
CS541 class notes

Raphael Finkel

December 8, 2021

1 Intro

• Class 1, 8/23/2021

• Handout 1 — My names

• Mr. / Dr. / Professor / —
• Raphael / Rafi / Refoyl
• Finkel / Goldstein

• Plagiarism — read aloud from handout 1

• Assignments on web. The first is very easy, the rest not, so start
immediately.

• E-mail list: cs541001@cs.uky.edu; instructor uses to reach
students.

• All students have MultiLab accounts, although you may use any
computer you like to do assignments.

• Textbook — It is important that you read ahead.

• Undergraduates — grading is 5% more lenient.

2 Overview of compilers: Chapter 1

• A compiler language is an example of a software tool.

Implementation

Use (client)

Spec

Programmer

Compiler

Language

1

cs541001@cs.uky.edu

CS541 Fall 2021 2

• The compiler’s job.

libraries

compiler

linker

byte code

P−code
interpreter

hardware

compiler

Basic

Perl, Pascal, Java, .NET

machine−specific

machine−independent

just−in−time

slow

load−decode−execute

fast

load−decode−execute
machine code

relocatable object code

Program in

source language

resolved machine code

relocatable object code

executable image

• Compiler outputs

• Pure machine code: specific to a given architecture, no runtime
linking. Example: Linux kernel.
• Augmented machine code: specific to a given architecture and

operating system. Example: C programs written for Linux, which
may make OS calls.
• Virtual machine code, interpreted or compiled on the fly dur-

ing execution. Examples: Java (JVM), C# (.NET). Advantages:
portability, code size Our assignments use this output type.

• Output representations

• Assembler: good for cross-compilation; avoids having the com-
piler resolve all references. Modular compilation. Our assign-
ments use this output format.
• Relocatable binary: defers resolving external references. Modu-

lar compilation. Very common; used by Java and C.
• Absolute binary: all references resolved.

3 The organization of a compiler

• Class 2, 8/25/2021

• Figure 1.4 page 15

CS541 Fall 2021 3

• Scanner: reads the source program and constructs a stream of
tokens, removing comments, and processing directives such as
listing.

• Example: if (a < 39) { is an input string of characters.
The associated output tokens are if:reserved, (:symbol,
a:identifier, <:operator, 39:integer,):symbol, {:symbol.
• The scanner can discover and report errors, such as 39f.
• We describe tokens by regular expressions.
• We recognize tokens by using a deterministic finite automaton

(DFA). That automaton is built for us by a scanner generator
tool such as lex, flex, or jflex. Our assignments use jflex.

• Parser: reads the token stream and creates an abstract syntax tree
(AST), verifying syntax and possibly repairing syntax errors.

• Example: given the tokens above, the tree fragment would be:

Identifier Integer

Expression Statement

a 39

<

Statement

Statement

if

• The parser can discover and report errors, such as] instead of
) in the example.
• We describe the syntax by a context-free grammar (CFG).
• The table that drives the scanner is built for us by a parser

generator tool such as yacc, bison, or javaCUP. Our
assignments use javaCUP.

• Semantics checker: navigates through the AST and verifies that
variables are declared, that types are used consistently, and that
other semantic constraints (reachability, consistent use of
exceptions) are met.

• Class 3, 8/27/2021

CS541 Fall 2021 4

• For instance, if a in the example is not of a numeric type, the
type checker can report an error.
• It can also modify the AST, for instance, introducing

type-conversion nodes, if, for instance, a is a short integer, in
which case it might be converted to a regular integer.

• Code generator: navigates through the AST and generates either an
intermediate representation (IR) or some other representation of
executable code. Our IR will be assembler for Java bytecode.

• Optimizer: Analyzes the IR to improve the code. There are many
forms of optimization, such as simplifying expressions, moving
code, re-using values, eliminating trivial arithmetic, replacing
sequences of instructions. We will not cover optimization in this
class.

• Code generator: Maps the IR to target machine code. Our
assignments use Jasper to generate the target machine code: Java
bytecode.

4 Programming language considerations

• Successful designers of programming languages often have strong
backgrounds in constructing compilers. If it can’t be compiled, it’s
not very useful.

• Many features of modern languages require special care.

• passing by name (obsolete since Algol 60; requires thunks)
• dynamic-sized arrays (requires runtime type descriptors)
• nested name scopes (require static chains)
• anonymous functions, first-class functions (as in Python and

JavaScript, requiring closures)
• multiple-yield iterators (as in Python and JavaScript, requiring

special stack manipulation)
• automatic reclamation of object store (requires garbage collec-

tion).

CS541 Fall 2021 5

5 Computer architecture considerations

• How many registers? What operations use them? How many regis-
ter classes?

• Some operations can be very expensive: virtual method dispatch,
dynamic heap access, reflective programming, exceptions, threads.

• The effect of memory architecture, such as paging and caches, is dif-
ficult to present to programmers but is significant.

6 Specialty compilers

• Debugging support, including participation in an integrated devel-
opment environment (IDE).

• Highly optimizing compilers.

• Retargetable compilers.

7 The ac (adding calculator) language: Chapter 2

• Class 4, 8/30/2021

• This is a very simple language that lets us explore the components
of a compiler.

• Components

• Types: integer and float
• Keywords: f, i, p
• Variables: lowercase Roman single letters, excluding keywords

• Context-free grammar (CFG), expressed in Backus-Naur Form
(BNF) Figure 2.1 page 33

CS541 Fall 2021 6

• Parse tree for f b i a a = 5 b = a + 3.2 p b $
Figure 2.4 page 37

8 The scanner

• Translates a stream of characters (as above) into a stream of tokens.

• A token has a type (such as operator or reserved) and a semantic value
(such as plus or print).

CS541 Fall 2021 7

• It’s a matter of choice whether each operator has its own type, in
which case there is no need for semantic values.

• Likewise, one can choose (1) reserved words each have their own
type, or (2) they are of type reserved with a semantic value (their
spelling), or (3) that they are of type id with a semantic value.

• Class 5, 9/1/2021

• Hard-coded example Figure 2.5 page 40 uses peek() and
advance().

1 Token scanner(Stream<char> cs) throws LexicalException {
2 while (isSpace(peek(cs)) advance(cs);
3 if (eof(cs)) return(eof);
4 if (isDigit(peek(cs))) return(scanDigits(cs));
5 char c = advance(cs);
6 switch (c) {
7 case {’a’ .. ’z’} - {’i’, ’f’, ’p’}:
8 return(new Token(id, c));
9 break;

10 case ’f’: return(floatDecl); break;
11 case ’i’: return(intDecl); break;
12 case ’p’: return(print); break;
13 case ’=’: return(assign); break;
14 case ’+’: return(plus); break;
15 case ’-’: return(minus); break;
16 default: throw LexicalException;
17 } // switch
18 } // scanner
19

20 Token scanDigits(Stream<char>cs) {
21 // the returned value is a string.
22 Token answer = new Token(inum, "");
23 while (isDigit(peek(cs))) answer.value += advance(cs);
24 if (peek(cs) != ’.’) return(answer);
25 answer.type = fnum;
26 answer.value += advance(cs);
27 while (isDigit(peek(cs))) answer.value += advance(cs);
28 return(answer);
29 } // scanDigits

CS541 Fall 2021 8

• Production-quality scanners are constructed automatically from
regular expressions. We will discuss them in the next chapter.

• This parse requires that we specify the syntax of tokens.
Figure 2.3 page 36

9 Formal language hierarchy

Language type Formalism Automaton
Regular Regular expressions Finite-state automaton (FSA)
Context-free CFG (like BNF) Push-down automaton (PDA)
Context-sensitive CSG Linear-bounded automaton (LBA)
Type 0 various Turing machine

10 The parser

• Translates a stream of tokens into an abstract syntax tree (AST)

• The simplest method is recursive descent. Each nonterminal has its
own procedure. By looking ahead (using peek()), each procedure
can decide which other procedures to call.

• Parsing statements in ac: Figure 2.7 page 42

CS541 Fall 2021 9

1 void stmt(Stream<Token> ts) throws ParserException {
2 if (peek(ts) == id) {
3 match(ts, id);
4 match(ts, assign);
5 val();
6 expr();
7 } else if (peek(ts) = print) {
8 match(ts, print);
9 match(ts, id);

10 } else {
11 throw ParserException;
12 }
13 } // stmt

• One needs to discover the predict sets for each alternative
production that has the same left-hand side. For Stmt, the predict
set for assignment is {id}.
• One needs to discover the follow sets for some productions that can

derive λ in order to compute the predict set for their parent
productions.

• Class 6, 9/3/2021

• Given the grammar in Figure 2.1 page 33, notes p. 6 , trace the
parse of

f b i a a = 5 b = a + 3.2 p b

11 Abstract syntax trees

• Instead of using the parse tree, we prefer an abstraction of the parse
tree: the abstract syntax tree.

• It omits punctuation.

• Declarations store the identifier and its type in a single node.

• It represents the order of executable statements and expressions.

• Assignment nodes have two children: the identifier (the left-hand
side) and the expression (the right-hand side).

• Binary operations have two children.

CS541 Fall 2021 10

• The print statement is a single node that includes the name of the
identifier to be printed.

• Compare the parse tree Figure 2.4 page 37, notes p. 6

with this AST (Figure 2.9 on page 44)

• More appropriate in a Java implementation:

1 class ProgramNode {
2 List<DeclNode> Declarations;
3 List<StmtNode> Statements;
4 }

12 What scanning and parsing cannot do

• Class 7, 9/10/2021

• Enforce strong typing constraints.

• Disambiguate the meaning of some constructs, like x.y.z in Java,
which might be package-class-field or variable-field-field or many
other possibilities.

• Determine the meaning of an overloaded operator.

CS541 Fall 2021 11

13 Semantic analysis

• Construct a symbol table for declarations and name scopes. In the
case of ac, it can be very simple: an array indexed by ’a’ .. ’z’.
Each element has a type field, initialized to unknown.

• Enforce type consistency.

• Walk the tree recursively, using visitor methods as shown in
Figure 2.12 on page 49 .

• Insert to and query the symbol table as necessary.
• Modify the type field to nodes as a declaration is visited.
• Modify the AST to introduce type conversion (in our case,

widening) nodes.

CS541 Fall 2021 12

•

1 class Declaration {
2 Id id; Type type;
3 void check() {
4 Symb symb = lookup(Id.name);
5 if (symb != null) error("redeclaration");
6 insert(Id.name, type); // put new symb in symbol table
7 } // check
8 } // Declaration
9 class Expr {

10 Type type;
11 abstract void check();
12 } // Expr
13 class Operation extends Expr {
14 Expr op1, op2;
15 void check() {
16 op1.check();
17 op2.check();
18 if (op1.type == op2.type) {
19 // no conversion
20 } else if (op1.type == int) {
21 op1 = new ToFloat(op1);
22 } else {
23 op2 = new ToFloat(op2);
24 }
25 type = op1.type;
26 } // check
27 } // Operation
28 class Id extends Expr {
29 char name;
30 void check() {
31 Symb symb = lookup(name);
32 if (symb == null) error("undeclared variable");
33 type = symb.type;
34 } // check
35 } // Id

CS541 Fall 2021 13

14 Generating code

• In our case, the code is calculator buttons.

• The calculator has registers; each is a single letter, such as a.
• One can load or store a register with the L and S buttons.
• One sets the precision with the K button.
• One prints with the P button.

• We visit the AST recursively to generate code, invoking codeGen()
at each node. Figure 2.14 on page 52

CS541 Fall 2021 14

1 class Program {
2 List<Declaration> decls;
3 List<Statement> statements;
4 void codeGen() {
5 for (Statement statement : statements) {
6 statement.codeGen();
7 }
8 } // codeGen
9 } // Program

10 class Assign extends Statement {
11 Id lhs; Expr rhs;
12 void codeGen() {
13 rhs.codeGen();
14 emit("S"); // store
15 emit(lhs.name);
16 emit("0 K"); // to integer mode
17 } // codeGen
18 } // Assign
19 class Operation extends Expr {
20 Expr op1, op2; char operation;
21 void codeGen() {
22 op1.codeGen();
23 op2.codeGen();
24 emit(operation);
25 } // codeGen
26 } // Operation
27 class Id extends Expr {
28 char name;
29 void codeGen() {
30 emit("L"); // load
31 emit name;
32 } // codeGen
33 } // Id
34 class Constant extends Expr {
35 String value;
36 void codeGen() {
37 emit(value);
38 } // codeGen
39 } // Constant
40 class ToFloat extends Operation {
41 Expr operand;
42 void codeGen() {
43 operand.codeGen();
44 emit("5 k"); // 5 significant figures
45 } // codeGen
46 } // ToFloat

CS541 Fall 2021 15

• Trace code generated for the AST on p. 10. See Fig 2.15 p. 53 .

15 Overview of scanner: Chapter 3

• This chapter introduces a formal, systematic approach to building
scanners, instead of the hard-coded version of Chapter 2.

• Short story: tokens are defined by regular expressions, which are
encoded into a non-deterministic finite automaton (NDFA), which
can be automatically converted to a deterministic finite automaton
(DFA), which can be described as a table of state×input→action×state,
which can be executed by a simple program.

• Shorter story: write a set of regular expressions and let a scanner
generator do the rest of the work. This method is an example of
declarative programming.

• There are some complexities.

• Escaped double-quote within a string literal.
• Over-eagerness leading to error, such as 3..4 in Pascal, or ’a’

in Ada, or DO 200 I = 1.10 in Fortran
• The scanner needs to be very fast. Scanning tends to be the most

time-consuming step of compilation, partly because of the cost
of reading the source code (with all its inclusions).

16 Regular expressions

• This material should be a review.

• A regular expression defines a language, which is a set (possibly in-
finite) of strings over some alphabet Σ.

• Class 8, 9/13/2021

• A regular expression is built recursively on the following
components.

• ∅.
• λ.
• individual letters in Σ. Example: a

CS541 Fall 2021 16

• the concatenation of regular expressions. The concatenation
operator is usually omitted. Example: abca.
• the alternation of regular expressions. The alternation operator

is written |.
• closure operations: the Kleene closure ∗ and the positive

closure +.
• parentheses for grouping.
• If you want to use a metacharacter such as |, ∗, +, (,) in a

regular expression, use some sort of escape character (typically
\) before it.

• A regular expression generates a set of strings. That set is called the
language generated by the regular expression.

• ∅ generates no strings at all.
• λ generates the empty string.
• An individual letter generates the string containing just that

letter.
• The concatenation of two regular expressions A and B

generates all two-part strings, whose first part is a string
generated by A and whose second part is a string generated by
B.
• The alternation of two regular expressions A and B generates

all strings generated by A and all strings generated by B.
• The expression A∗ generates the empty string and (recursively)

all strings generated by AA∗. The expression A+ generates all
strings generated by AA∗.

• Useful facts

• The set of strings generated by a regular expression is called a
regular set. Every regular set can be generated by some
regular expression.
• Every finite set of strings is a regular set. At worst, one can just

build a regular expression that enumerates them with
alternations.
• Any regular set has multiple regular expressions that generate

it. For instance, (ab)∗ can also be written λ|ab|abab(ab)∗.

• Notations

CS541 Fall 2021 17

• If A is a set of characters, we use not(A) to denote Σ− A, the
characters not in A.
• If S is a set of strings, we use not(S) to denote all (finite) strings

except those in S. It turns out that if S is a regular set, so is
not(S).
• If k ≥ 0 is a constant integer and S is a set of strings, then Sk is

the set of strings formed by concatenating k strings (possibly
different) from S. If S is a regular set, so is Sk.

17 Useful examples

• a Java comment that goes to the end of the line: //(not(←↩))∗←↩
(Here, Σ is the set of all 16-bit Unicode characters and ←↩ is a line
separator, which is platform-dependent.)

• a decimal literal: D+.D+ whereD is shorthand for (0|1|2|3|4|5|6|7|8|9).

• an integer literal, optionally signed: (+| − |λ)D+.

• a comment delimited by ## markers: ##((#|λ)not(#))∗##

• a Fortran-like real literal, which requires digits only on one side (ei-
ther one) of the decimal point: (D+.D∗)|(.D+)

• an identifier, with underscores, but not adjacent, frontal, or terminal
ones: L(L|D)∗((L|D)+)∗, or (Daniel Michler) L((|λ)(L|D))∗.

18 Hashing

• Class 9, 9/15/2021

• Very popular data structure for searching.

• Cost of insertion and of search is O(log n), but only because n
distinct values must be log n bits long, and we need to look at the
entire key. If we consider looking at the key to be O(1), then
hashing is expected to be O(1).

• Java provides an interface Map<K,V> with several
implementations: HashMap<K,V> (recommended),
Hashtable<K,V> (synchronized, so more expensive) and others
for specialty purposes. The key type K and value type V can be any
classes, although String and String are typical.

CS541 Fall 2021 18

• Idea: find the value associated with key k at A[h(k)], where

• h() maps keys to integers in 0..s− 1, where s is the size of A[].
• h() is “fast”. (It generally needs to look at all of k, though.)

• Example

• k = student in class.
• h(k) = k’s birthday (a value from 0 .. 365).

• Difficulty: collisions

• Birthday paradox: Prob(no collisions with j people) =
365!

(365−j)!365j

• This probability goes below 1
2

at j = 23.
• At j = 50, the probability is 0.029.

• Moral: One cannot in general avoid collisions. One has to deal with
them.

• A good hash function

• Desiderata

• Uniform: Equally likely to give any value in 0..s− 1.
• Spreading: similar inputs→ dissimilar outputs, to prevent

clustering. Only important for open-addressing conflict
resolution.
• Fast.

• Several suggestions, assuming that k is a multi-word data
structure, such as a string.

• Add (or multiply) all the words of k, discarding overflow,
then mod by s. It helps if s = 2j , because mod is then
masking with 2j − 1.
• XOR the words of k, shifting left by 1 after each, followed

by mod s.

• Wisdom: it doesn’t make much difference what hash function
you choose. It is not even necessary to look at all of k. Just
make sure that h(k) is not constant (except for testing collision
resolution).

• Dealing with collisions: open addressing

CS541 Fall 2021 19

• Overview

• The following methods store all items in A[] and use a
probe sequence. If the desired position is occupied, some
other position is open to consider instead.
• They tend to suffer from clustering.
• Deletion is hard, because removing an element can

damage unrelated searches. Deletion by marking is the
only reasonable approach.

• Perfect hashing: if you know all n values in advance, you can
look for a non-colliding hash function h. Finding such a
function is in general quite difficult, but compiler writers do
sometimes use perfect hashing to detect keywords in the
language (like begin and for).
• Additional hash functions. Have a series of hash functions,
h1(), h2(),

• insertion: key probing with different functions until an
empty slot is found.
• searching: probe with different functions until you find the

key (success) or an empty slot (failure).
• You need a family of independent hash functions.
• The method is very expensive when A[] is almost full.

• Linear probing. Probe p is at h(k) + p (mod s), for p = 0, 1,

• Terrible behavior when A[] is almost full, because chains
coalesce. This problem is called “primary clustering”.

• Quadratic probing. Probe p is at h(k) + p2 (mod s), for
p = 0, 1,

• When does this sequence hit all of A[]? Certainly it does if
s is prime.
• We still suffer “secondary clustering”: if two keys have the

same hash value, then the sequence of probes is the same
for both.

• Add-the-hash rehash. Probe p is at (p+ 1) · h(k) (mod s).

• This method avoids clustering.
• Warning: h(k) must never be 0.

• Double hashing. Use two has functions, h1() and h2(). Probe p
is at h1(k) + p · h2(k).

CS541 Fall 2021 20

• This method avoids clustering.
• Warning: h2(k) must never be 0.

• Dealing with collisions: chaining

• Each element in A is a pointer, initially null, to a bucket, which
is a linked list of nodes that hash to that element; each node
contains k and any other associated data.
• insert: place k at the head of A[h(k)].
• search: look through the list at A[h(k)].

• optimization: When you find, promote the node to the
start of its list.

• average list length is s/n. So if we set s ∼= n we expect about 1
element per list, although some may be longer, some empty.
• Instead of lists, we can use something fancier (such as 2-3

trees), but it is generally better to use a larger s.

19 Finite-state automata

• A finite-state automaton (FSA) is an idealization of a very simple
computer, composed of

• A finite set of states, usually depicted by circles.

• One of the states is called the start state. It can be depicted
by a circle with an arrow from nowhere pointing to it.
• One or more of the states are called final (or accepting)

states. They are usually depicted by double circles.

• A finite alphabet, denoted Σ. We’ll call the elements of the al-
phabet letters.
• A set of transitions between states, usually depicted by labelled

arrows. The labels are letters.

• Class 10, 9/17/2021

• An FSA is equivalent to a language.

• An FSA can recognize strings in its language. It starts at the
start state, and every time it sees the next letter, it moves to the
state pointed to by an arrow from the current state that is

CS541 Fall 2021 21

labelled with that letter. If no such arrow exists, the string is
not in the language. If when the string is finished, the FSA is in
a final state, the string is in the language. Otherwise it is not.
• An FSA can generate all the strings in a language by starting at

the start state and outputting the label on each transition it
takes, stopping at some final state.
• It turns out that the language recognized or accepted by an

FSA is a regular language, and every regular language can be
converted to an FSA that recognizes/accepts it.

• An FSA is deterministic if no transitions are labelled with λ (which
allows you to move to the next state without consuming input) and
if no state has multiple outgoing transitions labelled with the same
letter (in which case you don’t know which state to go to next).

• Even stronger: Regular expressions are equivalent to deterministic
FSAs. We will see later how to convert a regular expression to a
deterministic FSA.

• Example: Figure 3.1 page 64

• Example: Figure 3.5 page 68

20 Implementing a deterministic FSA to recog-
nize a language

• table-driven

• Construct a table. Every row is a state; one might label them (ar-
bitrarily) 1, 2, . . . , with the start state labelled 1. Every column
is a letter, so there are as many columns as the size of Σ.
• For simplicity, add one extra state at the end, the error state, and

for every (state,letter) pair for which there is no transition, add
a transition to the error state.
• Driver code

1 state := 1;
2 while (ch := input.advance())
3 state := table[state, ch];
4 success := accepting(state);

• The table is usually built by an automated scanner generator.

CS541 Fall 2021 22

• explicit control: produced automatically or “hard-wired”.
Advantage: easier to read and faster, but more effort to generate
and debug. Figure 3.4 page 68

21 Transducers

• A transducer not only recognizes strings in a regular language but
also outputs some semantic value of the strings (tokens) it recog-
nizes.

• Each transition can be labelled with an action, which can be as sim-
ple as an output letter or as complex as a function to invoke on the
letter that was just recognized. The function might generally be to
append to a growing string, and then to post-process that string
when the input is finished, if the FSA is now in a final state.

22 Scanner generators: lex, flex, jflex

• Input file: defines how tokens are to be scanned and how to process
them.

• Output: a program (in C, or for jflex, in Java), which defines a subrou-
tine yylex(). (For jflex: a class called Yylex with a method called
yylex())

• One compiles and links this program with the rest of the components
to make a functioning compiler.

• Lex takes care of low-level details: reading characters efficiently, match-
ing them against token definitions.

• The best way to learn Lex is to use the examples for Project 2. We will
follow examples in the book.

• The overall structure of a Lex input file is in Figure 3.8 on page 71 .
There are three sections separated by %%. Jflex has the same sections,
but in a different order: subroutines, declarations,
regular-expression rules.

• Class 11, 9/20/2021

• The scanner and the parser need to share token codes (typically
small integers). A standard way is to use a table generated by a

CS541 Fall 2021 23

parser generator. Lex typically uses y.tab.h, generated by yacc.
JFlex uses sym.java, generated by javaCUP, which we will see
later.

• Figure 3.7 page 71 shows a trivial Lex definition for part of ac,
namely, the reserved words.

23 Regular expressions in Lex

• Shorthand: character classes, like D in our examples of regular ex-
pressions: DIGIT=[0-9].

• Bracket syntax for range literals: Figure 3.9 page 72 and

Figure 3.10 page 73 .

• Escape convention for metacharacters like \.
• It is valid to quote characters or character strings with ", but it is not

necessary to quote alphanumeric characters.

• Case is significant. Use [pP][rR][iI][nN][tT] or
%ignorecase.

• One may use the usual metacharacters for regular expressions: *, +,
|, and parentheses.

• The character ˆ matches the beginning of an input line; $ matches
the end of an input line.

• The postfix operator ? matches the previous expression 0 or 1 times.
You can read it as “optionally”.

• See Figure 3.11 page 74 for fuller examples of regular expressions
for ac tokens. The result that yylex() is meant to return is
computed by the processing code embedded in braces. The
opening brace must be on the same line as the regular expression.
The rest of the code, which can comprise many statements, need not
be on the same line; it finishes when a matching brace appears.

• Figure 3.12 page 74 shows the same thing with defined classes
instead of range literals.

• When the scanner matches an expression, it executes the associated
commands. The matched text is in a String variable yytext (Jflex:
call yytext()). It is overwritten by the next token the scanner

CS541 Fall 2021 24

matches, so save it. Usually the processing code deals with the
contents of the matched string, so the rest of the scanner can ignore
it.

• If two regular expressions overlap, Lex returns the longest possible
match; if both expressions match the same string, the earlier
expression wins.

• One reasonable style is to have a catch-all expression at the end to
match any invalid token.

• Lex returns a predefined end-of-file token (integer 0) when it
reaches the end of the input.

• The subroutine section of the Lex input file can define data
structures and routines that the processing code can call.

• To avoid situations where the scanner has to back up (such as
Pascal’s 0..4), one can specify right context: [0-9]+/".." means
“match a string of digits, but only if looking ahead one sees two
dots in a row”. This expression is longer than [0..9] so it will win
if there are two dots, but it won’t match if there is only one dot. The
right context portion is not consumed by this match.

• Standard symbols for Lex: book Figure 3.13 page 78

• There are alternatives to lex: flex (faster, GPL), jlex and jflex (for
Java), GLA and re2c (generate a directly executable, not table-driven,
scanner in C).

24 Practical considerations

• Identifiers

• If the language is not block-structured, the scanner can enter
identifiers into the symbol table and return a pointer to the symbol-
table entry.
• Class 12, 9/24/2021
• The scanner can copy the identifier into string space and return

a pointer to that space. The parser can decide that the string is
a duplicate and reclaim the space of the most recent string.
• The scanner can copy the identifier into an identifier table (a

hash table) and return an associated integer that can be used as
a key.

CS541 Fall 2021 25

• If case is significant, a word like WHILE is most likely not
reserved. If case is not significant, convert all words to a
standard case before returning identifier tokens.
• Simplest: The scanner can return a String and let the semantic

checker deal with the symbol table. This alternative uses more
space (redundant Strings) but avoids complexity.

• Literals

• Convert numbers to internal representation. Use library rou-
tines (in C: atoi(); in Java Integer.parseInt()). You might
use higher-precision methods and compare against limits to de-
tect range errors. You can also catch NumberFormatException
in Java.
• Convert string literals by expanding escaped characters.
• There is a weird ambiguity in C: x (* y) is a declaration, not

a procedure call, if x has been given a meaning via typedef.
The parser might keep a table of typedef identifiers, and the
scanner could return a different token for such identifiers.

• Reserved words

• One can catch reserved words by a regular expression at the
expense of increased FSA size. That’s how we’ll do it for CSX.
• The scanner can have processing code for identifiers that looks

them up in a reserved-word table, returning a special token for
such identifiers.

• Handling compiler directives

• file inclusion. Keep a stack of open files, or recursively invoke
the scanner.
• conditional compilation. Usually handled as a separate pass

before the scanner.
• Unicode escapes, such as \u05b3 in Java. Also a separate pre-

scanning pass.
• listing. It’s hard to properly intersperse compilation diagnos-

tics.

• End of file

CS541 Fall 2021 26

• It can simplify the parser to continue to return the EOF token if
the scanner is invoked after it produces an EOF token.

• Multi-character lookahead

• example from Fortran: DO 10 J = 1.100

• general backup: buffer characters; if you enter an error state,
back up until you reach an accepting state. If you back up to
the start of the token, report a single-character error token and
move past it.

• Speed

• Use a scanner generator; flex or (better) GLA.
• Hard-coded: use block operations for read, double-buffering to

handle tokens that cross block boundaries; use the buffer as the
token store until you decide to copy them.
• Use a profiling tool.

• Error recovery

• when you reach an error state, you can delete characters so far
or just the first character.
• in any case, you can return an “error token” that informs the

parser that the subsequent token is unreliable.
• runaway strings and comments: use special rules that detect,

because ordinary error recovery (deleting first character) gener-
ates cascading errors. Nested comments cannot be handled by
regular expressions.

25 Converting regular expressions to finite au-
tomata

• Class 13, 9/27/2021

• Convert the regular expression to a non-deterministic finite-state
automaton (NDFA), using λ rules. Figures 3.19-22 pages 93-94

• Convert the NDFA to a deterministic finite-state automaton (DFA)
by the subset construction.

CS541 Fall 2021 27

• Each state of the DFA corresponds to a set of states in the
NDFA.
• The start state of the DFA corresponds to the start state of the

NDFA plus any NDFA states reachable by a λ transition from
the start state.
• Each set of NDFA states reachable by an input string becomes

a single DFA state.
• If any of the NDFA states in a DFA state accepts, then so does

the DFA state.
• Iterate over all states in the DFA (this set grows) building new

states.
• This method terminates, because at most there are 2|NDFA|

states in the DFA.
• See algorithm Figure 3.23 page 95

• Example: Figure 3.24 page 96

• Example: (D+.D∗)|(.D+)

• Class 14, 10/1/2021
• Example: (ab ∗ c)|(abc∗)

26 Optimizing the resulting DFA

• Optimization is only to reduce the number of states, and hence the
table; it doesn’t change the speed.

• Remove unreachable states and dead states (those from which one
cannot reach an accepting state).

• Tentatively: Merge all accepting states, and merge all non-accepting
states.

• Repeatedly: if any character c causes transitions from a merged state
(possibly to a single “error state”) to multiple states, split that state
based on the behavior of c.

• Example: Figure 3.26 page 98

CS541 Fall 2021 28

27 Converting a FSA to a regular expression

• This conversion is not needed for compiler construction, but it helps
prove the equivalence of these two formalisms.

• Assume the start state has no incoming transitions and that there is a
single accepting state with no outgoing transitions; build it if needed.

• Apply three transformations Figure 3.30 page 101 repeatedly to
remove states and add regular expressions.

• Example, Figure 3.25 page 97 leads to b∗a(λ|b|ba|bb|a)

28 Context-free grammars: Chapter 4

• Class 15, 10/4/2021

• A context-free grammar (CFG) represents a context-free language
language (CFL) (a set of strings).

• All regular languages are also context-free, but there are some
context-free languages, such as the set of balanced parentheses, that
are not regular.

• Instead of an FSA, one needs a push-down automaton (PDA) to
recognize or generate strings of a CFL. We won’t be going into the
theory of PDAs.

• Components of a CFG

• a finite terminal alphabet Σ, composed of tokens, augmented
with an EOF token. We’ll use lower-case words and
punctuation symbols.
• A finite nonterminal alphabet N , whose symbols are like

variables in the grammar. We’ll use initial-capital words or
single letters.
• A start symbol S ∈ N .
• A finite set of rewriting rules called productions of the form
A→ X1 . . . Xm, where A ∈ N , Xi ∈ N ∪ Σ. We allow m = 0, in
which case we write λ as the right-hand side.
• We allow | as a simplifying syntax if many rules share the same

left-hand side.

CS541 Fall 2021 29

• The CFG is a recipe for rewriting strings; each rewrite is a step in a
derivation of the resulting string. We denote a step of a derivation
with⇒. We denote possibly many steps with⇒∗.
• The strings we get, even if they still contain nonterminals, are called

sentential forms.

• In a derivation, we may expand any nonterminal we wish in the
next step, but there are two conventions.

• leftmost derivation: always expand the first nonterminal in
the current sentential form. (How would we express this order
in a direction-free way? Maybe “frontmost”.) Notation: ⇒lm.

• For a leftmost derivation, we don’t need to mention which
nonterminal we are expanding, only what rule we are
using. Example: Figure 4.1 page 116 and the derivation
later on the page.
• top-down parsers generate leftmost derivations; we say

they produce a leftmost parse.

• rightmost derivation: expand the last nonterminal
(“endmost”). Notation: ⇒rm. Also called canonical derivation.

• bottom-up parsers generate rightmost derivations
• Example: book page 117
• The parser actually discovers this parse in reverse order.

29 Parse trees

• Describes a derivation.

• The root is S; each node is either a terminal, a nonterminal, or λ.

• Interior nodes are nonterminals; together with their children, they
represent the application of a production.

• Both a leftmost and a rightmost derivation give rise to the same parse
tree; the tree does not show the order of derivation.

• Given a sentential form, all its symbols descended from any single
internal node is a phrase of that sentential form.

• A simple phrase contains no smaller phrase; its children are leaves
(but leaves might not be terminals, because the sentential form might
still have nonterminals).

CS541 Fall 2021 30

• The handle of a sentential form is its leftmost simple phrase.

• Example: Figure 4.2 page 118 : sentential form f (v Tail), the
simple phrases are f and v Tail, and the handle is f.

• Example: sentential form Prefix (v + v). The phrases are

• Prefix (v + v) (comes from E)
• v + v (comes from E)
• + v (comes from Tail)
• λ (simple; handle) (comes from Tail)

30 Grammar types

• A regular grammar has rules like a CFG, but the RHS is restricted to
a single symbol from Σ∪{λ}, followed optionally by a single nonter-
minal symbol. Regular languages are a proper subset of context-free
languages.

• Context-free grammars, represented by BNF, can always be parsed
inO(n3) time. Useful subclasses of CFGs can be parsed onO(n) time.

• A context-sensitive grammar has rules like a CFG, but the LHS is
allowed to have extra context both before and after the nonterminal.
This context is preserved on the RHS. Context-free languages are a
proper subset of context-sensitive languages.

• We don’t use context-sensitive languages because parsing them
is very expensive.
• However, they would allow us to require that variables are de-

clared before use as part of the grammar instead of a check per-
formed after parsing.

• An unrestricted grammar (also called type-0) lets arbitrary patterns
be rewritten.

31 Using CFGs for describing programming-language
syntax

• Class 16, 10/6/2021

CS541 Fall 2021 31

• We don’t want unreduced grammars, which have useless
nonterminals that are never generated by any derivation of a string
of terminals. Example: book page 120 . Parser generators usually
verify that the grammar is reduced.

• We prefer unambiguous grammars, where every sentence has a
unique parse tree. Example of ambiguous grammar:
book page 121 Unfortunately, guaranteeing that a CFG is

unambiguous is undecidable. We will return to this problem later.

• We don’t want CFGs that generate the “wrong” language. Deciding
whether two CFGs generate the same language is undecidable.

32 Extended BNF

• Allow metacharacters ‘[’ and ‘]’ to surround optional symbols in the
RHS.

• Allow metacharacters ‘{’ and ‘}’ to surround symbols that may be
repeated 0 or more times. I like an extension to this notation that tells
you what to place between each repeated symbol, typically a comma.
Example:
Decl → [final] [static] [const] Type id {, id }
• It’s not hard to convert extended BNF into standard BNF. For every

optional region, introduce a new nonterminal N with two rules, one
expanding to the symbols in the region, the other to λ. For every
repetition region, introduce a new nonterminal M with two rules,
one expanding to the symbols of the region followed by M itself, the
other to λ.

33 Recognizers and parsers

• A recognizer determines if a string is in a language.

• A parser, more useful to us, also builds the parse tree.

• A top-down parser builds a leftmost derivation, traversing the parse
tree in preorder. These parsers look ahead in the input to predict the
right production before applying it. Common strategy: LL(1).

CS541 Fall 2021 32

• A bottom-up parser builds a rightmost derivation, starting at the
leaves and working up to the root, traversing the tree in postorder.
Children of nodes are inserted before the nodes themselves. Com-
mon strategy: LR(1).

• Extended examples: grammar book page 126 , parses on previous
pages.

• The names LL(1) and LR(1): the first letter indicates that input is
scanned left-to-right (start to finish). The second letter indicates a
leftmost (L) or rightmost (R) derivation. The notation (1) means
one-token lookahead.

34 Data structures to represent a CFG

• We assume some representation for sets (such as Σ and N), lists,
and iterators over sets or lists. In Java, classes that implement the
Collection interface allow a for loop like this:

1 List<Symbol> symbList = new ArrayList<Symbol>();
2 for (Symbol oneSymb : symbList)
3 System.out.println(oneSymb.name);

• There is also an Iterator interface with a clunkier API, including
hasNext(), next(), and remove(). You must use this interface if
you plan to remove elements while iterating through the set. You get
an Iterator from a Collection by iterator():

1 for (Iterator<Symbol> it = symbList.iterator();
2 it.hasNext();) {
3 Symbol oneSymb = it.next();
4 System.out.println(oneSymb.name);
5 if (someCondition(oneSymb)) it.remove();
6 }

• Our data structures may take advantage of these facts:

• We won’t be removing symbols from the CFG (except in rare
cases of reducing the grammar).
• Removing [. . .] and {. . . } adds symbols and productions to the

grammar.

CS541 Fall 2021 33

• Given a nonterminal A, we will want to visit all rules with A on
the LHS. We will also want to visit all rules that mention A in
the RHS.
• We will generally process an RHS one symbol at a time.

• Therefore, we represent a rule by its LHS symbol and a list of its RHS
symbols. The list is empty if the RHS is λ.

• See page 128 for a list of utility routines we might want.

35 LL(1): recursive descent

We will build an LL(1) parser of the style called “recursive descent”. To do
that, we need to analyze the BNF, computing some properties:

• RuleDerivesEmpty(p) and SymbolDerivesEmpty(N).

• First(N).

• Follow(N).

• Predict(p).

36 Computing when a nonterminal can derive λ

• A derivation to λ may take more than one step.

• Algorithm Figure 4.7 page 129 .

• Make a list L of nonterminals that directly derive λ.
• For each N ∈ L, find all productions where N appears on the

RHS; if removing N from those productions leads to an empty
RHS, add the LHS to L.
• Keep a count of RHS lengths so the previous step can account

for several nonterminals in the same RHS, all of which can
derive λ.

• The result is two Boolean characteristics: RuleDerivesEmpty(p) and
SymbolDerivesEmpty(N).

CS541 Fall 2021 34

37 Computing First(α)

• Class 17, 10/8/2021

• First(α) = {b ∈ Σ | α⇒∗ bβ}. Here, α and β are strings of symbols
(terminals or nonterminals). We won’t include λ in First(α).

• Algorithm Figure 4.8 page 130 .

• If the BNF is written in a top-down fashion, as is conventional,
it’s most straightforward to work from the end to the
beginning.
• Consider first character of α.
• Easy cases: α is empty or terminal.
• Hard case: nonterminal N .

• For each RHS R in productions with LHS=N , recursively
call algorithm on R, collecting all answers.
• If SymbolDerivesEmpty(N), union in recursive result on the

remaining characters of α.

• Avoid endless recursion by refusing to consider the same
nonterminal twice (Boolean visitedFirst(N)).

• Example: Figure 4.1 page 116

• Example: Figure 4.10 page 133 .

38 Computing Follow(N)

• Follow(N) is the set of terminals that can come after nonterminal N
in a sentential form.

• Follow(N) = {b ∈ Σ | S ⇒+ αNbβ}. Here, α and β are strings of
symbols (terminals or nonterminals).

• Algorithm Figure 4.11 page 135 .

• For each place N occurs in the RHS of some production p,
union in First(tail), where tail represents the remaining symbols
in that RHS after N .
• If tail can derive empty (for instance, tail is itself empty), then

union in the recursive result of the Follow(LHS(p)).

CS541 Fall 2021 35

• Avoid endless recursion by refusing to consider the same
nonterminal twice (Boolean visitedFollow(N)).

• Example: Figure 4.10 page 133 .

• Example: Exercise 10 page 140 .
LHS → RHS predict set
P → Ds Ss $ First(RHS) = {f, i, id, p, $}
Ds → D Ds First(RHS) = {f, i}

| λ ∅ ∪ Follow(DS) = {id, p, $}
D → f id First(RHS) = {f}

| i id First(RHS) = {i}
Ss → S Ss First(RHS) = {id, p}

| λ Follow(Ss) = {$}
S → id = V E First(RHS) = {id}

| p id First(RHS) = {p}
E → + V E First(RHS) = {+}

| - V E First(RHS) = {-}
| λ Follow(E) = {id, p, $}

V → id First(RHS) = {id}
| num First(RHS) = {num}

• can derive λ: Ds, Ss, E
• First(V) = {id, num}
• First(E) = {+, −}
• First(S) = {id, p}
• First(Ss) = First(S) = {id, p}
• First(D) = {f, i}
• First(Ds) = First(D) = {f, i}
• First(P) = First(Ds) ∪ First(Ss) ∪ {$} = {f, i, id, p, $}
• Follow(P) = ∅
• Follow(Ds) = ∅ ∪ First(Ss $) = First(Ss) ∪ {$} = {id, p, $}
• Follow(D) = First(Ds) ∪ Follow(Ds) = {f, i, id, p, $}
• Follow(Ss) = ∅ ∪ First($) = {$}
• Follow(S) = First(Ss) ∪ Follow(Ss) = {id, p, $}
• Follow(E) = ∅ ∪ Follow(S) = {id, p, $}
• Follow(V) = First(E) ∪ Follow(E) ∪ Follow(S) = {+, −, id, p, $}

CS541 Fall 2021 36

39 Chapter 5: Top-down (LL) parsing (overview)

• Class 18, 10/11/2021

• Not as powerful as bottom-up, but simple, fast, with good error
diagnostics.

• If one can build a top-down parser, the grammar is not ambiguous,
although in general ambiguity is not decidable.

• Two general approaches: recursive descent and table-driven.

• Names for this style of parsing: top-down, predictive, LL(k),
recursive-descent.

• The recursive-descent parser

• Each nonterminal A has its own parsing procedure procA.
• ProcA chooses one of A’s rules by inspecting the next k (at

most) tokens.
• The constant k is the lookahead value. One chooses k before

building the parser.
• We’ll use k = 1 for discussion.
• Each of the rules for A has its own predict set (computed

below)

• Given token t and all the predict sets for the current nonterminal A:

• t is in none of the predict sets: Syntax error. The parser could
output a useful message (saw t, expecting ...).
• t is in more than one predict set: ambiguous case. The parser

generator should prevent this situation.
• t is in exactly one predict set. Follow the production predicted.

• To compute the predict set for a production p Figure 5.1 page 147

• the predict set is at least First(RHS(p)).
• if RuleDerivesEmpty(p), the predict set also has Follow(LHS(p)).

• For the CFG to be LL(1), all predict sets for a nonterminal must be
disjoint.

• It is easy to detect violations automatically.
• If the CFG is not LL(1), it might still be LL(k) for some k > 1.

CS541 Fall 2021 37

• Sometimes a more powerful parsing method, like LR(k), is
needed.
• Sometimes even that fails, for instance, if the CFG is

ambiguous.

40 The recursive-descent LL(1) parser

• Uses peek(), advance(), and (based on those two) match(token).

• For a nonterminal A, procedure procA() peeks at the next token,
using that value to switch among the competing productions.

• For each production p, each symbol X in the RHS(p) becomes a call.

• If X is terminal, call match(X).
• If X is a nonterminal, call procX().

• Class 19, 10/13/2021

• Example: page 148 .

• Example: Figure 5.7 page 151

• Example: Figure 5.2 page 148

41 Full example

• Given the grammar Figure 5.2 page 148 , for each nonterminal N,
compute derives-λ(N), first(N) (in reverse order), follow(N) (in
forward order). Then for each production p compute predict(p). The
answer is in Figure 5.3, page 148 .

• Then derive procB:

CS541 Fall 2021 38

1 void procB() {
2 switch (peek()) {
3 case ’b’:
4 match(’a’);
5 procB();
6 procC();
7 match(’d’);
8 return;
9 case ’q’; case ’c’; case ’d’; case ’$’: // $ is EOF

10 return;
11 default:
12 error();
13 } // switch
14 } // procB()

• Compute a parse table. Answer is in Figure 5.10 page 154

42 Midterm exam

• Class 20, 10/15/2021 Exam

• Class 21, 10/18/2021 Review of Exam

43 The table-driven LL(1) parser

• Class 22, 10/20/2021

• Why bother? Because the code for the recursive-descent parser can
be fairly long. A table can be much smaller. I think we can ignore
the cost of procedure call and return.

• Data structure: a stack, with operations push(s), pop(), and
top(). We push terminals and nonterminals.

• Algorithm for the parser

• if top() shows a terminal t, call match(t); pop(). If that
terminal is not in the input, we have a syntax error.
• if top() shows a non-terminal A, look up the correct

production p = T[A, peek()].

CS541 Fall 2021 39

• if p = 0, syntax error.
• otherwise, push RHS(p) onto the stack so the first element goes

to the top of the stack.

• Algorithm to build the table T:

• For each non-terminal A, for each terminal t,

• if t ∈ Predict(p), place T[A, t] = p.
• otherwise, place T[A, t] = 0.

• Example of table: Figure 5.10 page 154

• Example of parse: Figure 5.11 page 155

• It helps to map terminals and non-terminals to small integers for
the purpose of looking them up in T.

44 Compressing the parse table

• Most entries are blank, so direct representation is space-inefficient.
Example (Ada): 6.5% density.

• Given a non-terminal, entries for many lookahead symbols agree.
See Figure 5.10 page 154 .

• Can store a default value for each terminal; for some terminals, it
will be the empty (0) value. Then we only need to store non-default
values.

• Compaction

• Binary search: list all the non-default values in a
one-dimensional table, along with their row, column indices.
Search T[i, j] using binary search on those indices. For E
non-default entries, the space cost is 3E, and the time cost is
O(logE).
• Hash table: Search T[i, j] at h(i, j) = (i× j) mod (|E|+ 1),

resolving collisions by linear resolution. There is guaranteed to
be an empty cell.
• Perfect hashing is possible, since the values are known in

advance.

CS541 Fall 2021 40

• Compression by double-offset indexing

• Compute non-conflicting shift values R[i] for each row i into a
large table V.
• Find T[i, j] at offset=V[R[i]+j], accepting it if V.fromrow[offset] =
i.
• Example: Figure 5.24 page 169

• Finding the best ordering of rows to add to V is NP-complete.
• Even with an arbitrary ordering, this method works pretty

well. Example (Ada): 6.8% resulting table size.
• Time to look up an entry in the compressed table is O(1), and

its space is no worse than original T.

45 Making a CFG LL(1)

• Class 23, 10/22/2021

• Common prefixes shared between two productions for the same
nonterminal.

• Increasing lookahead value k doesn’t help.
Figure 5.12 page 156

• Easy to fix by factoring: leave the common part in a single
production, and follow it by a new nonterminal that expands
in several productions to the various sequelae.
Figure 5.14 page 157

• One may need to run this algorithm several times, removing
common prefixes longest-first.
• One can force all RHSs to begin with a terminal symbol

(Greibach normal form), and then one can remove common
prefixes, but the resulting grammar may still not be LL(1).

• Left recursion, which causes a unbounded recursion (in
recursive-descent parsing) or unbounded pushing the RHS onto the
stack (in table-driven parsing).

• Easy to fix: if the production is A→ A α, change it to A→ X Y .
• For every other production A→ β, change it to X → β.

CS541 Fall 2021 41

• Add production: Y → α Y (right-recursive!)
• Add production: Y → λ.

• Example: Figure 5.16 page 158

46 Dangling-else problem

• The dangling-else problem cannot be solved with LL(k) grammars.

• Grammar: Figure 5.17 page 159

• Equivalent to {ajbk | 0 ≤ k ≤ j}
• So long as the parser sees only as, it can’t decide whether to

predict a matched or unmatched a. The amount of lookahead
before the first b can be arbitrarily large.
• But this language is context-free, because it has a CFG.

• To handle this problem, accept the predict conflict. Factor the
grammar Figure 5.19 page 161 . Get the table shown in that figure.
Resolve the conflict by always choosing rule 4.

47 Properties of LL(k) parsers

• An LL(k) parser computes a correct leftmost parse.

• Grammars in the LL(k) class are unambiguous.

• Table-driven LL(1) parsers operate in O(n) time and space, where n
is the length of the input (measured in tokens).

• Time: each input token induces a bounded number of actions
(no recursive use of the same production).
• Space: the stack can be of length O(n); each input token con-

tributes to a constant increase in stack size (no recursive use of
the same production).

48 Recovering from and repairing syntax errors

• Compilers usually disable semantic analysis and code generation if
there are errors. Users won’t run the program in any case.

CS541 Fall 2021 42

• Correct prefix property of LL(k) parsing: until you hit an error, there
is a string of upcoming tokens that can complete a successful parse.

• Recovery: try to enter a configuration where the parser can continue.

• Bad recovery causes a cascade of errors.
• Panic mode: skip input tokens until encountering a frequently

occurring delimiter, like semicolon.
• Wirth’s method: pass a termset parameter to each procedure in

the recursive-descent parser, indicating what lookahead tokens
are possible for this invocation. All calls to match() are
enhanced: If they fail, they print a message and then skip
tokens until a member of the termset is seen. Example:
Figure 5.26 page 172

• Class 24, 10/27/2021

• Repair: Modify the input to obtain an acceptable parse.

• Given that one has parsed α and then the next token x is
erroneous, followed by β, one can try

• modifying α. Since we know that α is a correct prefix, we
prefer not to modify it, except for scope repair, which
inserts or deletes brackets to match the brackets in β.
• inserting δ to obtain αδxβ. One must be careful not to keep

inserting, or parsing never finishes. Some languages are
insert correctable: one can always fix errors by insertion.
• deleting x to get αβ. Drastic, but guaranteed to make

progress.

49 Chapter 6: Bottom-up parsing

• Bottom-up parsers handle the largest class of grammars that can be
parsed deterministically.

• Just as with top-down parsing, there are parser generators that build
the necessary tables. javaCUP and Yacc are examples.

• A bottom-up parser starts with leaves (terminals) and decides to re-
duce them to terminals.

• Also called a shift-reduce parser or an LR(k) parser.

CS541 Fall 2021 43

• Informal example: Figure 6.1 page 183

• Algorithm: Figure 6.3 page 185

• Example: parse abbdc$ using the table in Figure 6.5 page 187
Squares mean “shift”; no square means “reduce”.

50 LR(0) parsing

• Informal example: Figure 6.4 page 186

• Class 25, 10/29/2021

• Warning: there is actually an LR(0) parser, which uses one token of
lookahead while parsing, but not while the table is built.

• Example based on Figure 6.2 page 184 .

• The states in the parser are related to how far we have recognized a
RHS. We call progress a bookmark and denote it by •.
• Items are production RHSs with • somewhere in them.

• A fresh item has • at the start of the RHS.

• If the • is at the end of the RHS, the item is reducible.

• If the RHS is λ, there is only one item, which is both fresh and
reducible.

• See Figure 6.8 page 192 for items pertaining to one RHS.

• Each parser state is set of the items, called its kernel.

• The start state is composed of fresh items for goal productions.

• Build the characteristic FSM

• work list starts with just the start state (state 0)
• take the first state on the work list: A→ α •Bβ
• compute its closure, which includes fresh items with B on the

LHS. (if • is not before a nonterminal, the closure is empty), as
well as fresh items with other nonterminals on the LHS for any
production for B whose RHS starts with a nonterminal,
recursively.

CS541 Fall 2021 44

• for each element of the closure, we get a new state whose
kernel is determined by advancing the •. Put that state on the
work list. The current state points to it with an arrow labelled
by what we advanced the • over (it can be a terminal or
nonterminal). If advancing over the same symbol applies to
more than one element of the closure, the resulting items are all
part of the kernel of the subsequent state.

• Example: Figure 6.11 page 194

• We can use the characteristic FSM to parse; each accepting state
causes a reduction, and we start anew at the start state.

• Example: Figure 6.12 page 195

• But we don’t need to start anew: We can remember the state we
were in after shifting each symbol.

51 Conflicts

• The table may only suggest one course given a state and a lookahead:
shift, reduce, error, or accept.

• We can’t handle nondeterminism; NPDA is more powerful than a
PDA.

• If the table has multiple suggestions, the state is inadequate, but a
stronger parsing method might work.

• shift-reduce conflict: the state contains at least two items, one of
which is before a terminal t, and the other is reducible.

• reduce-reduce conflict: the state contains two reducible items.

• Example: Figure 6.16 page 200 This grammar is in fact ambiguous,
so the inadequacy cannot be resolved without changing the
grammar.

• Example: Figure 6.19 page 203 This grammar is unambiguous but
not LR(k); it has a reduce-reduce conflict, and no amount of
lookahead can distinguish the two possibilities.

• Class 26, 11/1/2021

• Example for LR(0) construction: Example 10g page 227

CS541 Fall 2021 45

• Instead of LR(0), one can try SLR(1), LALR(1), LR(1) (in increasing
order of power). LALR(1) is the method of choice.

• SLR(1): in states with a shift-reduce conflict, use Follow(A) where A
is the LHS of a reduce item to decide when to choose reduce, and
First(tail) to decide when to choose shift. (Here, tail is whatever
follows •). With luck, members of these sets do not overlap.

• Example: Figure 6.22 page 207 (grammar on page 205). To
disambiguate the shift-reduce conflict in states 1 and 6:

• Follow(E) = {$, +}.
• First(* n) = {*}.

• LALR(1): We omit the construction, but motivate it with grammar
in Figure 6.25 page 210 .

52 Chapter 7: Syntax-directed translation

• Class 27, 11/3/2021

• Syntax-directed translation refers to actions taken while parsing.

• As it constructs a derivation, the parser performs syntactic actions.

• These actions are achieved by executing code embedded in the CFG
given to the parser generator. This code is in the same language as
the parser.

• The actions might associate semantic values with terminals and
nonterminals.

• Values that move down the tree from parent to child are called
inherited.
• Values that move up the tree from child to parent are called

synthesized. Example: Figure 7.1 page 237

• Top-down: when a production A→ X1 . . . Xn is expanded, the
value of A can be inherited by all the values of Xi. All the
values of Xi, i ≤ n can be synthesized into the value of A and
can be inherited by all Xk, k > i. Example:
Figure 7.2 page 238 Each A node in the figure increments its

parent’s semantic value.

CS541 Fall 2021 46

• Bottom-up: when a production A→ X1 . . . Xn is reduced, the
value of A can be synthesized from the values of Xi.
• Values of terminals are set by the scanner, and the parser can

also look up and store information about identifiers in the
symbol table.

• Programming semantic actions requires knowledge of parsing
order.

• Programming good semantic actions may require modifying the
grammar.

53 Bottom-up syntax-directed translation

• The notation to refer to a semantic value depends on the software.
For javaCUP, X:val means the value of the symbol X on the right-
hand side of a production; RESULT is the pseudo-variable that holds
the value of the symbol on the left-hand side of the production. Both
can have any type, including int or some class.

• The book uses an abstract notation: Xval.

• Along with the parse stack (syntactic stack), the software maintains
a semantic stack so code can manipulate these values.

• Running example: Convert a string of digits into an integer value.
Compilers usually do that in the scanner, but the example gives us
insight into bottom-up syntax-directed translation.

• Grammar 1: Figure 7.3 page 240 . Notice the left-recursive rules.

• Grammar 2: Change the language so we can have both octal and
decimal numbers. Figure 7.4 page 241 .

• – Parsing works, but it doesn’t restrict octal digits to 0 . . . 7.
• – The grammar has no way of informing the bottom-up

translation that an octal, not a decimal number is in progress,
because the o is just shifted onto the stack, and shifts do not
have semantic results.

• Modifying the grammar can fix the problem, but be careful.

CS541 Fall 2021 47

• Have a test suite of inputs and expected outputs, and test after
every grammar change. Such checks are called regression
tests.
• Change the grammar in small steps.
• Every bug you discover gives rise to a new regression test in

the suite.

• Grammar 3: rule cloning of Grammar 2. Figure 7.5 page 243

• – Inflates the grammar, which ought not to be necessary.

• Grammar 4: Force semantic actions

• To catch a shift of a terminal t, introduce a new production
T → t and associate it with a semantic action.
• To introduce a semantic action between two symbols,

introduce a nonterminal A there. Give it production A→ λ,
and associate the semantic action with that production.

• Result: Figure 7.6 page 244

• – The actions use a global variable base.

• Class 28, 11/5/2021

• Modify the language to allow an arbitrary 1-digit base following x,
as in x5431$, which means 4315 = 116. The new grammar is
Figure 7.7 page 245 .

• Global variables work, but they have drawbacks.

• Recursive parsing means there can be unexpected interactions
between semantic actions and the global variables.
• It’s necessary to make sure that every sentence leads to a parse

that initializes the global variables
• It’s difficult to write accurate code that uses global variables.

• It is better to restructure the grammar so the necessary information
is stored in semantic values.

• Sketch a parse tree such that a bottom-up parse synthesizes the
necessary values, as in Figure 7.8b page 246 .

• Revise the grammar to produce that tree.

CS541 Fall 2021 48

• Verify the grammar is still parseable (LALR(1), for instance)
and that it passes the regression tests.

• New grammar: Figure 7.8a page 246

• Now the semantic value of Digs has two components.
• The language is slightly different: we now accept input x8$.

• Puzzle: change the language to allow multi-digit bases.

• Add a production: Setbase→ x [Digs].

54 Top-down syntax-directed translation

• We’ll use recursive-descent parsing, not table-driven.

• Running example: Evaluate a Lisp-like expression with operators
plus and prod. Grammar: Figure 7.9 page 248

• Can pass the inherited semantic value to procedures as a parameter.

• Can return the synthesized value as a return value.

• Example Figure 7.10 page 249

• Example: My unit conversion program.

55 Method resolution in Java

• Class 29, 11/8/2021

• Java method resolution is dynamic in resolving which class’s
methods are appropriate.

1 class A { void m() {println("A");} }
2 class B extends A { void m() { println("B"); } }
3 A a = new B();
4 a.m(); // prints B: dynamic resolution of m

• Java method resolution is static with respect to resolving overload
based on parameter number and type.

http://www.cs.uky.edu/~raphael/convert.cgi

CS541 Fall 2021 49

1 class X { }
2 class Y extends X { }
3 class A {
4 void m(X param) { System.out.println("A-X"); }
5 void m(Y param) { System.out.println("A-Y"); }
6 } // class A
7 class B extends A {
8 void m(X param) { System.out.println("B-X"); }
9 void m(Y param) { System.out.println("B-Y"); }

10 } // class B
11 class Foo {
12 public static void main(String[] args) {
13 X x = new Y();
14 A a = new B();
15 a.m(x); // prints B-X (B dynamic, X static)
16 } // main()
17 } // class Foo

56 Abstract syntax trees

• Class 30, 11/10/2021

• Most of this section is already covered in previous classes.

• The parser can easily build concrete syntax trees.

• Abstract syntax trees (ASTs) let a node parent any number of
children, for example, to represent compound statements and
parameter lists.

• Some AST nodes have a fixed number of children, such as
multiplication.

• A suggested data structure Figure 7.2 page 252 .

• Each node points to its right sibling.
• Each node points to its leftmost sibling.
• Each node points to its parent.
• Each node points to its leftmost child.
• Appending to the end of the children of a node requires

walking down the whole list. It would be good to also have

CS541 Fall 2021 50

each node point to its rightmost child, although the book
doesn’t suggest it.

• Functions for constructing AST nodes

• makeNode(t) creates a new node. It has overloaded versions for
different types of t, such as int, Symbol, Operator.
• x.makeSiblings(y) appends y and all its right siblings to the end

of x’s right sibling list. Code is at Figure 7.13 page 253 .

• x.adoptChildren(y) appends y and all its right siblings to the
right end of x’s children. Code is at Figure 7.13 page 253 .

• makeFamily(op, child1, . . .) creates a new Operator node with
the given children. If there are two children, the body is
equivalent to makeNode(op).adoptChildren(child1,
makeSiblings(child2)).

• The exact form of the AST can evolve as one implements the
compiler.

• Desiderata of the AST structure

• Ability to unparse into a program functionally equivalent to
the original.
• Hiding of implementation details; contents accessed by getters.
• Different APIs for different phases of compilation.

• Roadmap for designing the AST

• Build an unambiguous grammar G for the language L. Some
productions might be present specifically to disambiguate.
• Devise an AST for L, discarding grammar details used for

disambiguation and unnecessary punctuation, such as ‘;’.
• Add semantic actions to G to construct the AST during

parsing. This activity might require modifying G. Use the
functions enumerated above.
• Implement the phases of the compiler, modifying the AST both

in structure and content as needed. Even G might need to
change.

CS541 Fall 2021 51

57 Extended example of AST

• The grammar G is in Figure 7.14 page 256 . It needs no
declarations, because all variables are integer.

• Initial design of the AST

• Assignment statements are represented by a node with two
children: variable and expression.
• if statements: We can manage with a single structure, and

treat an if without an else as a special case. So we need a
node with three children: the Boolean (actually integer)
predicate, the then alternative, and the else alternative. We
do not need to represent the fi bracket.
• while statements are represented by a node with two

children: the Boolean predicate and the body (a statement).
• blocks (compound statements) are represented by a node with

an arbitrary list of children, one for each sub-statement.
• The plus operator is represented by a node with two children

for the left and right operands.
• An id and a num are represented by leaf nodes.

• Semantic actions Figure 7.17 page 259

• Compare the concrete with the abstract syntax trees for a sample
input: Figure 7.19 page 260 .

58 Design patterns for ASTs

• This section is redundant to the assignments.

• Design patterns make software easier to develop and maintain.

• The discussion in the book is overly complex for our CSX project.

• We can use a single class hierarchy of AST nodes.
• Each phase of compilation is governed by a different method in

the AST class (and subclasses).
• You invoke that phase of compilation by calling that method in

the top node of the AST.

CS541 Fall 2021 52

• The book suggests this pattern.

• Every AST node already inherits methods for manipulating the
tree structure (connecting siblings, adopting children). These
methods can be placed in a superclass AbstractNode.
• No single class hierarchy works for all phases.
• Code for each phase should be in a single class, not in each node

type.
• A phase f does its work by f .visit(Node n).
• The visitor pattern arranges for the right instance of visit to in-

voke based on the actual type of n.
• A single class Visitor, extended by each compilation phase.
• Each node type extends AbstractNode. It provides its own

version of accept(Visitor v), which looks identical but pro-
vides its own (typed) version of this.

• Example: Figure 7.23 page 266 Trace the double dispatch:
Visitor f = new TypeChecking(. . .);
AbstractNode n = new PlusNode(. . .);
f.visit(n);

• Disadvantages of double dispatch

• Repeated code in each concrete node class of the visit() method.
• All visit() methods in the phase code must exist, even if they do

nothing, although they could inherit from an EmptyVisitor
class.
• All visit() methods in the phase code must take node types.

• If our implementation language has reflection (Java does; it’s also
called introspection), we can use single dispatch. Example (don’t
worry about its details): Figure 7.24 page 269

59 L-values and R-values

• Class 31, 11/12/2021

• The L-value of an identifier (typically a variable) is the location of
the identifier. This information is needed if the identifier is on the
left-hand side of an assignment.

CS541 Fall 2021 53

• The R-value of an identifier is the contents (current value) of the
identifier. This information is needed if the identifier is on the
right-hand side of an assignment or the predicate of an if or
while.

• Special cases

• Constants and this have only R-values.
• In C, the L-value of any variable can be derived by the

referencing & operator.
• In C, any R-value can be used as an L-value by the

dereferencing * operator.

• One can always derive the R-value from the L-value, but not
vice-versa.

• In our AST, an identifier node will always mean its L-value.

• If we want an R-value, we can get it by explicitly adding a
dereferencing node. Figure 7.22 page 263 .

• Confusing example: grammar for C Figure 7.20 page 261 with its

semantic actions Figure 7.21 page 262 and some sample ASTs

Figure 7.22 page 263 . Parse deref addr ida = deref idb.

60 Example of Jasmin code

1 .class public test ; class header
2 .super java/lang/Object
3 .field static i I ; static members of the class
4 .field static j I
5 .field static c C
6 .method public static main([Ljava/lang/String;)V
7 .limit locals 2 ; 0: param. 1 ...: locals
8 ldc 100
9 putstatic test/j I ; j = 100

10 getstatic test/j I
11 istore 1 ; localint = j
12 .limit stack 10 ; only really needed 4
13 .end method

CS541 Fall 2021 54

61 The Java Virtual Machine (JVM)

• The JVM runs bytecode packaged in class files.

• The bytecode is designed to be compact: mostly 0-address, re-
ferring to an implicit stack.
• The bytecode is designed to be safe: a bytecode verifier checks

the program for type errors and stack errors before running it.
• The Jasmin assembler has its own syntax, which we use here.
• You can run javap -c on a class file to disassemble it.

• Types are described by strings. Figure 10.4 page 400 .

• Constants are referred to by an index in a “constant pool”. Entries
are typed and have whatever length is required, but only use one
16-bit index.

• List of operations: https://docs.oracle.com/javase/
specs/jvms/se7/html/jvms-6.html

• Arithmetic instructions: pop two elements, push one result.
Versions for integer, long, float, and double. Examples:
iadd, dmul. book page 401 Shorter types use wider arithmetic but
lose precision during store.

• Class 32, 11/15/2021

• Registers: 32 bits

• As many as needed; the compiled code for each method
indicates how many it needs.
• Allocated in the method’s stack frame when the method is

invoked.
• Used for parameters (starting with register 0) and local

variables (immediately following parameters).
• In non-static methods, parameter 0 is implicitly this.
• Registers are untyped, but the bytecode verifier makes sure

that types are not misused.
• Load (from register to stack) and store (from stack to register)

instructions. Short versions exist for registers 0 . . . 9. Examples:
iload, iload 3, fstore. book page 402

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html

CS541 Fall 2021 55

• double and long vales use two registers, which must be
even-odd.
• aload (for object references, which use one register).
• Integer operations used for boolean, char, byte, and short.
• loading a constant literal (int, float, literal string): ldc

• Type conversion: pop one element, push one result. Example: i2f.

• Getting fields (variables) of a class

• getstatic name type book page 404

• name is like java/lang/System/out
• type is like Ljava/io/PrintStream; (the semicolon is

required!)
• The instruction is only 3 bytes: the opcode (0xb2), and a

16-bit index into the constant pool, which contains both the
name and type.
• Similar: putstatic (pops a value from stack)

• getfield and putfield book page 405

• pop an extra element from stack: reference to instance

• Calling a static (class) method book page 407

• invokestatic name
• name is like java/lang/Math/pow(DD)D. The instruction

points to the name in the constant pool.
• Parameters to the method are on the stack (left-most

parameters are deepest); they are all popped.
• Result value (if any) placed on the stack at completion.

• Calling a non-static (instance) method

• invokevirtual name
• Same as invokestatic, but first push the instance on the

stack (before the parameters). This parameter is this in the
called routine.
• We rely on the JVM to find the right version of the routine.

• Class 33, 11/17/2021

CS541 Fall 2021 56

• Calling constructors

• invokespecial name
• Same as invokevirtual, but a reference to an uninitialized

object (usually created by new) is on the stack.
• name is like
java/lang/String/<init>()Ljava/lang/String;

• Apparently, invokespecial is also used for calls in super
and calls to private methods, but it is unclear why. In fact, it
is unclear why one needs to use invokespecial for
constructors.

• Branching book page 406

• three bytes: opcode, 16-bit ∆.
• five bytes: opcode, 32-bit ∆.
• unconditional: goto.
• conditional based on TOS (which is then popped): ifgt,
ifeq, ifne, iflt, ifle, ifgt.
• conditional based on two stacked values (both popped):
if ifcmpgt, if ifcmplt, if ifcmpeq, if ifcmpne,
if ifcmpge, if ifcmple.

• Stack operations

• dup duplicates the TOS (32-bit value); dup2 duplicates the
TOS (64-bit value, stored in two cells).
• pop, swap: obvious semantics.
• dup x1: duplicates the TOS to a position 3 below TOS; useful

for multiple assignment statements.

62 Chapter 8: Symbol Tables

• Class 34, 11/19/2021

• Some of this section is redundant to the assignments.

• After the compiler builds the AST, it can run a pass across the AST
to build the symbol table (ST).

• process declarations, inserting symbols in the ST

CS541 Fall 2021 57

• process references, replacing symbols with ST references

• API for the ST is exactly what we used in Project 1: openScope(),
closeScope(), enterSymbol(), retrieveSymbol(), and declaredLocally().

• We’ll assume usual static scoping.

• Accessible names at any point of the program are those
declared in the current scope and surrounding (open) scopes.
• References are resolved by the innermost declaration.
• New declarations always pertain to the current (innermost)

scope.
• The language may have a way of specifying specific scopes,

such as extern and compilation-unit in C, qualified names
and package-level scope in Java.

• Organization techniques

• One ST per scope. Retrieval might need multiple lookups. But
organization is most straightforward, and the expected depth
is fairly low.
• One unified ST, with fields:

• name: pointer to string space (start index, length)
• type: pointer to type information
• hash: link to previous symbol hashing to same place
• var: pointer to next outer declaration of same name;

effectively a stack of scope declarations for this name.
• level: link to next symbol in same scope, to assist in

deleting all symbols when a scope is abandoned.
• depth: nesting depth, useful for preventing duplicates at

the same level.

• This unified ST is accessed in two ways

• hashing the name, linked through the hash field.
• delete(symbol): removes symbol from its hash chain
• add(symbol): adds the symbol to its hash chain

• scope display: a stack of scopes, each of which points to
the first symbol of that scope, linked through the level field.

• Pseudo-code Figure 8.7 page 292

• Example 8.8 page 293 , using Figure 8.1a page 291

CS541 Fall 2021 58

63 Dealing with language-specific concerns

• Nested structures, such as records.

• The structures can be arbitrarily deep, so they need a tree rep-
resentation, with children of a node being its fields.
• Instead, a structure can be a hash table, with children being its

entries.

• typedef in C: an alias for a type. The scanner can check all identi-
fiers in the ST and return a different token for a typedef identifier
to make parsing possible.

• Class 35, 11/22/2021

• Identifier overloading

• Method overloading is based on type signature (C++, Java)

• Can put the type signature along with the name in the ST:
"foo(int) void” But how do you compute the right key
at the calling point?
• Can place just the name in the ST, but pointing to a list of

signatures; the AST for a procedure call refers to the entire
list.

• Operator overloading (C++, Ada): every reference to an
operator must be checked in the ST.
• Literal overloading (Ada: enumeration literals)
• Variable semantics overloading (Pascal, Fortran): a method

name refers to the return value if used in an L-context. Use two
entries in the ST.
• Identifier-kind overloading (C: same name can be used as a

variable, struct name, label; Perl: same name can be used as
a scalar, hash, array, and procedure).
• Extension overloading (C++, Java: subclasses)

• Implicit declarations: (C: labels; Fortran: variables). Put them in the
ST as they are encountered (to avoid duplicates, store semantic
information).

• Export and import directives

• export (Java: public; C: all methods unless static).

CS541 Fall 2021 59

• import (C, C++: header file; Java: import; Ada: use). These
import directives can be used to pre-load the ST.

• Altered search rules

• Pascal: with statement
• forward references: might require two passes: noting the

forward references, checking that they are resolved.

64 Processing declarations

• Class 36, 11/29/2021

• Store attributes of the declared identifier in the ST

• For each variable, named constant, named type, method, store
a (pointer to a) type descriptor.
• The type descriptor has variants for different kinds of types:

integer, array (holds element type, index type, bounds), record
(holds fields)
• The AST entry for an identifier can point to its ST entry, or it

can simply store the relevant information, such as type. So it is
not necessary to use the ST during code generation.

• Using a visitor pattern (for the book’s way to factor the program)

• TypeVisitor extends TopDeclVisitor extends SemanticsVisitor
extends NodeVisitor extends Visitor.
• Each of these has a visit() method for each relevant type of AST

node.
• Figure 8.11 page 302

65 Semantics checking for AST nodes

• This section is redundant to the assignments.

• General steps when visiting a node

• If appropriate, put information in the symbol table, especially
for declaration AST nodes.

CS541 Fall 2021 60

• Check local semantics conditions
• If appropriate, modify the AST structure, particularly for intro-

ducing type coercions.
• If appropriate, store information in the AST node, particularly

type information (for expression nodes) and exception infor-
mation (for statement nodes). One discovers what information
needs to be stored as one proceeds in writing the code.

66 Particular AST nodes, extensions of StatementN-
ode

• This section is redundant to the assignments and in-class discussion.

• IfNode

• three children (condition:ExpressionNode, thenPart:StatementNode,
elsePart:StatementNode(can be empty)).
• Semantic check for condition type.
• Resulting exception information: union of exceptions thrown

by the thenPart and elsePart.

• WhileNode

• two children (condition:ExpressionNode, body:StatementNode).
• Semantic check for condition type.
• Resulting exception information: same as for body.

• ForNode

• four children (initialization:StatementNode, condition:ExpressionNode,
next:StatementNode, body:StatementNode).
• In C, every statement returns a value, so the condition is actu-

ally a StatementNode.
• If the initialization has a declaration, open a new symbol-table

scope with that identifier, close it on return from this AST; don’t
visit the body until that scope has been opened.
• If the condition is empty, can insert a BooleanLiteral node with

value true as the condition.
• Resulting exception information: same as for body.

CS541 Fall 2021 61

• LabelledNode

• Two children (label:IdentifierNode, body:StatementNode).
• Semantic check: label not yet in local scope.
• Action: put label in scope (kind: label); don’t visit the body until

the label is in the scope. (It’s actually more complex: avoid con-
flicting name, allow break/continue to this label only within
the body.)
• Resulting exception information: same as for body.

• ReturnNode

• One child (value:ExpressionNode (can be empty)).
• Semantic check: If current function has a non-void return type,

value cannot be empty and must have a compatible type. May
need to add a coercion node. If current function has a void re-
turn, value must be empty.
• To find the return type: a pseudo entry in the symbol table in-

serted when the function is declared holding the return type.
• Resulting exception information: empty.

• SwitchNode

• three children (condition:ExpressionNode, branches:List<BranchNode>,
default:StatementNode(can be empty)).

• BranchNode: two children (label:ExpressionNode, body:StatementNode).
• Semantic check: label has a static value.
• Resulting information: type (of the label), value (of the la-

bel), exception information from the body.

• Semantic check: all branches have different values, all have the
right type.
• Resulting exception information: union of exceptions of all branches

and the default.

67 Three kinds of semantic visitors

• Class 37, 12/1/2021

CS541 Fall 2021 62

• type correctness: verify that he types of all components of a node
conform to language rules. For instance, the condition of an if
must be Boolean. SemanticsVisitor (perhaps better called
TypecheckVisitor, but it also does some other semantic correctness
checking).

• reachability and termination: necessary in Java and C# to determine
if a construct terminates normally; optional in C and C++.
ReachabilityVisitor.

• exception handling: if a construct can throw an exception, it must
either be caught or listed in the method’s throw list (Java). Each
AST node containing a statement or expression has a throwsSet field.
ThrowsVisitor.

68 Types

• When there is a type error, it is best to associate the variable with a
TypeDescriptor called errorType to prevent cascading errors.

• Type equivalence (for purposes of assignment and formal-actual bind-
ing)

• Name equivalence (Ada, Pascal): Two identifiers are of the same
type if they share the same type descriptor in the ST.
• Structural equivalence (C, C++): Two identifiers are of the same

type if a traversal of the type trees is identical. One can store
a digital signature (hash) of a stringification of the traversal to
make static checking very easy.

• modifiers (like public, const) should be stored with identifiers in
the symbol table.

• initialized variables: can introduce a new assignment node, or can
make the initial value a child of the variable.

• array types: store base type, index type, length (or range), perhaps
for multiple dimension.

• struct types: store a hash of fields (like a scope), each with a type
and an offset from start.

• enum types: store a hash of values, each with a numeric value

CS541 Fall 2021 63

69 Class declarations

• Children (name:IdentifierNode, modifiers:List<modifier>, parent:IdentifierNode,
fields:Map<FieldDeclaration>, constructors, methods:Map<MethodDeclaration>)

• Semantic checks

• name is unique. Put in current scope.
• open a new scope.
• Two passes: first put all fields and methods in the symbol table

only as ”prototypes” (checking for unwanted duplicates), then
visit them all.
• pop the scope; it is still pointed to by parts of the AST we have

visited.

• To access the current class (needed for validity checks, for instance):
perhaps put this in the symbol table.

70 Method declarations

• Children (name:IdentifierNode, parameters:List<parameter>, return-
Type:TypeNode);

• Semantic checks

• open a new scope.
• put ”return” as a pseudo-identifier in the symbol table with its

type (possibly void).
• verify that all parameter names are unique. Put each in the sym-

bol table with its type (and any modifiers, such as readonly).
• visit the body
• pop the scope; it is still pointed to by parts of the AST we have

visited.

71 Reachability Visitor

• Class 38, 12/3/2021

• In Java, it is invalid to have an unreachable statement.

CS541 Fall 2021 64

• Complete confidence is equivalent to solving the halting problem,
so we take a conservative approach: If we are sure a statement is
unreachable, it is erroneous.

• Add two Boolean fields to the ASTs for statements (S) and statement
lists (SL).

• isReachable: generate an error message for any statement for
which this Boolean is false.
• terminatesNormally: generally true, but false for break,
return, continue, and loops that a conservative analysis
shows can never terminate.

• Rules

• isReachable is inherited by the first S of a SL; terminatesNormally
is synthesized from the last S to its SL.
• isReachable is true for the SL comprising the body of a method

(or constructor or static initializer).
• terminatesNormally is true for local variable declarations and for

expression statements (assignments, method calls, increment
or decrement), even if the statement itself is not reachable
(avoiding cascading errors).
• A null S or SL never generates an error, but its isReachable is

propagated to its successor.
• terminatesNormally is propagated from every S to isReachable of

S’s successor.
• return, break, and continue propagate false for isReachable.
• a value-returning function must end with isReachable false (or it

didn’t properly return!)

• Example: page 346

• Reachability visitors: Figure 9.3 page 349 , plus the figures that
it refers to.
• IfNode: terminates normally if either branch terminates

normally.
• WhileNode: does not terminate normally if the condition is

statically true. Body is not reachable if the condition is
statically false. Otherwise synthesizes terminatesNormally
from the body.

CS541 Fall 2021 65

72 Throws visitor

• Class 39, 12/6/2021

• We concentrate on Java; other languages are similar.

• Exceptions are typed; they must derive from Throwable.

• Checked exceptions (descendent of Exception) must be caught or
explicitly propagated.

• Unchecked exceptions (descendent of RuntimeException or
Error) may be handled; if not, they terminate execution. They
usually indicate errors that cannot be usefully handled.

• Basic visitors: Figure 9.4 page 351 . Two purposes:

• Discover the throwsSet for each node of the AST.
• Discover any exception-related semantic errors.

• Generally, just visit children, collect their throwsSet, store it. (if,
while, for)

• For some nodes, the throwsSet is empty. continue, break.

• TryNode

• Three children (body:StatementNode,
catches:List<CatchNode>, finally:StatementNode(can be
empty)).

• CatchNode: three children (ident:IdNode, type:TypeNode,
body:StatementNode).
• Semantic check: type is a catchable type.
• Open a new scope, put the ident in it, before visiting the

body.
• Resulting exception information: from the body.

• Semantic check

• Maintain a ”throws” list.
• Initially: the exception list of the body.
• Each catch node: the type must be in the throws list.

Remove it and any subtypes from the throws list.
• Add to the throws list the exception information from the

catch node.

CS541 Fall 2021 66

• Resulting exception information: union of throws list and the
exception information from the finally statement.

• TryNode visitors: Figure 9.28 page 374 . for try:

1 void visit(tryNode tn) {
2 visit(tn.body);
3 tn.throwsSet = tn.body.throwsSet;
4 for (c: tn.catches) {
5 tn.throwsSet =
6 reduce(tn.throwsSet, c.decl.type);
7 visit(c.body);
8 tn.throwsSet ∪= c.body.throwsSet;
9 } // each catch block c

10 visit(tn.theFinally);
11 tn.throwsSet ∪= tn.theFinally.throwsSet;
12 } // visit
13 set reduce(set full, type t) {
14 removed = false;
15 answer = ∅;
16 for (element:full) {
17 if subsumes(t, element) removed = true;
18 else answer ∪= {element};
19 } // each element in full
20 if (not removed) {
21 error("catch block doesn’t catch anything");
22 }
23 return answer;
24 } // reduce

73 Java overloaded method resolution

• This section is taken from https://coderanch.com/t/417622/
certification/Golden-Rules-widening-boxing-varargs.

• Rules

• 1. Primitive Widening (W) > Boxing (B) > Varargs (V)
• 2. Widening and Boxing (WB) not allowed.
• 3. Boxing and Widening (BW) allowed.

https://coderanch.com/t/417622/certification/Golden-Rules-widening-boxing-varargs
https://coderanch.com/t/417622/certification/Golden-Rules-widening-boxing-varargs

CS541 Fall 2021 67

• 4. WV and BV can only be used in a mutually exclusive manner.
• 5. Widening between wrapper classes not allowed.

• Examples
first second call result rule
foo(Integer i) foo(long l) foo(5) second 1
foo(int...i) foo(Integer i) foo(5) second Rule 1
foo(Long l) foo(int...i) foo(5) second 1, 2
foo(Long l) foo(Integer...i) foo(5) second 1, 2
foo(Object o) foo(Long l) foo(5) first 2, 3
foo(Object o) foo(int...i) foo(5) first 1, 3
foo(Object o) foo(long l) foo(5) second 1, 3
foo(long...l) foo(Integer...i) foo(5) ambiguous 4
foo(long...l) foo(Integer i) foo(5) second 1
foo(Long l) foo(Integer(5)) error 5
foo(Long l) foo(long...l) foo(Integer(5)) second 1, 5

74 Review

• Class 40, 12/8/2021

• making a grammar LL(1): p. 174 #5 notes p. 40

• LR(0) construction: p. 227 #f.

• Other items from the notes.

	Intro
	Overview of compilers: Chapter 1
	The organization of a compiler
	 Programming language considerations
	Computer architecture considerations
	Specialty compilers
	The ac (adding calculator) language: Chapter 2
	The scanner
	Formal language hierarchy
	The parser
	Abstract syntax trees
	What scanning and parsing cannot do
	Semantic analysis
	Generating code
	Overview of scanner: Chapter 3
	Regular expressions
	Useful examples
	Hashing
	Finite-state automata
	Implementing a deterministic FSA to recognize a language
	Transducers
	Scanner generators: lex, flex, jflex
	Regular expressions in Lex
	Practical considerations
	Converting regular expressions to finite automata
	Optimizing the resulting DFA
	Converting a FSA to a regular expression
	Context-free grammars: Chapter 4
	Parse trees
	Grammar types
	Using CFGs for describing programming-language syntax
	Extended BNF
	Recognizers and parsers
	Data structures to represent a CFG
	LL(1): recursive descent
	Computing when a nonterminal can derive
	Computing First()
	Computing Follow(N)
	Chapter 5: Top-down (LL) parsing (overview)
	The recursive-descent LL(1) parser
	Full example
	Midterm exam
	The table-driven LL(1) parser
	Compressing the parse table
	Making a CFG LL(1)
	Dangling-else problem
	Properties of LL(k) parsers
	Recovering from and repairing syntax errors
	Chapter 6: Bottom-up parsing
	LR(0) parsing
	Conflicts
	Chapter 7: Syntax-directed translation
	Bottom-up syntax-directed translation
	Top-down syntax-directed translation
	Method resolution in Java
	Abstract syntax trees
	Extended example of AST
	Design patterns for ASTs
	L-values and R-values
	Example of Jasmin code
	The Java Virtual Machine (JVM)
	Chapter 8: Symbol Tables
	Dealing with language-specific concerns
	Processing declarations
	Semantics checking for AST nodes
	Particular AST nodes, extensions of StatementNode
	Three kinds of semantic visitors
	Types
	Class declarations
	Method declarations
	Reachability Visitor
	Throws visitor
	Java overloaded method resolution
	Review

