
CS 485 Systems Programming

1

Compilation, Disassembly, and Profiling
(in Linux)

CS 485: Systems Programming
Spring 2016

Instructor:
Neil Moore

CS 485 Systems Programming

2

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in files p1.c p2.c
 Compile with command: gcc –O1 p1.c p2.c -o p
 Use basic optimizations (-O1)
 Put resulting binary in file p

CS 485 Systems Programming

3

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in files p1.c p2.c
 Compile with command: gcc –O1 p1.c p2.c -o p
 Use basic optimizations (-O1)
 Put resulting binary in file p

Can stop the
compilation
process at
any stage.

CS 485 Systems Programming

4

Invoking the compiler
 We will use the Gnu command line compilers

 gcc – compiles C programs
 g++ - compiles C++ programs (and C programs)

 Useful command line options
 -o filename

 Defines the output filename
 Example: gcc –o hello hello.c

– will create an executable file named “hello”
 -E

 Preprocess only – (the same as running the cpp program)
 Example: gcc –E hello.c > hello.i

– Will run the preprocessor and process header files to create “hello.i”
 -c

 Create an object file (.o) – i.e. Compile/Assemble, but do not link
 Example: gcc –c hello.c

– Will create an object file called hello.o
 -S

 Create an assembly language file (.s) – i.e., Compile, but do not assemble
 Example: gcc –S hello.c

– Will create an assembly language file called “hello.s”

CS 485 Systems Programming

5

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
 Code in files p1.c p2.c
 Compile with command: gcc –O1 p1.c p2.c -o p
 Use basic optimizations (-O1)
 Put resulting binary in file p

Information is
lost at each
step of the
compilation
Process.

CS 485 Systems Programming

6

Compiling Into Assembly
C Code
 int triplesum(int x, int y)
{
 int t = x+y;
 return 3*t;
}

Generated IA32 Assembly
 triplesum:

addl %edi, %esi
 leal (%rsi,%rsi,2), %eax
 ret

Obtain with command

gcc –O1 -S tsum.c

Produces file tsum.s

Also some directives like
“.cfi_startproc”
(used for debugging), and
labels like “.LFB0:”

Upon entry:
 x stored in %edi register
 y stored in %esi register
Then:
 t replaces y in %esi
 (%rsi is 64-bit %esi)
 return value goes to %eax

For example:
Variable names are lost
Parameters are lost

CS 485 Systems Programming

7

Code for sum
 0000 <triplesum>:
 0x01
 0xfe
 0x8d
 0x04
 0x76
 0xc3

Object Code

 Assembler
 Translates .s into .o
 Binary encoding of each instruction
 Nearly-complete image of executable code
 Missing linkages between code in different

files

 Linker
 Resolves references between files
 Combines with static run-time libraries

 E.g., code for malloc, printf
 Some libraries are dynamically linked

 Linking occurs when program begins
execution

• Total of 6 bytes
• Each instruction here

is 1, 2, or 3 bytes (but
can be much longer)

• Placeholder address
0x0000; actual
address assigned by
linker.

Just binary bytes. Most
assembly language is lost

CS 485 Systems Programming

8

Invoking the compiler
 We will use the Gnu command line compilers

 gcc – compiles C programs
 g++ - compiles C++ programs (and C programs)

 Useful command line options
 -o filename

 Defines the output filename
 Example: gcc –o hello hello.c

– will create an executable file named “hello”
 -E

 Preprocess only – (the same as running the cpp program)
 Example: gcc –E hello.c > hello.i

– Will run the preprocessor and process header files to create “hello.i”
 -c

 Create an object file (.o) – i.e. Compile/Assemble, but do not link
 Example: gcc –c hello.c

– Will create an object file called hello.o
 -S

 Create an assembly language file (.s) – i.e., Compile, but do not assemble
 Example: gcc –S hello.c

– Will create an assembly language file called “hello.s”
 -g

 Add symbol information to the file
 Useful when debugging and disassembling programs

 -pg
 Add profiling information to the file
 Useful when profiling performance

 -Olevel
 Optimize the code using the specified level’s optimizations
 Level 0 is the fewest optimizations, Level 3 is the most optimizations
 Level g (-Og) optimizes as much as possible without hurting debugging.
 Example: gcc –O3 hello.c

CS 485 Systems Programming

9

Profiling Code
 Compile with the –pg option to gcc
 gprof – commonly installed and used profiling tool for

unix-based systems
 Valgrind – more advanced tool that also comes with

graphical user interfaces to visualize a program’s
performance and call graph

CS 485 Systems Programming

10

Gprof concepts
 Step 1: Add profiling information to the program
 gcc –pg –o myprog myprog.c

 Step 2: Run the program to create gmon.out (profile info)
 ./myprog

 Step 3: Analyze the performance information
 View time spent in each procedure

 gprof –p ./myprog
 View call graph

 gprof –q ./myprog

CS 485 Systems Programming

11

Disassembling Code
 There are a variety of tools that can be used to look at compiled

code.
 Some are useful for seeing the assembly language

code/instructions
 objdump -d
 gdb – using the disassemble command

 Some provide information about the data/variables
 nm

 Some are basics tools that can give hints about what is in the file
 strings
 od

 Some are graphical front ends
 dissy

CS 485 Systems Programming

12

Disassembled

Disassembling Object Code

 Disassembler
objdump –d filename

 Useful tool for examining object code
 Analyzes bit pattern of series of instructions
 Produces approximate rendition of assembly code
 Can be run on either a.out (complete executable) or .o file

000000000040055d <triplesum>:
 40055d: 01 fe add %edi,%esi
 40055f: 8d 04 76 lea (%rsi,%rsi,2),%eax
 400562: c3 ret

CS 485 Systems Programming

13

Disassembled

Dump of assembler code for function triplesum:
0x..40055d <+0>: add %edi,%esi
0x..40055f <+2>: lea (%rsi,%rsi,2),%eax
0x..400562 <+5>: ret

Alternate Disassembly

 Within gdb Debugger
 First run “gdb filename”
 Then inside gdb type “disassemble sum”

 Disassemble procedure
 x/6xb sum

 Examine the 6 bytes starting at sum, as hexadecimal

Object
 0x40055d:
 0x01
 0xfe
 0x8d
 0x04
 0x76
 0xc3

	Compilation, Disassembly, and Profiling�(in Linux)��CS 485: Systems Programming�Spring 2016
	Turning C into Object Code
	Turning C into Object Code
	Invoking the compiler
	Turning C into Object Code
	Compiling Into Assembly
	Object Code
	Invoking the compiler
	Profiling Code
	Gprof concepts
	Disassembling Code
	Disassembling Object Code
	Alternate Disassembly

