
1

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Networking part I: Concepts

CS 485G-006: Systems Programming
Lecture 29: 8 Apr 2016

http://csapp.cs.cmu.edu/3e/instructors.html

2

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

A Client-Server Transaction
 Most network applications are based on the client-server

model:
 A server process and one or more client processes
 Server manages some resource
 Server provides service by manipulating resource for clients
 Server activated by request from client (vending machine analogy)

Client
process

Server
process

1. Client sends request

3. Server sends response 4. Client
handles

response

2. Server
handles
request

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

http://csapp.cs.cmu.edu/3e/instructors.html

3

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Global IP Internet (upper case)
 Most famous example of an internet

 Based on the TCP/IP protocol family
 IP (Internet Protocol) :

 Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

 UDP (Unreliable Datagram Protocol)
 Uses IP to provide unreliable datagram delivery from

process-to-process
 TCP (Transmission Control Protocol)

 Uses IP to provide reliable byte streams from process-to-process
over connections

 Accessed via a mix of Unix file I/O and functions from the

sockets interface

http://csapp.cs.cmu.edu/3e/instructors.html

4

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Hardware and Software Organization
of an Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

http://csapp.cs.cmu.edu/3e/instructors.html

5

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses
 128.2.203.179

2. The set of IP addresses is mapped to a set of identifiers
called Internet domain names
 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a
process on another Internet host over a connection

http://csapp.cs.cmu.edu/3e/instructors.html

6

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Aside: IPv4 and IPv6
 The original Internet Protocol, with its 32-bit addresses, is

known as Internet Protocol Version 4 (IPv4)

 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit addresses
 Intended as the successor to IPv4

 As of 2015, vast majority of Internet traffic still carried by
IPv4
 Only 4% of users access Google services using IPv6.

 We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

http://csapp.cs.cmu.edu/3e/instructors.html

7

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

(1) IP Addresses
 32-bit IP addresses are stored in an IP address struct
 IP addresses are always stored in memory in network byte order

(big-endian byte order)
 True in general for any integer transferred in a packet header from one

machine to another.
 E.g., the port number used to identify an Internet connection.

 Opposite byte order from Intel CPUs!
 Conversion functions: h (host = CPU) and n (network)

– htonl, ntohl: 32-bit values
– htons, ntohs: 16-bit values

/* Internet address structure */
struct in_addr {
 uint32_t s_addr; /* network byte order (big-endian) */
};

http://csapp.cs.cmu.edu/3e/instructors.html

8

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Dotted Decimal Notation
 By convention, each byte in a 32-bit IP address is represented

by its decimal value and separated by a period
 IP address: 0x8002C2F2 = 128.2.194.242

 Use getaddrinfo and getnameinfo functions (described

later) to convert between IP addresses and dotted decimal
format.

http://csapp.cs.cmu.edu/3e/instructors.html

9

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

IP Address Structure
 IP (V4) Address space divided into classes:

 Network ID Written in form w.x.y.z/n
 n = number of bits in host address
 E.g., CMU written as 128.2.0.0/16

 Class B address

 Unrouted (private) IP addresses:
 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Class A

Class B

Class C

Class D

Class E

0 1 2 3 8 16 24 31
0 Net ID Host ID

Host ID

Host ID Net ID

Net ID

Multicast address

Reserved for experiments

1 0

1 0 1

1 1 0 1

1 1 1 1

http://csapp.cs.cmu.edu/3e/instructors.html

10

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

(2) Internet Domain Names

.net .edu .gov .com

uky berkeley mit

cs myuk
128.163.16.248

www
128.163.146.21

unnamed root

mail
128.163.146.23

amazon

www
176.32.98.166

Top-level domain names
(TLDs)

Second-level domain names

Third-level domain names

http://csapp.cs.cmu.edu/3e/instructors.html

11

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Domain Name System (DNS)
 The Internet maintains a mapping between IP addresses and

domain names in a huge worldwide distributed database called
DNS

 Conceptually, programmers can view the DNS database as a
collection of millions of host entries.
 Each host entry defines the mapping between a set of domain names and IP

addresses.
 In a mathematical sense, a host entry is an equivalence class of domain

names and IP addresses.

http://csapp.cs.cmu.edu/3e/instructors.html

12

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Properties of DNS Mappings
 Can explore properties of DNS mappings using nslookup

 Output edited for brevity

 Each host has a locally defined domain name localhost
which always maps to the loopback address 127.0.0.1

 Use hostname to determine real domain name of local host:

linux> nslookup localhost
Address: 127.0.0.1

linux> hostname
whaleshark.ics.cs.cmu.edu

http://csapp.cs.cmu.edu/3e/instructors.html

13

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Properties of DNS Mappings (cont)
 Simple case: one-to-one mapping between domain name and IP

address:

 Multiple domain names mapped to the same IP address:

linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

linux> nslookup cs.mit.edu
Address: 18.62.1.6
linux> nslookup eecs.mit.edu
Address: 18.62.1.6

http://csapp.cs.cmu.edu/3e/instructors.html

14

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Properties of DNS Mappings (cont)
 Multiple domain names mapped to multiple IP addresses:

 Some valid domain names don’t map to any IP address:

linux> nslookup www.twitter.com
Address: 199.16.156.6
Address: 199.16.156.70
Address: 199.16.156.102
Address: 199.16.156.230

linux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70

linux> nslookup ics.cs.cmu.edu
*** Can't find ics.cs.cmu.edu: No answer

http://csapp.cs.cmu.edu/3e/instructors.html

15

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

(3) Internet Connections
 Clients and servers communicate by sending streams of bytes

over connections. Each connection is:
 Point-to-point: connects a pair of processes.
 Full-duplex: data can flow in both directions at the same time,
 Reliable: stream of bytes sent by the source is eventually received by

the destination in the same order it was sent.

 A socket is an endpoint of a connection
 Socket address is an IPaddress:port pair

 A port is a 16-bit integer that identifies a process:
 Ephemeral port: Assigned automatically by client kernel when client

makes a connection request.
 Well-known port: Associated with some service provided by a server

(e.g., port 80 is associated with Web servers)

http://csapp.cs.cmu.edu/3e/instructors.html

16

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Well-known Ports and Service Names
 Popular services have permanently assigned well-known

ports and corresponding well-known service names:
 echo server: 7/echo
 ssh servers: 22/ssh
 email server: 25/smtp
 Web servers: 80/http

 Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux
machine.

http://csapp.cs.cmu.edu/3e/instructors.html

17

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Anatomy of a Connection
 A connection is uniquely identified by the socket

addresses of its endpoints (socket pair)
 (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80) Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

http://csapp.cs.cmu.edu/3e/instructors.html

18

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

http://csapp.cs.cmu.edu/3e/instructors.html

19

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Interface
 Set of system-level functions used in conjunction with

Unix I/O to build network applications.

 Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

 Available on all modern systems
 Unix variants, Windows, OS X, IOS, Android, ARM

http://csapp.cs.cmu.edu/3e/instructors.html

20

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client Server

Sockets
 What is a socket?
 To the kernel, a socket is an endpoint of communication
 To an application, a socket is a file descriptor that lets the

application read/write from/to the network
 Remember: All Unix I/O devices, including networks, are

modeled as files

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket

I/O is how the application “opens” the socket descriptors

clientfd serverfd

http://csapp.cs.cmu.edu/3e/instructors.html

21

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Socket Address Structures
 Generic socket address:
 For address arguments to connect, bind, and accept
 Necessary only because C did not have generic (void *) pointers when

the sockets interface was designed
 For casting convenience, we adopt the Stevens convention:
 typedef struct sockaddr SA;

struct sockaddr {
 uint16_t sa_family; /* Protocol family */
 char sa_data[14]; /* Address data. */
};

sa_family

Family Specific

http://csapp.cs.cmu.edu/3e/instructors.html

22

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Socket Address Structures
 Internet-specific socket address:
 Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0
sa_family

Family Specific

struct sockaddr_in {
 uint16_t sin_family; /* Protocol family (always AF_INET) */
 uint16_t sin_port; /* Port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */
};

sin_port

AF_INET

sin_addr

sin_family

http://csapp.cs.cmu.edu/3e/instructors.html

23

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

24

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

25

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Host and Service Conversion: getaddrinfo

 getaddrinfo is the modern way to convert string
representations of hostnames, host addresses, ports, and
service names to socket address structures.
 Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:
 Reentrant (can be safely used by threaded programs).
 Allows us to write portable protocol-independent code

 Works with both IPv4 and IPv6

 Disadvantages
 Somewhat complex
 Fortunately, a small number of usage patterns suffice in most cases.

http://csapp.cs.cmu.edu/3e/instructors.html

26

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

 Helper functions:
 freeadderinfo frees the entire linked list.
 gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */
 const char *service, /* Port or service name
*/
 const struct addrinfo *hints,/* Input parameters */
 struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

http://csapp.cs.cmu.edu/3e/instructors.html

27

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr
ai_next

addrinfo structs

Socket address structs

NULL
ai_addr
ai_next

NULL
ai_addr
NULL

 Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

 Servers: walk the list until calls to socket and bind succeed.

http://csapp.cs.cmu.edu/3e/instructors.html

28

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

addrinfo Struct

 Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

 Also points to a socket address struct that can be passed
directly to connect and bind functions.

struct addrinfo {
 int ai_flags; /* Hints argument flags */
 int ai_family; /* First arg to socket function */
 int ai_socktype; /* Second arg to socket function */
 int ai_protocol; /* Third arg to socket function */
 char *ai_canonname; /* Canonical host name */
 size_t ai_addrlen; /* Size of ai_addr struct */
 struct sockaddr *ai_addr; /* Ptr to socket address structure */
 struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

http://csapp.cs.cmu.edu/3e/instructors.html

29

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Host and Service Conversion: getnameinfo

 getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
 Replaces obsolete gethostbyaddr and getservbyport funcs.
 Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */
 char *host, size_t hostlen, /* Out: host */
 char *serv, size_t servlen, /* Out: service */
 int flags); /* optional flags */

http://csapp.cs.cmu.edu/3e/instructors.html

30

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)
{
 struct addrinfo *p, *listp, hints;
 char buf[MAXLINE];
 int rc, flags;

 /* Get a list of addrinfo records */
 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_family = AF_INET; /* IPv4 only */
 hints.ai_socktype = SOCK_STREAM; /* Connections only */
 if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));
 exit(1);
 }
 hostinfo.c

http://csapp.cs.cmu.edu/3e/instructors.html

31

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Conversion Example (cont)

 /* Walk the list and display each IP address */
 flags = NI_NUMERICHOST; /* Display address instead of name */
 for (p = listp; p; p = p->ai_next) {
 Getnameinfo(p->ai_addr, p->ai_addrlen,
 buf, MAXLINE, NULL, 0, flags);
 printf("%s\n", buf);
 }

 /* Clean up */
 Freeaddrinfo(listp);

 exit(0);
} hostinfo.c

http://csapp.cs.cmu.edu/3e/instructors.html

32

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198

http://csapp.cs.cmu.edu/3e/instructors.html

	Networking part I: Concepts
	A Client-Server Transaction
	Global IP Internet (upper case)
	Hardware and Software Organization �of an Internet Application
	A Programmer’s View of the Internet
	Aside: IPv4 and IPv6
	(1) IP Addresses
	Dotted Decimal Notation
	IP Address Structure
	(2) Internet Domain Names
	Domain Name System (DNS)
	Properties of DNS Mappings
	Properties of DNS Mappings (cont)
	Properties of DNS Mappings (cont)
	(3) Internet Connections
	Well-known Ports and Service Names	
	Anatomy of a Connection
	Using Ports to Identify Services
	Sockets Interface
	Sockets
	Socket Address Structures
	Socket Address Structures
	Sockets Interface
	Sockets Interface
	Host and Service Conversion: getaddrinfo
	Host and Service Conversion: getaddrinfo
	Linked List Returned by getaddrinfo
	addrinfo Struct
	Host and Service Conversion: getnameinfo
	Conversion Example
	Conversion Example (cont)
	Running hostinfo

