
1 INTERCAL
Intercal [Woods 73], a language invented by Donald Woods and James
Lyon, is the short name for “Compiler language with no pronounceable
acronym”. Its goal is to have nothing at all in common with any other
programming language. As such, it presents a refreshing view of what a
programming language might be, but, luckily, usually is not. Intercal
has novel syntax as well as semantics. It is intended to be as obscure as
possible while still retaining some modicum of function.

Intercal chooses to give unusual names to the characters available
for writing programs. For example, the comma is called “tail”, and the
semicolon is called “hybrid”. I will avoid these names for clarity; the
manual has no such compunctions.

Although Intercal was intended as a joke, some actual languages
share some of Intercal’s misfeatures. I point these out below.

1.1 Data structures
There are two basic types, unsigned 16-bit integer and unsigned 32-bit
integer.1 Integer literals are formed with the ‘#’ modifier followed by
digits. The type of the literal is deduced from the value represented by
the digits.

Figure 0.0 #34 1
#01 2
#12345678 3

Variables are not declared; the type of a variable is determined by its
use. The identifier for a variable is a modifier followed by an integer in
the range 1 to 65535. Modifiers for unstructured variables are the pe-
riod (‘.’) for 16-bit integers and the colon (‘:’) for 32-bit integers. The
variables .34 and :34 are distinct (they have different types and may co-
exist in the same program). The variables .45 and .045 are identical.

Modifiers for array variables are the comma (‘,’) for 16-bit integer ar-
rays and the semicolon (‘;’) for 32-bit integer arrays. Subscripts are pre-
fixed by the word sub, as in ,34 sub #23 #42 (equivalent to array34[23,42]
in more conventional languages). Arrays are not declared or preallo-
cated; they must be allocated at runtime.

1 There are languages such as Bliss with only one data type, integer.



1.2 Operators
There are five logical operators, carefully designed to make arithmetic
nearly, but not completely, impossible.

The interleave operator is represented by ‘¢’, although the standard
compiler accepts ‘$’ as well. It takes two 16-bit operands and produces
the 32-bit quantity formed by alternating the bits of the operands. The
most-significant bit of the result is the most-significant bit of the first
operand.

The select operator is represented by ‘˜’. It takes either 16-bit or
32-bit operands, which it coerces to 32 bits. Those bits in the first
operand corresponding to 1’s in the second operand are selected and
packed in the least-significant bits of the result, which is either 16 bits
or 32 bits, depending on the number of bits selected. For example, #201 ˜
#179 selects from 11001001 the bits specified by 10110011, namely, 10001,
or #17.

The other three operators are unary. Each performs its operation on
pairs of adjacent bits, with the result appearing in the position of the
lower-order bit of the two. Another way of describing the action is to
take the 16-bit or 32-bit operand, circularly right shifting it one bit, then
performing the operation on the original operand and its shifted image.
The three operations are and (represented by ‘&’), or (represented by ‘V’),
and xor (represented by ‘V- ’). Unary operators are enclitic, that is, they
are placed between the modifier and the integer that together make up
a constant or a variable. For example, #V123 (binary 1111011) has the
value 32895 (binary 1000000001111111). It is invalid to place more than
one enclitic after the modifier.

There are no rules of precedence; all potentially ambiguous expres-
sions must be parenthesized. There are two types of parentheses: ‘"’ and
‘’’.2 They must be alternated when nested so the parser can always de-
termine whether a particular occurrence of " or ’ is an opening or a clos-
ing instance. For example,

Figure 0.0 ,1 sub ",2 sub ’,3 sub #1’" #22 1

would be written in a more conventional language as

Figure 0.0 array1[array2[array3[1]], 22] 1

Unary operators applied to parenthesized expressions are also enclitic

2 The shell programming languages in Unix (sh and its descendents, including Perl)
also use these two types of parentheses, but they do not nest and have slightly different se-
mantics. Here is one case where Intercal is less obscure than an actual language.



and are placed after the opening ’ or ". The combination ‘’.’ may be
rewritten as ! for conciseness (and obscurity, of course).

1.3 Statements
Statements are free format.3 Spaces and newlines in input are optional
and ignored, even within literals and identifiers.4 The format of a state-
ment (optional parts are shown in brackets) is

Figure 0.0 [(label)] identifier [fudge] body 1

The label is a number in the range 1..65535, although it is wise to avoid
numbers between 1000 and 1999, which are used by the library.5 The
identifier indicates to the compiler that a statement is starting. The
valid identifiers are do, please, and please do. The compiler complains if
too low or too high a fraction of the statements use a polite form. The
fudge is either a percent chance of execution (like %76) or a request not
to execute the statement at all, either not or n’t. Such a statement is ab-
stained from as execution begins, but abstinence can be overridden, as
you will see.

Assignment is performed by an arrow (‘<-’).6 32-bit quantities are co-
erced to 16 bits only if the value is less than 65536. Arrays are allocated
by assignment to the array variable; in this case, the right-hand side in-
dicates the dimensions, not the contents. The following example builds
two 32-bit arrays; one has 10 elements, the other 100.

Figure 0.0 do ;1 <- #10 1
do ;2 <- #10 by #10 2

Control transfer is performed by the next statement:

3 Before we say that Intercal is superior in this regard to FORTRAN, note that Mi-
randa, certainly a modern language, and Mumps (not so modern), are not only statement-
per-line languages, but also use indentation for grouping. See the discussion of grouping
by indentation later in this chapter.

4 FORTRAN shares this misfeature. Consider the FORTRAN statement do 100 j =
1.10. The fact that 1 and 10 are separated by a period instead of a comma makes this an
assignment statement equivalent to do100j = 1.10.

5 The IBM 1620 computer reserved some locations in low memory for arithmetic ta-
bles; it was possible, although very unwise, to overwrite these.

6 In this regard, Intercal is more advanced than C, in which programmers commonly
interchange ‘=’ and ‘==’ by accident. The problem is severe in C because when either of
these symbols is permitted, so is the other one, often with a disastrously different mean-
ing.



Figure 0.0 do (49) next 1

This statement has two effects. First, the location of the following state-
ment is pushed on a stack. Second, control is transferred to the indi-
cated label (in this example, 49). The stack has capacity for 79 entries;
the next statement fails if the stack is full.7 The error message is “Pro-
gram has disappeared into the black lagoon”.8

Any number of elements can be popped from the stack by the forget
statement:

Figure 0.0 do forget #3 1

This example pops 3 elements. It is not erroneous to pop more values
than the stack contains; the effect is to clear the stack. Unconditional
jumps are generally followed by a forget #1 statement to avoid cluttering
the limited stack.

Procedure return is performed by the resume statement, which is like
forget except that after popping, it jumps to the statement addressed by
the last entry popped. If more entries need to be popped than are on the
stack, the program terminates. The effect of a computed goto can be pro-
grammed by the following code:

Figure 0.0 do note .1 has value 1..4, the jump code 1
do (3) next 2
do note code for case .1 = #4 goes here 3
do (101) next 4

(3) do (2) next please forget #1 5
please note code for case .1 = #3 goes here 6
do (101) next 7

(2) do (1) next please forget #2 8
please note code for case .1 = #2 goes here 9
do (101) next 10

7 This intrusion of implementation limits on the language itself is one end of a spec-
trum. At the other, more familiar end, programs that use lots of stack resources might or
might not run depending on the implementation; there is no way the programmer can tell.
Ada sits somewhere in the middle, providing runtime library routines that report some
limits (particularly numeric ranges), but not all (such as available stack space).

8 Unhelpful error messages are legion. For example, a common compiler diagnostic
in SAIL is “The details of this error can be found in your code”. Many older compilers re-
port only error codes, not messages, and the user must look the codes up in a manual.



(1) do (100) next please forget #3 11
please note code for case .1 = #1 goes here 12
do (101) next 13

(100) do resume .1 14
(101) do forget #1 15

Line 1 is a comment, since it is abstained from (starting with do not), so
the unrecognizable remainder of the statement is never executed and
never causes problems.

Variables may be saved and restored, which is helpful for passing pa-
rameters to procedures. The stash statement takes a list of variables
(separated by ‘+’) to be stacked; the retrieve statement takes a list of
variables and restores the most recent value stashed for each. A vari-
able may be stashed more than once; there is an implicit stack for each
variable, and retrieve only pops one value. It is invalid to pop more val-
ues than were pushed for any variable. The error message is “Throw
stick before retrieving”.

Variables can be temporarily deactivated by the ignore statement,
causing assignments and input to leave those variables unchanged, al-
though they may be accessed. The variables can be reactivated by the
remember statement.

Intercal does not have conditional statements, so it is difficult to skip
around code. The ignore statement helps, but the abstain statement is of-
ten needed. It can effect abstinence on a particular statement (by speci-
fying its label) or a class of statements (by specifying the keywords):

Figure 0.0 please abstain from stashing 1
do abstain from (34) 2
please do abstain from nexting 3
please abstain from abstaining 4
please abstain from reinstating 5

Line 4 is valid, but surprising. Line 5 is valid, but most likely a bad
idea. Abstinence is terminated by a reinstate statement. It is possible to
reinstate a statement that is abstained from because it has a not in it. It
is not necessary to reinstate by the same mechanism that started the
abstinence; in the previous example, statement 34, abstained from in
line 2, could be reinstated by do reinstate nexting.

A program is usually terminated by a give up statement, equivalent
to resume #80. This statement cannot be abstained from by keyword, nor
can it be reinstated at all. So don’t give up is always a do-nothing state-
ment.

Input and output are performed by the write in and readout state-
ments, respectively. Each input number must be on its own line. The
input format is English spelling; that is, #3402 is input as three four oh



(or zero) two. The output format is extended Roman numerals.9 An over-
line indicates multiplication by 1,000; lower case indicates times
1,000,000; zero is an overline itself; I and M both mean 1,000, but M may
only be used for numbers less than 4,000 mod 1,000,000.

1.4 Final comments
Intercal is a very funny language and is also quite a challenge for the
programmer. The manual includes a listing of the subroutine library,
used for such operations as addition, subtraction, multiplication, and
generating random numbers (this latter using a statement with fudge
%50). It is absolutely cryptic, but, amazingly, shows that arithmetic is
possible. Intercal has been extended to deal with different base number
systems; for example, Intercal-7 specializes in base-7 representation.

[Woods 73] DONALD R. WOODS AND JAMES M. LYON, The Intercal Pro-
gramming Language Reference Manual (Not published) (1973).

9 Languages often have difficulty creating readable output. For example, enumera-
tion types are frequently coerced to integers, which leads to obscure output.


