
1 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Bits, Bytes, and Integers 

CS 485G-006: Systems Programming  
Lectures 2 and 3:  15–18 Jan 2016 

http://csapp.cs.cmu.edu/3e/instructors.html


2 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Overview: Bits, Bytes, and Integers 

 Representing information as bits 
 Bit-level manipulations 
 Integers 
 Representation: unsigned and signed 

http://csapp.cs.cmu.edu/3e/instructors.html


3 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Everything is bits 

0.0V 

0.2V 

0.9V 

1.1V 

0 1 0 

http://csapp.cs.cmu.edu/3e/instructors.html


4 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

For example, can count in binary 
 Base 2 Number Representation 
 Represent 1521310 as 111011011011012 

 1 x 8192 + 1 x 4096 + 1 x 2048 + 0 x 1024 + …. 
 Represent 1.2010 as 1.0011001100110011[0011]…2 

 Represent 1.5213 X 104  as 1.11011011011012 X 213 

http://csapp.cs.cmu.edu/3e/instructors.html


5 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Bits, bytes, and octets 
 Bases 
 Decimal – base 10: our number system 
 Binary – base 2: all 0s and 1s 
 Hexadecimal – base 16 

 0-9, A-F 
 FA1D37B16 = 0xfa1d37b in C 
 4 bits per “digit” 

 Byte = 8 bits (usually) 
 Machine term: smallest addressable unit of memory 
 Binary 000000002 to 111111112 

 Decimal: 010 to 25510 
 Hexadecimal 0016 to FF16 

 Octet = 8 bits (always) 
 This is the term used in networking 

 How many bytes to store: 10011000111012 = 131D16 = 489310 

 

 

0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
A 10 1010 
B 11 1011 
C 12 1100 
D 13 1101 
E 14 1110 
F 15 1111 

http://csapp.cs.cmu.edu/3e/instructors.html


6 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

How big is “mega” 
 Scientists, most engineers say 106 
 1,000,000 – decimal megabyte 
 Megabyte – MB (what is Mb?) 

 Programmers, computer engineers, say 220 

 1,048,576 – binary megabyte 
 About 5% larger 
 “Mebibyte” (MiB) – IEC “standard” term, but not very common 

 Networks are based on clock rates in Hz: decimal mega 
 One megabit per second = 106 bits per second 

 Computer memory is based on powers of 2: binary mega 
 A megabyte of memory is 220 bytes. 

 Hard drives and SSDs? 
 For marketing reasons, use the decimal system (sounds bigger) 
 Even though sector sizes, Flash blocks are usually powers of two. 

 Kilo, Giga, Tera are similar 
 

 

http://csapp.cs.cmu.edu/3e/instructors.html


7 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Byte-Oriented Memory Organization 

 Programs refer to data by (virtual) address 
 Conceptually, envision memory as a very large array of bytes 

 In reality, it’s not, but virtual memory makes it look that way 
 An address is like an index into that array 

 and, a pointer variable stores an address 
 System provides private address spaces to each “process” 
 So, a program can clobber its own data, but not that of others 

 Compiler + OS control the allocation of memory 
 OS determines where different programs should be stored 
 Compiler determines how data is laid out within a program 

• • • 

http://csapp.cs.cmu.edu/3e/instructors.html


8 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Machine Words 
 Any given computer has a “Word Size” 
 Nominal size of integer-valued data 
 And/or of addresses 

 Until recently, most machines used 32 bits (4 bytes) as word size 
 Limits addresses to 4GB (232 bytes) 
 Too small for memory-intensive applications 

 Increasingly, machines have 64-bit word size 
 Potentially, could have 18 EB (exabytes) of addressable memory 
 That’s 18.4 X 1018 

 x86-64 currently supports 48 bits of address: 256 TB 
 Machines still support multiple data formats 
 Fractions or multiples of word size 
 Always integral number of bytes 

http://csapp.cs.cmu.edu/3e/instructors.html


9 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Word-Oriented Memory Organization 
 Addresses Specify Byte Locations 
 Address of first byte in word 
 Addresses of successive words differ 

by 4 (32-bit) or 8 (64-bit) 

 Beware terminology 
 Intel terminology is old-fashioned 
 Doubleword = 4 bytes (32-bit) 
 Quadword = 8 bytes (64-bit) 
 Why? Backwards compatibility. 

 “Word” = 2 bytes (16-bit) 
 Chips still support 16-bit code 
 Even 16+32 bit code, or 32+64 bit, 

at the same time! 
 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 

32-bit 
Words Bytes Addr. 

0012 
0013 
0014 
0015 

64-bit 
Words 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

0000 

0004 

0008 

0012 

0000 

0008 

http://csapp.cs.cmu.edu/3e/instructors.html


10 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Example Data Representations 

C Data Type Typical 16-
bit μC 

Typical 32-
bit 

Typical 64-
bit x86-64 

char 1 1 1 1 

short 2 2 2 2 

int 2 4 4 4 

long 4 4 8 8 

long long − 8 8 8 

float −/4 4 4 4 

double − 8 8 8 

long 
double − − − 10/16 

pointer 2 4 8 8 

http://csapp.cs.cmu.edu/3e/instructors.html


11 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Byte Ordering 
 So, how are the bytes within a multi-byte word ordered in 

memory? 
 Conventions 
 Big Endian: Sun, PPC Mac, Internet 
 Least significant byte has highest address 

 Little Endian: x86, ARM processors running Android, iOS, and 
Windows 
 Least significant byte has lowest address 

http://csapp.cs.cmu.edu/3e/instructors.html


12 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Byte Ordering Example 

 Example 
 Variable x has 4-byte value of 0x01234567 
 Address given by &x is 0x100 

0x100 0x101 0x102 0x103 

01 23 45 67 

0x100 0x101 0x102 0x103 

67 45 23 01 

Big Endian 

Little Endian 

01 23 45 67 

67 45 23 01 

http://csapp.cs.cmu.edu/3e/instructors.html


13 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Representing Integers 
Decimal: 15213 

Binary:   0011 1011 0110 1101 

Hex:     3    B    6    D 

6D 
3B 
00 
00 

IA32, x86-64 

3B 
6D 

00 
00 

Sun 

int A = 15213; 

93 
C4 
FF 
FF 

IA32, x86-64 

C4 
93 

FF 
FF 

Sun 

Two’s complement representation 

int B = -15213; 

long int C = 15213; 

00 
00 
00 
00 

6D 
3B 
00 
00 

x86-64 

3B 
6D 

00 
00 

Sun 

6D 
3B 
00 
00 

IA32 

http://csapp.cs.cmu.edu/3e/instructors.html


14 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Examining Data Representations 
 Code to Print Byte Representation of Data 
 Casting pointer to unsigned char * allows treatment as a byte array 

Printf directives: 
%p: Print pointer 
%x: Print Hexadecimal 

typedef unsigned char *pointer; 
 
void show_bytes(pointer start, size_t len){ 
  size_t i; 
  for (i = 0; i < len; i++) 
    printf(”%p\t%.2x\n",start+i, start[i]); 
  printf("\n"); 
} 

http://csapp.cs.cmu.edu/3e/instructors.html


15 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

show_bytes Execution Example 
int a = 15213; 
printf("int a = 15213;\n"); 
show_bytes((pointer) &a, sizeof(int)); 

Result (Linux x86-64): 
int a = 15213; 
0x7fffb7f71dbc 6d 
0x7fffb7f71dbd 3b 
0x7fffb7f71dbe 00 
0x7fffb7f71dbf 00 

http://csapp.cs.cmu.edu/3e/instructors.html


16 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

 Address Instruction Code Assembly Rendition 
 8048365: 5b                    pop    %ebx 
 8048366: 81 c3 ab 12 00 00     add    $0x12ab,%ebx 
 804836c: 83 bb 28 00 00 00 00  cmpl   $0x0,0x28(%ebx) 

Reading Byte-Reversed Listings 
 Disassembly 
 Text representation of binary machine code 
 Generated by program that reads the machine code 

 Example Fragment 

 Deciphering Numbers 
 Value: 0x12ab 

 Pad to 32 bits: 0x000012ab 

 Split into bytes: 00 00 12 ab 

 Reverse: ab 12 00 00 

http://csapp.cs.cmu.edu/3e/instructors.html


17 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

char S[6] = "18213"; 

Representing Strings 

 Strings in C 
 Represented by array of characters 
 Each character encoded in ASCII format 
 Standard 7-bit encoding of character set 
 Character “0” has code 0x30 

– Digit i  has code 0x30+i 
 String should be null-terminated 
 Final character = 0 

 Compatibility 
 Byte ordering not an issue 

IA32 Sun 

31 

38 

32 

31 

33 

00 

31 

38 

32 

31 

33 

00 

http://csapp.cs.cmu.edu/3e/instructors.html


18 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Strings vs. Buffers 

 Strings and buffers can be easy to confuse 
 They look alike in C: 
 String: char example_string[200]; 
 Buffer: char example_buffer[200]; 

 The difference?  How you use them. 
 String 
 Sequence of characters, usually “printable”. 
 Uses a NUL character ‘\0’ (all zero bits) to mark the end. 
 Meaning NUL bytes are not allowed within the string. 

 Buffer 
 Not explicitly defined by C, but often used in networking, OS, ... 
 An array of bytes. 
 Stores any byte, including 0 – so NUL cannot be a terminator. 
 Requires an additional variable to store the “current size” (how 

many of the bytes contain meaningful data). 

http://csapp.cs.cmu.edu/3e/instructors.html


19 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Overview: Bits, Bytes, and Integers 

 Representing information as bits 
 Bit-level manipulations 
 Integers 
 Representation: unsigned and signed 

http://csapp.cs.cmu.edu/3e/instructors.html


20 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Boolean Algebra 
 Developed by George Boole in 19th Century 
 Algebraic representation of logic 
 Encode “True” as 1 and “False” as 0 

And 
 A&B = 1 when both A=1 and B=1 

Or 
 A|B = 1 when either A=1 or B=1 

Not 
 ~A = 1 when A=0 

Exclusive-Or (Xor) 
 A^B = 1 when either A=1 or B=1, but not both 

http://csapp.cs.cmu.edu/3e/instructors.html


21 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Application of Boolean Algebra 
 Applied to Digital Systems by Claude Shannon 
 1937 MIT Master’s Thesis 
 Reason about networks of relay switches 
 Encode closed switch as 1, open switch as 0 

A 

~A 

~B 

B 

Connection when 
   
 A&~B | ~A&B 
 
   

A&~B 

~A&B = A^B 

http://csapp.cs.cmu.edu/3e/instructors.html


22 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

General Boolean Algebras 
 Operate on Bit Vectors 
 Operations applied bitwise 

 
 
 

 All of the Properties of Boolean Algebra Apply 

  01101001 
& 01010101 
  01000001 

  01101001 
| 01010101 
  01111101 

  01101001 
^ 01010101 
  00111100 

   
~ 01010101 
  10101010   01000001 01111101 00111100 10101010 

http://csapp.cs.cmu.edu/3e/instructors.html


23 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Example: Representing & Manipulating Sets 
 Representation 
 Width w bit vector represents subsets of {0, …, w–1} 
 aj = 1 if j  ∈ A 

 
  01101001 { 0, 3, 5, 6 } 
  76543210 

 
  01010101 { 0, 2, 4, 6 } 
  76543210 

 Operations 
 &    Intersection  01000001 { 0, 6 } 
 |     Union   01111101 { 0, 2, 3, 4, 5, 6 } 
 ^     Symmetric difference 00111100 { 2, 3, 4, 5 } 
 ~     Complement  10101010 { 1, 3, 5, 7 } 

http://csapp.cs.cmu.edu/3e/instructors.html


24 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Bit-Level Operations in C 

 Operations &,  |,  ~,  ^ Available in C 
 Apply to any “integral” data type 

 long, int, short, char, unsigned 
 View arguments as bit vectors 
 Arguments applied bit-wise 

 Examples (Char data type) 
 ~0x41 → 0xBE 

 ~010000012 → 101111102 
 ~0x00 → 0xFF 

 ~000000002 → 111111112 
 0x69 & 0x55 → 0x41 

 011010012 & 010101012 → 010000012 
 0x69 | 0x55 → 0x7D 

 011010012 | 010101012 → 011111012 

http://csapp.cs.cmu.edu/3e/instructors.html


25 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Contrast: Logic Operations in C 
 Contrast to Logical Operators 
 &&, ||, ! 
 View 0 as “False” 
 Anything nonzero as “True” 
 Always return 0 or 1 
 Early termination (“short-circuiting”) 

 Examples (char data type) 
 !0x41  →  0x00 
 !0x00  →  0x01 
 !!0x41  →  0x01 

 0x69 && 0x55  →  0x01 
 0x69 || 0x55  →  0x01 
 p && *p  (avoids null pointer access) 

http://csapp.cs.cmu.edu/3e/instructors.html


26 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Shift Operations 
 Left Shift:  x << y 
 Shift bit-vector x left y positions 

– Throw away extra bits on left 
 Fill with 0’s on right 

 Right Shift:  x >> y 
 Shift bit-vector x right y positions 
 Throw away extra bits on right 

 Logical shift (unsigned) 
 Fill with 0’s on left 

 Arithmetic shift (signed) 
 Copy most significant bit on left 

 Undefined Behavior 
 If the shift amount is < 0 or ≥ word size 

01100010 Argument x 

00010000 << 3 

00011000 Log. >> 2 

00011000 Arith. >> 2 

10100010 Argument x 

00010000 << 3 

00101000 Log. >> 2 

11101000 Arith. >> 2 

00010000 00010000 

00011000 00011000 

00011000 00011000 

00010000 

00101000 

11101000 

00010000 

00101000 

11101000 

http://csapp.cs.cmu.edu/3e/instructors.html


27 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Overview: Bits, Bytes, and Integers 

 Representing information as bits 
 Bit-level manipulations 
 Integers 
 Representation: unsigned and signed 

http://csapp.cs.cmu.edu/3e/instructors.html


28 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Encoding Integers 

 C short 2 bytes long 
 
 

 Sign Bit 
 For 2’s complement, most significant bit indicates sign 

 0 for nonnegative 
 1 for negative 

  short int x =  15213; 
  short int y = -15213; 

B2T (X ) = −xw−1 ⋅2
w−1 + xi ⋅2

i

i=0

w−2

∑B2U(X ) = xi ⋅2
i

i=0

w−1

∑
Unsigned Two’s Complement 

Sign 
Bit 

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 
y -15213 C4 93 11000100 10010011 
 

http://csapp.cs.cmu.edu/3e/instructors.html


29 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Two’s-complement Encoding (Cont.) 
  x =      15213: 00111011 01101101 
  y =     -15213: 11000100 10010011 

Weight 15213 -15213 
1 1 1 1 1 
2 0 0 1 2 
4 1 4 0 0 
8 1 8 0 0 

16 0 0 1 16 
32 1 32 0 0 
64 1 64 0 0 

128 0 0 1 128 
256 1 256 0 0 
512 1 512 0 0 

1024 0 0 1 1024 
2048 1 2048 0 0 
4096 1 4096 0 0 
8192 1 8192 0 0 

16384 0 0 1 16384 
-32768 0 0 1 -32768 

Sum  15213  -15213 
 

http://csapp.cs.cmu.edu/3e/instructors.html


30 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Numeric Ranges 
 Unsigned Values 
 UMin = 0 

000…0 
 UMax  =  2w – 1 

111…1 

 Two’s Complement Values 
 TMin =  –2w–1 

100…0 
 TMax  =  2w–1 – 1 

011…1 
 Other Values 
 Minus 1 

111…1 

 Decimal Hex Binary 
UMax 65535 FF FF 11111111 11111111 
TMax 32767 7F FF 01111111 11111111 
TMin -32768 80 00 10000000 00000000 
-1 -1 FF FF 11111111 11111111 
0 0 00 00 00000000 00000000 
 

Values for W = 16 

http://csapp.cs.cmu.edu/3e/instructors.html


31 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Values for Different Word Sizes 

 Observations 
 |TMin |  =  TMax + 1 

 Asymmetric range 
 UMax = 2 * TMax + 1 

   

 W 
 8 16 32 64 

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615 
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807 
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808 

 
 

 C Programming 
 #include <limits.h> 
 Declares constants, e.g., 
 ULONG_MAX 
 LONG_MAX 
 LONG_MIN 

 Values platform specific   

http://csapp.cs.cmu.edu/3e/instructors.html


32 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Unsigned & Signed Numeric Values 
 Equivalence 
 Same encodings for nonnegative values 

 Uniqueness 
 Every bit pattern represents unique 

integer value 
 Each representable integer has unique 

bit encoding 

 ⇒ Can Invert Mappings 
 U2B(x)  =  B2U-1(x) 

 Bit pattern for unsigned integer 
 T2B(x)  =  B2T-1(x) 

 Bit pattern for two’s comp integer 

X B2T(X) B2U(X) 
0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 

–8 8 
–7 9 
–6 10 
–5 11 
–4 12 
–3 13 
–2 14 
–1 15 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

0 
1 
2 
3 
4 
5 
6 
7 

http://csapp.cs.cmu.edu/3e/instructors.html


33 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Signed vs. Unsigned in C 
 Literals 
 By default are considered to be signed integers 
 Unsigned if have “U” as suffix: 0U, 4294967259U 

 Types: 
 Signed: int, short, long, long long, signed char 
 Unsigned: unsigned, unsigned short, unsigned long, …, size_t 
 Plain char can be either signed or unsigned on different platforms! 

 Casting 
 Explicit casting between signed & unsigned keep the bit patterns and 

reinterpret (U2T(x) = B2T(U2B(x)), T2U(x) = B2U(T2B(x)) 
int tx, ty; 
unsigned ux, uy; 
tx = (int) ux; 
uy = (unsigned) ty; 

 Implicit casting also occurs via assignments and procedure calls 
tx = ux; 
uy = ty; 

 

http://csapp.cs.cmu.edu/3e/instructors.html


34 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

 0 0U == unsigned 
 -1 0 < signed 
 -1 0U > unsigned 
 2147483647 -2147483648  > signed 
 2147483647U -2147483648  < unsigned 
 -1 -2  > signed 
 (unsigned) -1 -2  > unsigned 
  2147483647  2147483648U  < unsigned 
  2147483647  (int) 2147483648U > signed 

Casting Surprises 
 Expression Evaluation 

 If there is a mix of unsigned and signed in single expression,  
signed values implicitly cast to unsigned 
 Including comparison operations <, >, ==, <=, >= 
 Examples for W = 32:    TMIN = -2,147,483,648 ,     TMAX = 2,147,483,647 

 Constant1 Constant2 Relation Evaluation 
 0 0U  
 -1 0  
 -1 0U  
 2147483647 -2147483647-1   
 2147483647U -2147483647-1   
 -1 -2   
 (unsigned)-1 -2   
  2147483647  2147483648U   
  2147483647  (int) 2147483648U   

http://csapp.cs.cmu.edu/3e/instructors.html


35 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Why Should I Use Unsigned? 
 Don’t use without understanding implications 
 Easy to make mistakes 

unsigned i; 
for (i = cnt-2; i >= 0; i--) 
  a[i] += a[i+1]; 

 
 Can be very subtle 

#define DELTA sizeof(int) 
int i; 
for (i = CNT; i-DELTA >= 0; i-= DELTA) 
  . . . 

http://csapp.cs.cmu.edu/3e/instructors.html


36 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

CS 485: Systems Programming 

Why Should I Use Unsigned? (cont.) 
 Do Use When Performing Modular Arithmetic 
 Multiprecision arithmetic 

 Do Use When Using Bits to Represent Sets 
 Logical right shift, no sign extension 

http://csapp.cs.cmu.edu/3e/instructors.html

	Bits, Bytes, and Integers
	Overview: Bits, Bytes, and Integers
	Everything is bits
	For example, can count in binary
	Bits, bytes, and octets
	How big is “mega”
	Byte-Oriented Memory Organization
	Machine Words
	Word-Oriented Memory Organization
	Example Data Representations
	Byte Ordering
	Byte Ordering Example
	Representing Integers
	Examining Data Representations
	show_bytes Execution Example
	Reading Byte-Reversed Listings
	Representing Strings
	Strings vs. Buffers
	Overview: Bits, Bytes, and Integers
	Boolean Algebra
	Application of Boolean Algebra
	General Boolean Algebras
	Example: Representing & Manipulating Sets
	Bit-Level Operations in C
	Contrast: Logic Operations in C
	Shift Operations
	Overview: Bits, Bytes, and Integers
	Encoding Integers
	Two’s-complement Encoding (Cont.)
	Numeric Ranges
	Values for Different Word Sizes
	Unsigned & Signed Numeric Values
	Signed vs. Unsigned in C
	Casting Surprises
	Why Should I Use Unsigned?
	Why Should I Use Unsigned? (cont.)

