {1/2
fem pl} or [noun aStem]. The first is an example of a {-bracketed expand-
able, and the second is a [-bracketed expandable.

PFME uses {-bracketed expandables to refer to MPSs that are supersets
of any member of the expanded list. So {1/2 fem pl} matches any MPS
that includes, for instance, {1 fem pl}. PFME uses [-bracketed expandables
to refer to combinations of syntactic category and inflection class. So [noun
aStem] matches any noun that is in inflection class aStem.

3.3 Named expandables

A named expandable is formed by a name, a colon, and a {-bracketed expand-
able, such as S:{1 sg} or σ:{dat pl}. The name can be any word, but S and
σ are the most common names.

3.4 Contexts

A context is a package containing information about a particular lexeme and a
morphosyntactic property set (MPS). For instance, in English we might be in-
terested in forming the lexeme “eat” in the third-person singular present. PFM
theories represent a context by a pair in pointy brackets, such as <L, σ:{1
pl}>, where L represents the lexeme and σ:{1 pl}> represents the MPS. The
MPS may be a name, a {-bracketed expandable, or a named expandable.

3.5 Matching

PFME often needs to match components of contexts against patterns. A com-
ponent could be composed of a lexeme’s syntactic category and inflection class,
or it could be composed of an MPS. The pattern is an expandable. We say the
component matches the pattern (or, equivalently, that the pattern matches the
component) if at least one of the alternatives generated by the pattern has ele-
ments all of which appear in the component. The strength of the match is the
number of such elements that appear.

3.6 Pan. ı̄ni precedence

When PFME must choose among alternative patterns in some context, it uses
Pan. ı̄ni precedence, which follows these steps:

3

1. Determine which alternatives are available: those that are patterns that
match the component specified by the context.

2. Of the available alternatives, select the most restrictive alternative: those
whose match has the highest strength.

For instance, in a context whose MPS is {1 sg past fem}, consider these alter-
natives:

a. 1 sg fut fem
b. 1 sg fem
c. sg fem
d. sg past

Each of these represents a pattern to be matched against the MPS component
of the context. Alternative a is unavailable because it requires the component
fut, which is not present in the MPS. On the other hand, b, c, and d are avail-
able. Of the available alternatives, b is the most restrictive, matching three
of the four components of the MPS. Alternatives c and d are less restrictive,
matching only two of the four components of the MPS.

4 PFM components

The components of a PFM theory may be presented in any order. PFME simply
ignores any part of the PFM theory that does not correspond to a recognized
component, so the theory can include comments without specially delimiting
them. The special character “%” introduces a comment that continues to the
end of the line. Lines may be terminated in the Unix fashion (with newline), in
the Win32 fashion (carriage return then newline), or in the Macintosh fashion
(carriage return).

4.1 Identification

A PFM theory should specify the language it represents by a line like this:

Language: Name

. The language name contains everything on the line following Language:.
It should also specify the author of the theory:

Author: Name

. The author name contains everything on the line following Author:.

4

4.2 Lexical entries

Each lexeme must be described by a lexical entry like the following:

Lexeme: EAT
Meaning: eat
Syntactic category: V
Inflection class: n

The lexeme name should be in upper case, and one should use V, N, and A for
verbs, nouns, and adjectives. The Lexeme and Syntactic category must
be a single word. The Meaning may be several words. The inflection class
may be multiple words.

4.3 Root-selection rules

Each lexeme must have one or more associated roots. Roots are defined by
syntax like the following.

Root(<EAT, σ:{past}>) = ate
Root(<EAT, {perfect/futPerf}>) = eaten
Root(<EAT, σ:{}>) = eat
Root(<CLIMB, σ>) = climb
Root(PERFORM) = perform

This example demonstrates a variety of acceptable formats. The first two lines
show the most general format, where the left-hand side is in full context no-
tation. The other examples use various acceptable shorthands. Root formats
obey these rules:

• The MPS, if present, may be either a {-bracketed expandable or a named
expandable. The name, if present, is immaterial.

• The lexeme component on the right-hand side must be a single word.

PFME uses Pan. ı̄ni precedence to select the stem whose MPS pattern is the best
match to the MPS in the context.

4.4 Stems

If all stems are simply roots, one may omit any direct mention of stems. For
backward compatibility with PFM1, one may use the Root syntax above, re-
placing the word Root with Stem.

In some languages, however, stems are formed from roots by mor-
phophonological operations. An example comes from Hua (dialect of Yagaria,
Trans-New Guinea):

5

Stem(L:front) = front(Root(L))
Stem(L:back) = back(Root(L))
Stem(L:diag) = low(Root(L))
Morphophonological operations = {

front(Pu) = Pi
front(Po) = Pe
low(Po) = Pa
low(Pu) = Pa
back(Pi) = Pu
back(Pe) = Po

}

In this example, front, back, and diag are lexeme modifiers. They are also
names of morphophonological operations. The definitions of the operations
use P to represent arbitrary phonemes. The two rules for front say that a root
ending with u should have that ending changed to i, whereas a root ending
with o should have that ending changed to e. A root that satisfies neither of
these situations remains unchanged.

Lexeme modifiers may be any word; likewise, the name of morphophono-
logical operations may be any word.

4.5 Content paradigm

A PFM theory must have at least one content-paradigm schema; it may have
several such schemata. A simple content-paradigm schema looks like this:

Content paradigm schema(V) = {
present/past/perfect/future/futPerf sg/pl 1/2/3

}

For backward compatibility with PFM1, one may use the word
ParadigmSchema instead of Content paradigm schema.

The first line may have non-empty (-bracketed expandable pattern (here,
(V)) that matches syntactic categories and inflection classes. The rest of the
schema is a {-bracketed expandable that generates a list of MPSs.

Given a lexeme, PFME finds all content-paradigm schemata whose pattern
matches the syntactic category and inflection class of the lexeme. PFME gener-
ates all MPSs from those matching schemata.

A complex paradigm schema may expand to several paradigm schemata.
Here is an example taken from a theory of nouns and adjectives in Noon
(Niger-Congo, Senegal):

Content paradigm schema(N <\d>A) = {
CLASS:{$1}
NUM:{sg/pl}
DEF:{plus/minus}
LOC:{1/2/3/noLoc}

6

POSS:{(1 sg)/(1 pl incl/excl)/(2/3 sg/pl)/noPoss}
REL:{noRel}

The presence of an expression bracketed by < and > in the pattern indicates
expansion. The special characters \d represent any number 0 . . . 9. The later
use of $1 in the right-hand side refers back to that bracketed expression. In this
language, nouns have inflection classes 1A . . . 6A. The paradigm schema allows
each noun to gain an MPS supertoken called CLASS containing a number in
1 . . . 6.

4.6 Disallowed MPSs

The MPS list that PFME produces from the content-paradigm schemata may
include some unwanted combinations. For instance, in Noon nouns, posses-
sion requires definiteness, so we don’t want to generate MPSs that contain a
POSS other than noPoss if we have DEF:{minus}. We indicate unacceptable
combinations by disallow schemata, which follow the same rules as paradigm
schemata. For instance, we can have:

Disallow(N) = {
(POSS:{sg/pl} DEF:{minus}) /
(LOC:{1/2/3} DEF:{minus})

}

This particular schema enforces the rules that possession requires definiteness,
and location requires definiteness.

PFME must check every generated MPS against the list of disallowed MPSs,
so where possible, it is better to use restrictive expandables in the paradigm
schema instead of listing disallowed entries. In the example above, for in-
stance, we have chosen to indicate

POSS:{(1 sg)/(1 pl incl/excl)/(2/3 sg/pl)/noPoss}

instead of allowing

POSS:{(1/2/3 sg/pl incl/excl/nocl)/noPoss}

and disallowing

POSS:{(sg incl/excl) / (2/3 pl incl/excl)}

4.7 Converting from content to form paradigm

In most theories, the content paradigm is the same as the form paradigm.
In these cases, there is no need to specify a correspondence. When the form
paradigm differs from the content paradigm, we express their correspondence
by a Corr function. Here is an example from Noon (Niger-Congo; Senegal).

7

Corr(<L[like], σ>) = <Stem(L), objPos(σ)>
Corr(<L[balaa], σ>) = <Stem(L), objRel(σ)>
Corr(L) = <Stem(L), σ> % default rule; unnecessary
Property mapping objPos = {

(INFL:{obj}) → (INFL:{poss})
}
Property mapping objRel = {

(INFL:{obj}) → (INFL:{rel})
}

The left-hand side of each Corr rule specifies a context, including (option-
ally, in brackets) a pattern to match the syntactic category and inflection class
and (optionally) an MPS, either {-bracketed or named, to match the content
paradigm. There are two acceptable right-hand side forms:

1. a context specifying both the stem and the form paradigm. If the left-
hand side is named, the same name must appear on the right-hand side;
if the MPS is not named, it is taken to be σ. This form paradigm may
indicate a modification of the MPS by naming a property mapping. Each
property mapping must be defined with one or more rules. Each rule has
a left-hand side pattern to match the MPS and a right-hand side showing
how that part of the MPS is to change. The two sides are separated by
→. The best property mapping is chosen based on Pan. ı̄ni precedence of
matches with the MPS. If no property mapping applies, the mapping is
the identity function.

2. a referral to another Corr rule, such as Corr(<L, pm(σ)>)), which
passes the lexeme (and its syntactic category and inflection class) along
with an MPS modified by a property mapping.

Given a lexeme and a content paradigm, Pan. ı̄ni precedence determines the
best Corr rule, which then computes the form paradigm. If no Corr rule ap-
plies, the form paradigm is the same as the content paradigm.

4.8 Paradigm function

A PFM theory must specify a single paradigm function that is to apply to all
lexemes. Here is a sample paradigm function:

Paradigm function
PF(<X,σ>) = [person: [tense: [I: <X,σ>]]]]

The line saying Paradigm function is optional; the line with PF is required.
By convention, <X,σ> refers to the context formed by the stem (which may

be a modification of the root, as shown earlier) and the form paradigm (which
may be a modification of the content paradigm, as shown earlier).

8

This particular function says that the way to generate a surface form from
the context <X,σ> is to apply rules of exponence (described below), first choos-
ing an appropriate rule from block I, then a rule from block tense, then a rule
from block person. Any word may name a block, although it is conventional
to name blocks either by Roman numerals (like I) or by names of morphosyn-
tactic properties (like person). The paradigm function must include at least
one block of rules of exponence.

For backward compatibility with PFME version 1, one may also write a
paradigm function using this syntax:

PF(<L,σ>) = person(tense(I(Stem(<L,σ>))))

This syntax explicitly refers to the lexeme and its stem.

4.9 Rules of exponence

Rules of exponence are organized in named blocks. Individual rules can them-
selves refer to other blocks. A block of rules looks like the following:

Block I
I, X,S:{3 sg present} → Xs
I, X[weak],{perfect/past/futPerf} → Xed

Every block implicitly contains the default rule:

blockName, X[],{} → X

The block must begin with a Block line and be followed by the rules appro-
priate to that block. Each rule must start with the block name, comma, and the
letter X. The X refers to the input to the rule, typically a partial surface form.
Following the X is an optional [-bracketed expandable, which we call the clas-
sifier. If there is no classifier, the classifier is taken to be empty.

The left-hand side concludes with the MPS component, which is either a
{-bracketed expandable or a named expandable. The name, if present, is im-
material. The components of supertokens in the MPS component may be ab-
breviated by a single Greek letter. For instance, the MPS component may look
like this:

{transitive AGR(SUBJ):{τ} AGR(OBJ):{σ}}

The left-hand side and right-hand side are separated by→.
The right-hand side is composed of arbitrary characters and may contain

special forms:

• The letter X, standing for the input to the rule.

9

• An embedded expression, such as [Negator:[Mood:<X,S>]], which
refers to a subordinate paradigm function, in this case, invoking first
the block Mood and then the block Negator. For backward compati-
bility with PFME version 1, embedded expressions may have the form
(Negator(Mood(<X,S>))), which must be surrounded by parenthe-
ses.

• Embedded expressions must refer to X by a full context, such as <X,S>.
The context may be modified from the input context, and it may refer to
abbreviations from the left-hand side:

[II:<X, τ>] [IV:<X, σ>]

In this example, the right-hand side invokes two blocks, each in a new
context. The block II only uses the τ part of the MPS component from
the left-hand side; the block IV only uses its σ part.

• A reference to a stem based on an updated context:

[Stem: <X,S:{prefixed}>]

For backward compatibility with PFME version 1, you may also write
such a reference this way:

(Stem(<X,S:{prefixed}>))

Such references must be parenthesized as shown. In this example, the
MPS of the context is enhanced by adding the element prefixed.

• A reference to a morphophonological operation, such as (!back(X)).

Parentheses, brackets, and the letter X are not allowed in the right-hand side
except as described here.

PFME evaluates blocks in an order determined by the paradigm function
and referrals from rules. It evaluates a block with respect to a context, which
includes the lexeme and a given MPS. In evaluating a block, PFME selects the
appropriate rule as follows.

1. Discard those rules in the block that do not have highest Pan. ı̄ni prece-
dence based on comparing their classifiers with the syntactic category
and inflection class of the lexeme. It is permissible to retain multiple
rules.

2. Of the retained rules, select that rule with the highest Pan. ı̄ni precedence
based on MPS component. There must be exactly one such rule (possibly
the default rule) or the PFM theory is erroneous.

10

5 Sandhi

A PFM theory may include rules of Sandhi, including shorthands for phono-
logical classes. For example:

PhonologicalClass voiceless = f k p t

Sandhi {
z → s / [voiceless]

}

The theory may contain any number of PhonologicalClass commands;
each must by on a line by itself. There may be only one Sandhi section, which
must contain a braced set of rules. Each rule is of the form

original → replacement / when

Such a rule indicates that the string indicated by original is to be replaced by
the string indicated by replacement under the situation indicated by when.
The when string must have a single underscore (), which represents the orig-
inal string; to its left and right may be indicators specifying the environment
surrounding the original string in order for the rule to apply. These indicators
are enhanced strings, which are strings that may contain phonological class
shorthands, which must be enclosed in square brackets. In the example above,
the rule specifies that z converts to s if it is preceded by a voiceless letter, which
is any of f, k, p, or t.

The replacement may be ∅ (Unicode \u00d8 or Unicode \u2205) to indi-
cate that PFME should simply delete the original in the given environment.

If the Sandhi section includes multiple rules, they are applied in the or-
der shown; later rules can therefore further modify forms that earlier rules
have produced. Whenever a rule applies, however, all the rules are tried again,
starting from the first sandhi rule.

6 Truth

A PFM theory may include a section showing known forms for some lexemes
and MPSs. For instance, we can say:

Truth = {
PF(<EAT, σ:{1 sg present}>) = I eat
PF(<EAT, σ:{3 sg present}>) = he eats
PF(<EAT, σ:{3 sg past}>) = he ate
PF(<EAT, σ:{3 sg perfect}>) = he has eaten
PF(<EAT, σ:{1 pl perfect}>) = we have eaten
PF(<EAT, σ:{3 sg futPerf}>) = he will have eaten
PF(<CLIMB, σ:{1 sg past}>) = I climbed

11

PF(<CLIMB, σ:{3 pl perfect}>) = they have climbed
}

Each entry must be on a single line by itself. The MPS name should be σ or
S. The MPS itself is a {-bracketed expandable or a named expandable. For
backward compatibility with PFME version 1, one may also express a known
form in this syntax:

CLIMB:{3 pl perfect} = they have climbed

PFME checks all results that are expected by the Truth section and indicates
if they are as expected or not.

If the theory contains the line

ShowOnlyTruth

then PFME will only run the lexemes and MPSs indicated by the Truth sec-
tion.

7 Randomization

A PFM theory may include a line like

Random 10

to indicate that PFME is not to generate all possible MPSs specified by the
paradigm schemata and not disallowed, but is rather to only randomly gener-
ate a limited number (in this case, ten) MPSs for each lexeme. This facility is
especially useful if the number of possible MPSs is very large, because PFME
operates under a time limit.

PFME ignores a randomization request if the theory also requests
ShowOnlyTruth.

8 Output control

If the PFM theory contains this line:

notInteractive

then PFME suppresses interactive features, including a text box in which the
user can enter or modify the PFM theory.

12

9 How PFME works

PFME first accepts the given PFM theory and parses it. For each lexeme, it
consults the paradigm schemata and the disallow schemata (or, if the theory
specifies ShowOnlyTruth, the Truth set) to produce content-paradigm MPSs
(either all possible MPSs or a random selection, if the theory specifies random-
ization), which it packages with the lexeme into contexts that it calls queries.
It then finds the appropriate root for the lexeme, from which it builds the stem.
It applies the most applicable Corr rule to convert the content paradigm in
the query to a form paradigm. For each query, PFME applies the paradigm
function, which invokes stem-selection rules and blocks. For each block that
it applies, PFME selects the single best rule. If the block is ambiguous, that
is, there are several best rules, but they all agree on their right-hand side, the
ambiguity is innocuous and ignored; otherwise, PFME arbitrarily picks a best
rule but flags the error. After it has finished applying the paradigm function to
the context, PFME applies all sandhi rules to the result.

The output of PFME is a web page with one section per lexeme expressed
as a table. The table section contains one line per query. The line has cells in-
dicating the query, the chosen stem, and each block that is consulted. For each
block, PFME either indicates ditto if it uses the default rule or the number of
the rule it chooses. It then applies any sandhi rule to the result and displays it.
Here are the cells in one sample line of output:

present sg 1 (MPS of query)
eat [strong] (stem and inflection class)
I: ditto (result of block I)
tense: ditto (result of block tense)
person 1: ←↩ I eat (result of block person)
I eat (result of sandhi)
X(agrees with Truth)

If notInteractive is not set, PFME also displays a text box in which you
may paste a new theory and submit it.

References

[1] G.T. Stump. Inflectional morphology: a theory of paradigm structure, volume 93.
Cambridge University Press, 2001.

13

	Introduction
	Getting started
	Notation
	Expandables
	Bracketed expandables
	Named expandables
	Contexts
	Matching
	Panıni precedence

	PFM components
	Identification
	Lexical entries
	Root-selection rules
	Stems
	Content paradigm
	Disallowed MPSs
	Converting from content to form paradigm
	Paradigm function
	Rules of exponence

	Sandhi
	Truth
	Randomization
	Output control
	How PFME works

