
CS 541 — Fall 2021

Programming Assignment 3
CSX_go Parser

Write a Java CUP parser specification to implement a CSX_go parser. A grammar that
defines CSX_go syntax appears below. You should examine the grammar carefully to learn the
structure of CSX_go constructs. In most cases, structures are very similar to those of Java and
C++. At this stage, you need not understand exactly what each construct does, but rather just
how each construct appears. Labeled for statements and the break and continue
statements are optional; you get extra credit if you implement them.

The CSX_go grammar listed below encodes the fact that the unary ! Operator has the highest
precedence. The * and / operators have the next-highest precedence. The + and - operators
have the third-highest precedence. The relational operators (==, !=, <, <=, >= and >) have the
fourth-highest precedence. The boolean operators (&& and ||) have the lowest precedence.
Thus !A+B*C==3 || D!=F is equivalent to the following fully-parenthesized expression:
((((!A)+(B*C))==3) || (D!=F)). All binary operators are left-associative, except the
relational operators, which do not associate at all (for instance, A==B==C is invalid). The unary
operators are (of course) right-associative. Be sure that your parser for CSX_go properly reflects
these precedence and associativity rules.

program → package identifier varDecls funcDecls

varDecls → varDecl varDecls
 | λ

varDecl → var identifier type ;
 | var identifier = expr ;
 | var identifier type [intlit] ;
 | const identifier = expr ;

funcDecls → funcDecl funcDecls
 | λ

funcDecl → func identifier (formals) optType block

formals → someFormals
 | λ

someFormals → formalDecl
 | formalDecl , someFormals

formalDecl → identifier type
 | identifier [] type

optType → type
 | λ

stmts → stmt stmts
 | λ

stmt → if expr block
 | if expr block else block
 | for expr block
 | identifier : for expr block
 | name = expr ;
 | read readlist ;
 | print printlist ;
 | identifier (actuals) ;
 | return ;
 | return expr ;
 | break identifier ;
 | continue identifier ;
 | block

block → { vardecls stmts } optionalSemi

optionalSemi → ;
 | λ

type → int
 | char
 | bool

actuals → someActuals
 | λ

someActuals → expr
 | expr , someActuals

readlist → name , readlist
 | name

printlist → expr , printlist
 | expr

expr → expr || term
 | expr && term
 | term

term → factor < factor
 | factor > factor

 | factor <= factor
 | factor >= factor
 | factor == factor
 | factor != factor
 | factor

factor → factor + pri
 | factor - pri
 | pri

pri → pri * unary
 | pri / unary
 | unary

unary → ! unary
 | type (expr)
 | unit

unit → name
 | identifier (actuals)
 | intlit
 | charlit
 | strlit
 | boollit
 | (expr)

name → identifier
 | identifier [expr]

 CSX_go Grammar

Using JavaCUP to Build a Parser
You will use JavaCUP, a Java-based parser generator, to build your CSX_go parser. You’ll

have to rewrite the CSX_go grammar into the format required by JavaCUP. This format is
defined in the “CUP User’s Manual,” available in the “Useful Programming Tools” section of
the class homepage. A sample CUP specification corresponding to CSX_lite (a small subset of
CSX_go) may be found in
~raphael/courses/cs541/public/proj3/startup/csx_lite.cup.

Once you’ve rewritten the CSX_go grammar we’ve provided and entered it into a file (say
CSX_go.cup), you can test whether the grammar can be parsed by a CUP-generated parser.
Run

java java_cup.Main < CSX_go.cup

Java CUP might generate a message
*** Shift/Reduce conflict found in state #XX

where XX is a number that depends on the exact structure of the grammar you enter. This
message indicates that the grammar we’ve provided is almost, but not quite, in a form acceptable
to CUP. This problem is a common occurrence. Most context-free grammars that are used to
define programming languages can be handled by JavaCUP, sometimes after minor
modification.

You may rewrite the CSX_go grammar in any way you wish, adding or changing productions
and nonterminals. You must not change the CSX_go language itself (the sequences of tokens
considered valid).

Once your grammar is in the right format and generates no error messages, JavaCUP creates
a file parser.java that contains the parser it has generated. It also creates a file
sym.java, which contains the token codes the parser is expecting. Use sym.java with
JLex in generating your scanner to guarantee that both the scanner and parser use the same token
codes.

The generated parser tables are in parser.java. Compiling this file generates some
warnings that you may ignore. It calls Scanner.next_token() to get tokens. Class
Scanner (provided by us) creates a Yylex object (a JLex scanner) and calls yylex() as
necessary to provide tokens. Be sure to call Scanner.init(in) prior to parsing with in,
the Reader you wish to scan from.

If there is a syntax error during parsing, parse() throws a java.lang.Exception;
be sure to catch it. It also calls syntax_error(token) to print an error message. We
provide a simple implementation of syntax_error in lite.cup (the parser specification
for CSX_lite). You may improve it if you wish (perhaps to print the offending token). You
should test your parser on a variety of simple inputs, both valid and invalid, to verify that your
parser is operating correctly.

Generating Abstract Syntax Trees
You should consider the material in this section a hint, not a requirement.
So far, your parser reads input tokens and determines whether they form a syntactically cor -

rect program. You now must extend your parser so that it builds an abstract syntax tree (AST).
The AST will be used in the next projects by the type checker and code generator to complete
compiling a CSX_go program.

Abstract syntax tree nodes are defined as Java classes, with each particular kind of AST node
corresponding to a particular class. The AST node for an assignment statement corresponds to
the class AsgNode. The classes comprising AST nodes are not independent. All of them are
direct or indirect subclasses of the following:

abstract class ASTNode {
int lineNum;
int colNum;

static void genIndent(int indent){ ... }

ASTNode(){lineNum=-1; colNum=-1;}
ASTNode(int l,int c){lineNum=l; colNum=c;}
boolean isNull(){return false;}; // Is this node null?
void unparse(int indent){};

};
ASTNode is the base class from which all other classes for AST nodes descend. ASTNode

is an abstract superclass; objects of this class are never created. Its definition serves to define
the fields and methods shared by all subclasses.

ASTNode contains two instance variables: lineNum and colNum. They represent the
line and column numbers of the tokens from which the AST node was built. Thus for AsgNode,
the AST node for assignment statements, lineNum and colNum record the position of the
assignment’s target variable, since that’s where the assignment statement begins.

ASTNode also has two constructors that set lineNum and colNum. These constructors

are called by constructors of subclasses to set these two fields (to either explicit or default
values).

The method isNull is used to determine if a particular AST node is “null”; that is, if it
corresponds to l. Only special “null nodes” define their isNull function to return true; other
AST nodes inherit the definition in ASTNode.

The method unparse() is used to “unparse” an AST node — that is, to print it out in a
clear human-readable form. Unparsing is discussed below. Each subclass provides its own
definition of unparse(); the default — to print nothing — is usually inappropriate. Thus the
AsgNode’s unparse() defines how assignment statements are to be printed. Each kind of
AST node should have its own unparsing rules. Member genIndent() is a utility routine
used by unparse().

An example of an AST node we might build while parsing a CSX_go program is:

class ProgramNode extends ASTNode {
ProgramNode(IdentNode id, MemberDeclsNode m,

int line, int col){ ... }
void unparse(int indent) { ... }
private IdentNode packageName;
private List<VarDeclNode> varList;
private List<FuncDeclNode> funcList;

};

ProgramNode corresponds to the start symbol of all CSX_go programs, program.
ProgramNode is a subclass of ASTNode, so it inherits all of ASTNode’s fields and
members. It contains a constructor, as do all AST nodes. This constructor sets the private
members of the class. It also calls ASTNode’s constructor to set lineNum and colNum. Its
unparse() provides a definition of unparsing appropriate to the program structure the class
represents. Since ProgramNode corresponds to a non-l construct, it is content to inherit and
use ASTNode’s definition of isNull.

ProgramNode also contains three private fields, which correspond to the subtrees a
ProgramNode contains: the name of the project (an identifier), and the declarations (variables
and functions) within the program. The type declarations tell us precisely the kind of subtrees
that are permitted. If we try to assign a subtree corresponding to an integer literal to
className, we get a Java type error, because the AST node corresponding to integer literals
(IntLitNode) is different from the type that packageName expects (which is
IdentNode).

This precaution explains why we’ve created so many different classes for AST nodes. Each
different kind of node has its own class, and it is wrong to assign a class corresponding to one
kind of AST node to a field expecting a different kind of AST node.

We list below (in Table 1) all the AST classes you might use. For each class, we list the field
names in that class and the type of each field. This type is usually a reference to a particular AST
class object.

 In some cases, a field may reference a special kind of AST node, a “null node,” that
corresponds to l. That is, if a subtree is empty, we use a null node to represent that fact. For
example, in a function, declarations are optional. As you might expect, null nodes have no
internal fields. They simply serve as placeholders so that all subtrees that are expected are always
present. Null nodes represent null subtrees. Java’s strict type rules make it necessary to create
several different classes for null nodes. However, it is easy to reference a null node of the correct
type. If you want a null node that can be assigned to a field of class XXX, then XXX.NULL is
the null node you want. For example, if you want to assign a null node to a field expecting a
StmtNode, then StmtNode.NULL is the value you should use. It is better to reference a
null node than to store a null value. If all object references in AST nodes point to something

then we never have to check a reference before we use it.
Some AST nodes are always leaves (e.g., IdentNode); others have one or more subtrees.

Thus the AsgNode has two subtrees, one for the name being assigned to (target) and the
other for the expression being assigned (source).

The AST nodes IdentNode, IntLitNode, CharLitNode and StrLitNode do
not have subtrees, but do contain the string value, integer value, character value, or string value
returned by the scanner (in token objects). Leaf nodes like TrueNode and BoolTypeNode
have no fields (other than lineNum and colNum inherited from their superclass). For such
nodes, we need no information beyond their class.

Besides astNode, we use a number of other abstract superclasses to build our AST. One of
these is StmtNode. We never actually create a node of type StmtNode. But then why do we
bother to define it?

Sometimes we want to be able to reference one of a number of kinds of AST nodes, but not
just any node. Thus in a StmtNode we want to reference any kind of AST node corresponding
to a statement, but not AST nodes corresponding to non-statements. We solve this problem by
declaring a reference to have type StmtNode. We make all classes corresponding to
statements (like AsgNode or ReadNode) subclasses of StmtNode. The rules of Java say
that a reference to a class S may be assigned an object of any subclass of S. A subclass of S
contains everything S does (and perhaps more). Thus an AsgNode may be assigned to a
variable expecting a StmtNode without error. However, an AST node that is not a subclass of
StmtNode (e.g., BoolTypeNode) may not be assigned to a variable expecting a
StmtNode.

Although the set of suggested class definitions in ast.java looks complex, the main
benefit of using them is that it becomes very difficult to insert AST nodes in the wrong place. If
you try, you’ll get an error message complaining that the type of node you are trying to assign to
an AST node’s field is invalid. In Table 2, below, we list all the AST nodes that might appear in
ast.java and their superclass.

Table 1. Suggested classes for AST Nodes in CSX_go

Java class Fields Used Type of Fields Null node
allowed?

ProgramNode packageName

varList

funcList

IdentNode

List<VarDeclNode>

List<FuncDeclNode>

No
No
No

VarDeclNode varName

varType

initValue

IdentNode

TypeNode

ExprNode

No
No
Yes

ConstDeclNode constName

constValue

IdentNode

ExprNode

No
No

ArrayDeclNode arrayName

elementType

arraySize

IdentNode

TypeNode

IntLitNode

No
No
No

IntTypeNode

BoolTypeNode

CharTypeNode

VoidTypeNode

FuncDeclNode name IdentNode No

args

returnType

body

List<ArgDeclNode>

TypeNode

BlockNode

Yes
No
No

ArrayArgDeclNode argName

elementType

IdentNode

TypeNode

No
No

ValArgDeclNode argName

argType

IdentNode

TypeNode

No
No

AsgNode target

source

NameNode

ExprNode

No
No

IfThenNode condition

thenPart

elsePart

ExprNode

BlockNode

BlockNode

No
No
Yes

ForNode label

condition

loopBody

IdentNode

ExprNode

BlockNode

Yes
No
No

ReadNode targetVar

moreReads

NameNode

ReadNode

No
Yes

PrintNode outputValue

moreDisplays

ExprNode

PrintNode

No
Yes

CallNode methodName

args

IdentNode

ArgsNode

No
Yes

ReturnNode returnVal ExprNode Yes
BreakNode label IdentNode No
ContinueNode label IdentNode No
BlockNode decls

stmts

List<VarDeclNode>

List<StatementNode>

Yes
No

ArgsNode argVal

moreArgs

ExprNode

ArgsNode

No
Yes

StrLitNode strval String No
BinaryOpNode leftOperand

rightOperand

operatorCode

ExprNode

ExprNode

int

No
No
No

UnaryOpNode operand

operatorCode

ExprNode

int

No
No

CastNode resultType

operand

TypeNode

ExprNode

No
No

FuncCallNode funcName

funcArgs

IdentNode

ArgsNode

No
Yes

IdentNode idname String No
NameNode varName IdentNode No

subscriptVal

ExprNode

Yes
IntLitNode intval int No
CharLitNode charval char No
TrueNode none

FalseNode none

null nodes

(many kinds)

none

Table 2 Classes Used in AST Nodes and Their Superclasses

AST Node Superclass AST Node Superclass
ArgDeclNode ASTNode VoidTypeNode TypeNode

ArgsNode ASTNode ArrayArgDeclNode ArgDeclNode

ArrayDeclNode DeclNode AsgNode StmtNode

BinaryOpNode ExprNode BlockNode StmtNode

BoolTypeNode TypeNode BreakNode StmtNode

CallNode StmtNode CastNode ExprNode

CharLitNode ExprNode CharTypeNode TypeNode

ProgramNode ASTNode ConstDeclNode DeclNode

ContinueNode StmtNode FuncDeclNode DeclNode

ExprNode ASTNode FalseNode ExprNode

FuncCallNode ExprNode VarDeclNode DeclNode

IdentNode ExprNode IfThenNode StmtNode

IntLitNode ExprNode IntTypeNode TypeNode

ForNode StmtNode UnaryOpNode ExprNode

ValArgDeclNode ArgDeclNode NameNode ExprNode

nullNode ASTNode PrintNode StmtNode

ReadNode StmtNode ReturnNode StmtNode

StmtNode ASTNode StmtsNode ASTNode

StrLitNode ExprNode TrueNode ExprNode

TypeNode ASTNode

Getting Started
We’ve placed skeleton files for the project in ~raphael/-

courses/cs541/public/proj3/startup. Look at file ast.java. This file
compiles to a large number of .class files (one for each kind of AST node, as well as others).
To keep your project directory manageable, the Makefile places all .class files in a
subdirectory, classes/. Be sure your CLASSPATH environment variable includes this
directory. The Java code in the skeleton files is not up to standard; you should use a style
checker to improve the code.

Building ASTs in Java CUP

We’ll need to build ASTs for CSX_go programs we have parsed. One of the reasons we’re
using JavaCUP to build our parser is that it’s easy to build ASTs. JavaCUP allows us to embed
actions, in the form of Java code, in the productions JavaCup parses. When parse() matches a
production containing an action it automatically executes that action. For example the following
rule (drawn from lite.cup)

stmt ::= ident:id ASG exp:e SEMI
{: RESULT =

new AsgNode(id, e, id.lineNum, id.colNum);
:}

specifies the production stmt → ident = expr ; . Whenever parse() matches this
production, it calls the constructor AsgNode (since AsgNode corresponds to assignment
statements). The constructor for AsgNode takes four parameters: ASTs nodes corresponding to
the source and target of the assignment, and a line and column number to associate with the
assignment. The special suffixes :id and :e represent references (automatically maintained by
the parser) to the ASTs for the ident and expr that it has already parsed. These ASTs have
already been built by the time this production is matched. We define the line and column of the
assignment to be the line and column of the leftmost symbol in the assignment, which is the
ident. Since id references the AST node built for ident, id.lineNum represents the line
number already stored for the identifier.

After astNode builds a new AST node for the assignment and links in its subtrees, the
parser assigns its result to RESULT, which is a special symbol that represents the left-hand side
non-terminal (stmt). As it matches productions, the parser builds and merges AST subtrees into
progressively larger trees. Finally, when it matches the first production (corresponding to an
entire program), the parser returns the root of the complete AST. The bookkeeping required to
maintain AST pointers as the parser matches productions is automatic.

Information placed in tokens returned by the scanner can also be easily accessed. A suffix
placed after a terminal symbol allows the token object corresponding to the terminal symbol to
be accessed. Thus the rule

exp ::= exp:l PLUS:op ident:r
{: RESULT = new BinaryOpNode(l, sym.PLUS, r,

op.lineNum, op.colNum); :}

uses the lineNum and colNum values of the PLUS token (extracted as op.lineNum and
op.colNum) in constructing a BinaryOpNode that represents the AST for the addition
operation.

The objects referenced for each terminal and non-terminal symbol in the grammar are
defined by terminal and non terminal directives. The lines

terminal CSXIdentifierToken IDENTIFIER;
terminal CSXToken SEMI, LPAREN, RPAREN, ASG, LBRACE, RBRACE;

tell Java CUP that the tokens for ';', '(', ')', etc. are all instances of class CSXToken,
whereas the IDENTIFIER token is an instance of class CSXIdentifierToken. The lines

non terminal csxLiteNode prog;
non terminal StmtsNode stmts;

say that the nonterminal prog references class csxLiteNode, whereas the nonterminal
stmts references StmtsNode.

The function parse() returns an object of type Symbol. For successful parses, it is the
start symbol (program) of the derivation. The value field of the returned Symbol contains
the AST corresponding to program.

Unparsing
For grading, testing and debugging purposes, it is necessary to display the abstract syntax tree

your parser creates. A convenient way to do so is to create a member function unparse(int
indent) that prints out the node’s structure in conventional (text-oriented) form. (indent is
the number of tabs to indent prior to printing the node’s structure.) unparse “pretty prints”
the construct, adding new lines and tabs as appropriate to create a pleasing and easily-readable
listing. For constructs that are forced to begin on a new line (like statements and declarations)
you should print a line number at the beginning of the construct’s unparsing, using the
lineNum value stored in the AST node. The line numbers printed might not be consecutive,
since they correspond to the original input text. Moreover, some parts of a construct that appear
on a new line (like the '}' at the end of the class definition) get a line number that appears “out of
order” because the line number stored with an AST node corresponds to where the construct
begins.

Each abstract syntax tree node is associated with a production that can be viewed as a pattern
that specifies how a node is to be displayed. For example given an AsgNode, which we always
print on a new line, we first print out the line number (using the node’s lineNum value) and
indent using unparse()’s indent parameter. We then call target.unparse(0) (to
print the target variable, without indenting), print '=', call source.unparse(0) (to print the
source expression, without indenting), and finally print ';'.

For IntLitNodes, we print intval. For StrLitNodes, we print strval (the full
string representation, with quotes and escapes). For CharLitNodes, print charval as a
quoted character in fully escaped form. For IdentNodes, the unparser uses idname, which
is the text of the identifier.

Abstract syntax trees for expressions contain no parentheses, since the tree structure encodes
how operands are grouped. When expressions are unparsed, add explicit parentheses to guarantee
that expressions are properly interpreted. Hence A+B*C should be unparsed as (A+(B*C)).
(Fancier unparsers that only print necessary parentheses are a bit harder to write. An unparser
that prints parentheses only when really necessary gets extra credit.)

What You Must Do
This project step is not nearly as hard as it looks, because you have JavaCUP to help you

build your parser. Still, it helps to see an example of all the pieces you’ll need to complete.
We’ve created a small subset of CSX_go, called CSX_lite, that’s defined by the following
productions:

program → { stmts }
stmts → stmt stmts

| l
stmt → id = expr ;

| if (expr) stmt
expr → expr + id

| expr - id
| id

 CSX_lite Grammar

This simple subset contains no declarations, only an assignment and if statement, and
expressions involving only +, - and identifiers. Complete specifications, parsers, AST builders
and unparsers for CSX_lite may be found in ~raphael/-
courses/cs541/public/proj3/startup. Just type

make test

to build a complete parser for CSX_lite and then test it using a simple source program.
You should look at what we’ve provided to make sure you understand how each step of the

project works for CSX_lite. It builds ASTs using calls to constructors as illustrated in
csx_lite.cup. Once the parser matches an individual production, it calls a constructor for
the corresponding AST node. You should substitute your scanner from Project 2, by replacing
csx_lite.jlex with your csx_go.jlex file.

Unparsing functions, one for each type of AST node, are member functions in ast.java.
Each such routine is fairly simple — it prints the information in the node in nicely formatted
form, with recursive calls to unparse() to unparse subcomponents.

Once you’re clear on what’s going on, add a single simple feature like a variable declaration
or a for loop. First, add the appropriate productions to the JavaCUP specification. Build the
parser and verify that you get no syntax errors when you parse source files containing the new
construct. Next, add constructor actions to your specification to build ASTs for the construct
you’ve added. Then define unparse() in the nodes you’ve built to unparse ASTs for this
construct. Now verify that the ASTs you build are correct by looking at the unparsing you
generate.

After you have added a few constructs, you should have a good understanding of all the steps
involved. Then you can incrementally add the complete set of CSX_go productions to your CUP
specification, eventually creating a complete CSX_go parser and unparser.
Error Handling

In the case of syntax errors, JavaCUP calls syntax_error() to print an error message
and then throws a SyntaxErrorException, indicating abnormal termination. The caller
of your parser should catch this exception, which indicates that because of errors it cannot build
an AST.

JavaCUP does provide a simple error recovery mechanism (using “error” markers). This
feature is described in §5 of the CUP manual. If you wish, you may experiment with syntactic
error recovery after your parser is fully operational. It is not necessary to continue parsing after
parse() discovers a syntax error.
What to Hand In

As input, your parser takes a text-file name on the command line, which it passes to the
scanner to read and build tokens for the parser. You should test your parser on syntactically valid
and invalid programs. For invalid programs, your error messages should be clear and meaningful.
For valid programs, you should show a readable, line-numbered, unparsed listing of the resulting
abstract syntax tree. Turn in a your parser module, your CUP specification, and a listing of your
parser’s execution on a variety of syntactically valid and invalid programs.

If you wish to claim extra credit, clearly state (in the README file) what you’ve added, and
include examples of its operation. In particular, if you implement labeled for statements,
break and continue, mention that fact.

