
CS 485 Systems Programming

1

Debugging Tools

CS 485G-006: Systems Programming
Lecture 8: 5 Feb 2016

CS 485 Systems Programming

2

gdb
 Gdb is the gnu debugger program

 Runs on most systems
 Allows you to examine a running executable (e.g., a.out)
 It can be used without the source code that created the executable
 If you have the source code, it is best to compile the program with debugging

information (symbol tables, etc) include:
 gcc –g hello.c

 To run gdb on an executable file:
 gdb a.out

 You will then be presented with a command line interface
 Using the command line interface, you can get help by typing

 help
 help subtopic (where subtopic is one of the main subtopic areas listed by

typing help). Examples include:
– help data
– help breakpoints

 help command (where command is a gdb command). Examples include:
– help print
– help run

CS 485 Systems Programming

3

gdb - breakpoints
 Breakpoints are points in the program where you would like the

program to stop so that you can examine what is going on (e.g.,
look at the contents of memory, registers, variables, etc).

 In the absence of breakpoints the program will run as normal
until it completes or encounters and error.

 Typically you will want to set a breakpoint (near the point in the
program where you think there is a problem) before you run the
program within gdb.

 Breakpoints can be enabled and disabled.
 There are several ways to set a breakpoint. Examples include:
 break function_name
 break linenumber, or break filename:linenumber
 break address

CS 485 Systems Programming

4

gdb useful commands
(running a program)

 run
 Run the program within gdb

 continue
 Continue the program after encountering a breakpoint

 step
 Run the program until it encounters the next line in the source file.

 stepi
 Run the program until it encounters the next machine instruction

 next
 Like step, but continue through subroutines/procedure calls

CS 485 Systems Programming

5

gdb useful commands
(examining memory)

 x/nfu address
 Examine memory or register at location address, where

 n is the number of items to examine
 f is the format to use when displaying values

– s for strings
– d for integers
– u for unsigned integers
– x for hexidecimal
– a for address/pointer
– f for floating point

 u is the unit
– b for byte
– h for halfword
– w for word
– g for giant word

 print exp
 Print the value of expression exp

 print /f exp
 Print the value of expression exp using format f (see format specs above).

 printf string, expressions
 print the list of expressions using the c-style format string string

 display /f exp
 Print the value of expression exp using format f every time there is a break in execution

CS 485 Systems Programming

6

gdb useful commands
(examining registers)

 info registers
 Print a list of the register contents

 Registers can be referenced in expressions by a well-known
variable name that corresponds to the usual term used for
the register. Variable names start with $. For example:
 x/d $eax

 Prints the contents of the eax register as a number
 x/s $eax

 Prints the strings starting at the address represented by the
address held in the eax register

 print $pc
 Prints the address in the pc register

CS 485 Systems Programming

7

gdb useful commands
(misc commands)

 bt
 Backtrace prints the contents of the current stack

 info frame
 Print information about the current stack frame

 info args
 Print information about the arguments passed to the current

procedure

 info locals
 Print information about the current local variables

 list linenumber
 List the source code lines around the linenumber specified

CS 485 Systems Programming

8

Assembly language debugging
 Setting breakpoints at any machine instruction

 break *0x400fe9
 Disassembling code

 disassemble (abbreviate as: disas)
 Disassembles the code around the current program counter

 disassemble 0x400fe9, 0x400fff
 Disassembles code from 0x400fe9 to 0x400fff

 disassemble 0x400fe9, +10
 Disassembles code starting at 0x400fe9 and going 10 more bytes

 set disassemble-next-line on
 After breaking, disassemble the next instruction

 User defined commands
 Use the “define” command to create your own gdb commands
 For example, to create your own stepi function you might define

define mystepi
 stepi
 disassemble
end

 For more information, google for “gdb user defined commands”

CS 485 Systems Programming

9

gdb useful help/tutorial pages
 Documentation
 http://web.mit.edu/gnu/doc/html/gdb_1.html
 ftp://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_toc.html
 http://www.cs.hmc.edu/~geoff/classes/hmc.cs105.200901/labs/gd

binfo.html

 Tutorials
 Google for “gdb tutorial”
 Lots of good tutorials

http://web.mit.edu/gnu/doc/html/gdb_1.html
http://web.mit.edu/gnu/doc/html/gdb_1.html
Ftp://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_toc.html
http://www.cs.hmc.edu/%7Egeoff/classes/hmc.cs105.200901/labs/gdbinfo.html
http://www.cs.hmc.edu/%7Egeoff/classes/hmc.cs105.200901/labs/gdbinfo.html

	Debugging Tools
	gdb
	gdb - breakpoints
	gdb useful commands�(running a program)
	gdb useful commands�(examining memory)
	gdb useful commands�(examining registers)
	gdb useful commands�(misc commands)
	Assembly language debugging
	gdb useful help/tutorial pages

