
CS 541 — Fall 2021 

Programming Assignment 3
CSX_go Parser 

Write  a  Java  CUP parser  specification  to  implement  a  CSX_go parser.  A grammar  that 
defines CSX_go syntax appears below. You should examine the grammar carefully to learn the  
structure of CSX_go constructs. In most cases, structures are very similar to those of Java and  
C++. At this stage, you need not understand exactly what each construct  does, but rather just 
how  each  construct  appears.   Labeled for statements  and  the  break and  continue 
statements are optional; you get extra credit if you implement them.

The CSX_go grammar listed below encodes the fact that the unary ! Operator has the highest 
precedence. The  * and  / operators have the next-highest  precedence. The  + and  - operators 
have the third-highest precedence. The relational operators (==, !=, <, <=, >= and >) have the 
fourth-highest  precedence.  The boolean  operators  (&& and  ||)  have the  lowest  precedence. 
Thus  !A+B*C==3 || D!=F is  equivalent  to the following fully-parenthesized expression: 
((((!A)+(B*C))==3) || (D!=F)). All binary operators are left-associative, except the 
relational operators, which do not associate at all (for instance, A==B==C is invalid). The unary 
operators are (of course) right-associative. Be sure that your parser for CSX_go properly reflects  
these precedence and associativity rules. 

program → package identifier varDecls funcDecls

varDecls → varDecl varDecls
        | λ

varDecl → var   identifier type ;
        | var   identifier = expr ;
        | var   identifier type [ intlit ] ;
        | const identifier = expr ;

funcDecls → funcDecl funcDecls
    | λ

funcDecl → func identifier ( formals ) optType block

formals → someFormals
        | λ

someFormals → formalDecl
            | formalDecl , someFormals



formalDecl → identifier type
           | identifier [ ] type

optType → type
        | λ

stmts → stmt stmts
      | λ

stmt → if expr block
     | if expr block else block
     | for expr block
     | identifier : for expr block
     | name = expr ;
     | read readlist ;
     | print printlist ;
     | identifier ( actuals ) ;
     | return ;
     | return expr ;
     | break identifier ;
     | continue identifier ;
     | block

block → { vardecls stmts } optionalSemi

optionalSemi → ;
             | λ

type → int
     | char
     | bool

actuals → someActuals
        | λ

someActuals → expr
            | expr , someActuals

readlist → name , readlist
         | name

printlist → expr , printlist
          | expr

expr → expr || term
     | expr && term
     | term

term → factor <  factor
     | factor >  factor



     | factor <= factor
     | factor >= factor
     | factor == factor
     | factor != factor
     | factor

factor → factor + pri
       | factor - pri
       | pri

pri → pri * unary
    | pri / unary
    | unary

unary → ! unary
      | type ( expr )
      | unit

unit → name
     | identifier ( actuals )
     | intlit
     | charlit
     | strlit
     | boollit
     | ( expr )

name → identifier
     | identifier [ expr ]

                                                             CSX_go Grammar

Using JavaCUP to Build a Parser 
You will use JavaCUP, a Java-based parser generator, to build your CSX_go parser. You’ll  

have  to  rewrite  the  CSX_go grammar  into  the  format  required  by JavaCUP.  This  format  is  
defined in  the  “CUP User’s Manual,” available in the “Useful Programming Tools” section of 
the class homepage. A sample CUP specification corresponding to  CSX_lite (a small subset of 
CSX_go) may be found in
~raphael/courses/cs541/public/proj3/startup/csx_lite.cup. 

Once you’ve rewritten the CSX_go grammar we’ve provided and entered it into a file (say  
CSX_go.cup), you can test whether the grammar can be parsed by a CUP-generated parser.  
Run 

java java_cup.Main < CSX_go.cup 

Java CUP might generate a message 
*** Shift/Reduce conflict found in state #XX 

where  XX is  a  number  that  depends  on the exact  structure  of  the grammar  you enter.  This 
message indicates that the grammar we’ve provided is almost, but not quite, in a form acceptable  
to CUP. This problem is a common occurrence. Most context-free grammars  that are  used to 
define  programming  languages  can  be  handled  by  JavaCUP,  sometimes  after  minor 
modification. 



You may rewrite the CSX_go grammar in any way you wish, adding or changing productions 
and nonterminals. You  must not change the CSX_go language itself (the sequences of tokens 
considered valid).

Once your grammar is in the right format and generates no error messages, JavaCUP  creates 
a  file  parser.java that  contains  the  parser  it  has  generated.  It  also  creates  a  file  
sym.java, which contains the token codes the parser is expecting. Use  sym.java with 
JLex in generating your scanner to guarantee that both the scanner and parser use the same token  
codes. 

The  generated  parser  tables  are  in  parser.java.  Compiling  this  file generates  some 
warnings  that  you  may  ignore.  It  calls  Scanner.next_token( )  to  get  tokens.  Class 
Scanner (provided by us) creates a  Yylex object (a  JLex scanner) and calls  yylex( ) as 
necessary to provide tokens. Be sure to call Scanner.init(in) prior to parsing with in, 
the Reader you wish to scan from.

If there is a syntax error during parsing,  parse( ) throws a java.lang.Exception; 
be sure to catch it.  It  also calls  syntax_error(token) to print  an error message. We 
provide a simple implementation of syntax_error in lite.cup (the parser specification 
for  CSX_lite).  You may improve  it  if  you wish (perhaps  to print  the offending token).  You 
should test your parser on a variety of simple inputs, both valid and invalid, to verify that your 
parser is operating correctly. 

Generating Abstract Syntax Trees 
You should consider the material in this section a hint, not a requirement.
So far, your parser reads input tokens and determines whether they form a syntactically cor -

rect program. You now must extend your parser so that it builds an abstract syntax tree (AST).  
The AST will be used in the next projects by the type checker and code generator to complete 
compiling a CSX_go program. 

Abstract syntax tree nodes are defined as Java classes, with each particular kind of AST node 
corresponding to a particular class.  The AST node for an assignment statement corresponds to 
the class  AsgNode. The classes comprising AST nodes are not independent. All of them are 
direct or indirect subclasses of the following: 

abstract class ASTNode {
int     lineNum;
int     colNum;

static void genIndent(int indent){ ... }

ASTNode(){lineNum=-1; colNum=-1;}
ASTNode(int l,int c){lineNum=l; colNum=c;}
boolean isNull(){return false;}; // Is this node null?
void unparse(int indent){}; 

};
ASTNode is the base class from which all other classes for AST nodes descend. ASTNode 

is an abstract superclass; objects of this class are never created.  Its definition serves to define 
the fields and methods shared by all subclasses. 

ASTNode contains two instance variables:  lineNum and  colNum.  They represent  the 
line and column numbers of the tokens from which the AST node was built. Thus for AsgNode, 
the AST node for assignment statements,  lineNum and  colNum record the position of the 
assignment’s target variable, since that’s where the assignment statement begins. 

ASTNode also has two constructors that set  lineNum and  colNum. These constructors 



are  called  by  constructors  of  subclasses  to  set  these  two fields  (to  either  explicit  or  default  
values).

The method  isNull is used to determine if a particular AST node is “null”; that is, if it  
corresponds to l. Only special “null nodes” define their  isNull function to return true; other 
AST nodes inherit the definition in ASTNode.

The method unparse() is used to “unparse” an AST node — that is, to print it out in a 
clear  human-readable  form.  Unparsing  is  discussed  below.  Each  subclass  provides  its  own 
definition of unparse(); the default — to print nothing — is usually inappropriate. Thus the 
AsgNode’s unparse() defines how assignment statements are to be printed.  Each kind of 
AST node should have its own unparsing rules. Member  genIndent() is a utility routine 
used by unparse().

An example of an AST node we might build while parsing a CSX_go program is: 

class ProgramNode extends ASTNode {
ProgramNode(IdentNode id, MemberDeclsNode m,

int line, int col){ ... }
void unparse(int indent) { ... }
private IdentNode packageName;
private List<VarDeclNode> varList;
private List<FuncDeclNode> funcList;

};

ProgramNode corresponds  to  the  start  symbol  of  all  CSX_go  programs,  program. 
ProgramNode is  a  subclass  of  ASTNode,  so  it  inherits  all  of  ASTNode’s  fields  and 
members.  It  contains  a  constructor,  as  do  all  AST nodes.  This  constructor  sets  the  private 
members of the class. It also calls ASTNode’s constructor to set lineNum and colNum. Its 
unparse() provides a definition of unparsing appropriate to the program structure the class  
represents. Since ProgramNode corresponds to a non-l construct, it is content to inherit and 
use ASTNode’s definition of isNull.

ProgramNode also  contains  three private  fields,  which  correspond  to  the  subtrees  a 
ProgramNode contains: the name of the project (an identifier), and the declarations (variables 
and  functions) within the  program. The type declarations tell us  precisely the kind of subtrees 
that  are  permitted.  If  we  try  to  assign  a  subtree  corresponding  to  an  integer  literal  to  
className, we get a Java type error, because the AST node corresponding to integer literals  
(IntLitNode)  is  different  from  the  type  that  packageName expects  (which  is 
IdentNode). 

This precaution explains why we’ve created so many different classes for AST nodes. Each 
different kind of node has its own class, and it is wrong to assign a class corresponding to one 
kind of AST node to a field expecting a different kind of AST node. 

We list below (in Table 1) all the AST classes you might use. For each class, we list the field  
names in that class and the type of each field. This type is usually a reference to a particular AST 
class object.

 In  some  cases,  a  field  may  reference  a  special  kind  of  AST node,  a  “null  node,”  that 
corresponds to  l. That is, if a subtree is empty, we use a null node to represent that fact. For  
example,  in  a  function,  declarations  are  optional.  As you might  expect,  null  nodes  have  no 
internal fields. They simply serve as placeholders so that all subtrees that are expected are always  
present. Null nodes represent null subtrees. Java’s strict type rules make it necessary to create  
several different classes for null nodes. However, it is easy to reference a null node of the correct  
type. If you want a null node that can be assigned to a field of class XXX, then XXX.NULL is 
the null node you want. For example, if you want to assign a null node to a field expecting a  
StmtNode, then StmtNode.NULL is the value you should use.  It is better to reference a 
null node than to store a null value. If all object references in AST nodes point to something 



then we never have to check a reference before we use it. 
Some AST nodes are always leaves (e.g., IdentNode); others have one or more subtrees. 

Thus the AsgNode has two subtrees, one for the name being assigned to (target) and the 
other for the expression being assigned (source). 

The AST nodes  IdentNode,  IntLitNode,  CharLitNode and  StrLitNode do 
not have subtrees, but do contain the string value, integer value, character value, or string value  
returned by the scanner (in token objects). Leaf nodes like TrueNode and BoolTypeNode 
have no fields (other than  lineNum and  colNum inherited from their superclass). For such 
nodes, we need no information beyond their class. 

Besides astNode, we use a number of other abstract superclasses to build our AST. One of 
these is StmtNode. We never actually create a node of type StmtNode. But then why do we 
bother to define it? 

Sometimes we want to be able to reference one of a number of kinds of AST nodes, but not 
just any node. Thus in a StmtNode we want to reference any kind of AST node corresponding 
to a statement, but not AST nodes corresponding to non-statements. We solve this problem by 
declaring  a  reference  to  have  type  StmtNode.  We  make  all  classes  corresponding  to 
statements (like AsgNode or  ReadNode)  subclasses of StmtNode. The rules of Java say 
that a reference to a class  S may be assigned an object of any subclass of S.  A subclass of S 
contains  everything  S does  (and  perhaps  more).  Thus  an  AsgNode may  be  assigned  to  a 
variable expecting a StmtNode without error. However, an AST node that is not a subclass of 
StmtNode (e.g.,  BoolTypeNode)  may  not  be  assigned  to  a  variable  expecting  a 
StmtNode. 

Although  the  set  of  suggested  class  definitions  in  ast.java looks  complex,  the  main 
benefit of using them is that it becomes very difficult to insert AST nodes in the wrong place. If  
you try, you’ll get an error message complaining that the type of node you are trying to assign to  
an AST node’s field is invalid. In Table 2, below, we list all the AST nodes that might appear in 
ast.java and their superclass.

Table 1.  Suggested classes for AST Nodes in CSX_go

Java class Fields Used Type of Fields Null node 
allowed?

ProgramNode packageName

varList

funcList

IdentNode 

List<VarDeclNode>

List<FuncDeclNode> 

No
No
No

VarDeclNode varName

varType

initValue

IdentNode 

TypeNode 

ExprNode 

No
No
Yes

ConstDeclNode constName

constValue

IdentNode

ExprNode

No
No

ArrayDeclNode arrayName

elementType

arraySize

IdentNode 

TypeNode

IntLitNode

No
No
No

IntTypeNode

BoolTypeNode

CharTypeNode

VoidTypeNode

FuncDeclNode name IdentNode No



args

returnType

body

List<ArgDeclNode>

TypeNode

BlockNode

Yes
No
No

ArrayArgDeclNode argName

elementType

IdentNode

TypeNode

No
No

ValArgDeclNode argName

argType

IdentNode

TypeNode

No
No

AsgNode target

source

NameNode 

ExprNode

No
No

IfThenNode condition

thenPart

elsePart

ExprNode

BlockNode

BlockNode

No
No
Yes

ForNode label

condition

loopBody

IdentNode 

ExprNode 

BlockNode 

Yes
No
No

ReadNode targetVar

moreReads

NameNode

ReadNode 

No
Yes

PrintNode outputValue

moreDisplays

ExprNode

PrintNode

No
Yes

CallNode methodName

args

IdentNode

ArgsNode 

No
Yes

ReturnNode returnVal ExprNode Yes
BreakNode label IdentNode No
ContinueNode label IdentNode No
BlockNode decls

stmts

List<VarDeclNode>

List<StatementNode>

Yes
No

ArgsNode argVal

moreArgs

ExprNode

ArgsNode

No
Yes

StrLitNode strval String No
BinaryOpNode leftOperand

rightOperand

operatorCode

ExprNode

ExprNode

int

No
No
No

UnaryOpNode operand

operatorCode

ExprNode

int

No
No

CastNode resultType

operand

TypeNode 

ExprNode 

No
No

FuncCallNode funcName

funcArgs

IdentNode

ArgsNode 

No
Yes

IdentNode idname String No
NameNode varName IdentNode No



subscriptVal

ExprNode 

Yes
IntLitNode intval int No
CharLitNode charval char No
TrueNode none

FalseNode none

null nodes

(many kinds)

none

Table 2   Classes Used in AST Nodes and Their Superclasses

AST Node Superclass AST Node Superclass
ArgDeclNode ASTNode VoidTypeNode TypeNode

ArgsNode ASTNode ArrayArgDeclNode ArgDeclNode

ArrayDeclNode DeclNode AsgNode StmtNode

BinaryOpNode ExprNode BlockNode StmtNode

BoolTypeNode TypeNode BreakNode StmtNode

CallNode StmtNode CastNode ExprNode

CharLitNode ExprNode CharTypeNode TypeNode

ProgramNode ASTNode ConstDeclNode DeclNode

ContinueNode StmtNode FuncDeclNode DeclNode

ExprNode ASTNode FalseNode ExprNode

FuncCallNode ExprNode VarDeclNode DeclNode

IdentNode ExprNode IfThenNode StmtNode

IntLitNode ExprNode IntTypeNode TypeNode

ForNode StmtNode UnaryOpNode ExprNode

ValArgDeclNode ArgDeclNode NameNode ExprNode

nullNode ASTNode PrintNode StmtNode

ReadNode StmtNode ReturnNode StmtNode

StmtNode ASTNode StmtsNode ASTNode

StrLitNode ExprNode TrueNode ExprNode

TypeNode ASTNode

Getting Started 
We’ve  placed  skeleton  files  for  the  project  in  ~raphael/-

courses/cs541/public/proj3/startup.  Look  at  file  ast.java.  This  file 
compiles to a large number of .class files (one for each kind of AST node, as well as others). 
To  keep  your  project  directory  manageable,  the  Makefile places  all  .class files  in  a 
subdirectory,  classes/.  Be  sure  your  CLASSPATH environment  variable  includes  this 
directory.   The Java code in  the skeleton files  is  not  up to  standard;  you should use a style  
checker to improve the code.



Building ASTs in Java CUP

We’ll need to build ASTs for CSX_go programs we have parsed. One of the reasons we’re 
using JavaCUP to build our parser is that it’s easy to build ASTs. JavaCUP allows us to embed 
actions, in the form of Java code, in the productions JavaCup parses. When parse() matches a 
production containing an action it automatically executes that action. For example  the following 
rule (drawn from lite.cup) 

stmt ::= ident:id  ASG  exp:e  SEMI
{: RESULT =

new AsgNode(id, e, id.lineNum, id.colNum);
:}     

specifies  the production  stmt → ident = expr ; .  Whenever  parse() matches  this 
production,  it  calls  the  constructor  AsgNode (since  AsgNode corresponds  to  assignment 
statements). The constructor for AsgNode takes four parameters: ASTs nodes corresponding to 
the source and target  of the assignment, and a line and column number to associate with the  
assignment. The special suffixes :id and :e represent references (automatically maintained by 
the parser) to the ASTs for the ident and expr that it has already parsed. These ASTs have 
already been built by the time this production is matched. We define the line and column of the 
assignment to be the line and column of the leftmost symbol in the assignment, which is the  
ident. Since id references the AST node built for ident, id.lineNum represents the line 
number already stored for the identifier.

After  astNode builds a new AST node for the assignment and links in its subtrees, the  
parser assigns its result to RESULT, which is a special symbol that represents the left-hand side 
non-terminal (stmt). As it matches productions, the parser builds and merges AST subtrees into 
progressively larger  trees.  Finally,  when  it  matches the first  production (corresponding to an 
entire program),  the parser returns the root of the complete AST. The bookkeeping required to 
maintain AST pointers as the parser matches productions is automatic.

Information placed in tokens returned by the scanner can also be easily accessed. A suffix 
placed after a terminal symbol allows the token object corresponding to the terminal symbol to 
be accessed. Thus the rule

exp ::= exp:l PLUS:op ident:r
{: RESULT = new BinaryOpNode(l, sym.PLUS, r,

op.lineNum, op.colNum); :}     

uses the lineNum and colNum values of the PLUS token (extracted as op.lineNum and 
op.colNum) in constructing a  BinaryOpNode that  represents the AST for the addition 
operation. 

The objects referenced  for  each  terminal  and  non-terminal  symbol  in  the  grammar  are  
defined by terminal and non terminal directives. The lines 

terminal CSXIdentifierToken IDENTIFIER;
terminal CSXToken SEMI, LPAREN, RPAREN, ASG, LBRACE, RBRACE;

tell  Java CUP that the tokens for  ';',  '(',  ')', etc. are all  instances of class  CSXToken, 
whereas the IDENTIFIER token is an instance of class CSXIdentifierToken. The lines

non terminal csxLiteNode       prog;
non terminal StmtsNode         stmts;



say  that  the  nonterminal  prog references  class  csxLiteNode,  whereas  the  nonterminal 
stmts references StmtsNode.

The function  parse( ) returns an object of type  Symbol. For successful parses, it is the 
start symbol (program) of the derivation. The value field of the returned Symbol contains 
the AST corresponding to program.

Unparsing 
For grading, testing and debugging purposes, it is necessary to display the abstract syntax tree  

your parser creates. A convenient way to do so is to create a member function unparse(int 
indent) that prints out the node’s structure in conventional (text-oriented) form. (indent is 
the number of tabs to indent prior to printing the node’s structure.) unparse “pretty prints” 
the construct, adding new lines and tabs as appropriate to create a pleasing and easily-readable  
listing. For constructs that are forced to begin on a new line (like statements and declarations)  
you  should  print  a  line  number  at  the  beginning  of  the  construct’s  unparsing,  using  the 
lineNum value stored in the AST node. The line numbers printed  might not be consecutive, 
since they correspond to the original input text. Moreover, some parts of a construct that appear  
on a new line (like the '}' at the end of the class definition) get a line number that appears “out of  
order” because the line number stored with an AST node corresponds to where the construct  
begins. 

Each abstract syntax tree node is associated with a production that can be viewed as a pattern  
that specifies how a node is to be displayed. For example given an AsgNode, which we always 
print on a new line, we first print out the line number (using the node’s  lineNum value) and 
indent using  unparse()’s indent parameter. We then call  target.unparse(0) (to 
print the target variable, without indenting), print '=', call source.unparse(0) (to print the 
source expression, without indenting), and finally print ';'.

For IntLitNodes, we print  intval. For StrLitNodes, we print  strval (the full 
string representation,  with quotes and escapes).  For  CharLitNodes, print  charval as a 
quoted character in fully escaped form. For IdentNodes, the unparser uses idname, which 
is the text of the identifier. 

Abstract syntax trees for expressions contain no parentheses, since the tree structure encodes 
how operands are grouped. When expressions are unparsed, add explicit parentheses to guarantee  
that expressions are properly interpreted. Hence  A+B*C should be unparsed as  (A+(B*C)). 
(Fancier unparsers that only print necessary parentheses are a bit harder to write.  An unparser 
that prints parentheses only when really necessary gets extra credit.) 

What You Must Do 
This project step is not nearly as hard as it looks, because you have  JavaCUP to help you 

build your parser.  Still,  it  helps to see an example of all  the pieces you’ll  need to complete.  
We’ve  created  a  small  subset  of  CSX_go,  called  CSX_lite,  that’s  defined  by  the  following 
productions: 

program → {   stmts    }
stmts → stmt     stmts 

| l 
stmt → id    =     expr    ; 

| if     (   expr   )    stmt   
expr → expr    +    id 

| expr    -    id 
| id 

                                CSX_lite Grammar



This  simple  subset  contains  no  declarations,  only  an  assignment  and  if statement,  and 
expressions involving only  +,  - and identifiers. Complete specifications, parsers, AST builders 
and  unparsers  for  CSX_lite  may  be  found  in  ~raphael/-
courses/cs541/public/proj3/startup. Just type 

make test

to build a complete parser for CSX_lite and then test it using a simple source program. 
You should look at what we’ve provided to make sure you understand how each step of the  

project  works  for  CSX_lite.  It  builds  ASTs  using  calls  to  constructors  as  illustrated  in 
csx_lite.cup. Once the parser matches an individual production, it calls a constructor for  
the corresponding AST node. You should substitute your scanner from Project 2, by replacing 
csx_lite.jlex with your csx_go.jlex file.

Unparsing functions, one for each type of AST node, are member functions in ast.java. 
Each such routine is fairly simple —  it prints  the information in the node in nicely formatted 
form, with recursive calls to unparse() to unparse subcomponents. 

Once you’re clear on what’s going on, add a single simple feature like a variable declaration 
or a  for loop.  First, add the appropriate productions to the JavaCUP specification. Build the 
parser and verify that you get no syntax errors when you parse source files containing the new 
construct.  Next,  add constructor actions to your specification to build ASTs for the construct  
you’ve added.  Then define  unparse() in the nodes you’ve built  to unparse ASTs for  this 
construct.  Now verify  that  the ASTs  you build  are  correct  by  looking  at  the  unparsing  you  
generate. 

After you have added a few constructs, you should have a good understanding of all the steps 
involved. Then you can incrementally add the complete set of CSX_go productions to your CUP 
specification, eventually creating a complete CSX_go parser and unparser. 
Error Handling 

In the case of syntax errors,  JavaCUP calls  syntax_error( ) to print an error message 
and then throws a SyntaxErrorException, indicating abnormal termination. The caller 
of your parser should catch this exception, which indicates that because of errors it cannot build  
an AST. 

JavaCUP does  provide  a  simple error  recovery  mechanism (using  “error”  markers).  This 
feature is described in §5 of the CUP manual. If you wish, you may experiment with syntactic  
error recovery after your parser is fully operational.  It is not necessary to continue parsing after 
parse() discovers a syntax error.
What to Hand In 

As input,  your parser  takes  a text-file name on the command line,  which it  passes to the  
scanner to read and build tokens for the parser. You should test your parser on syntactically valid  
and invalid programs. For invalid programs, your error messages should be clear and meaningful.  
For valid programs, you should show a readable, line-numbered, unparsed listing of the resulting 
abstract syntax tree. Turn in a your parser module, your CUP specification, and a listing of your 
parser’s execution on a variety of syntactically valid and invalid programs.

If you wish to claim extra credit, clearly state (in the README file) what you’ve added, and 
include  examples  of  its  operation.   In  particular,  if  you  implement  labeled for statements, 
break and continue, mention that fact. 


