
1

CS 485: Systems Programming

Course Overview

CS 485G-006: Systems Programming
Spring 2016

Instructor:
Neil Moore
Office Hours:
Hardymon 207, Wednesdays 2:00-4:00 PM
Web site:
http://www.cs.uky.edu/~neil/485/
Syllabus:
http://www.cs.uky.edu/~neil/485/syllabus.html

 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html),

including revisions by J. Griffioen.

http://www.cs.uky.edu/%7Eneil/485/
http://www.cs.uky.edu/%7Eneil/485/syllabus.html
http://csapp.cs.cmu.edu/3e/instructors.html

2

Course Goals

 Develop an understanding of computing systems as a whole.
 Hardware, OS, libraries, windowing systems, network… working together.
 How these components fit together to provide the environment in which

an application executes.
 You should come away with a complete, demystified view of the system.

 Develop better programmers
 Identify causes of problems with your programs.
 Class takes the perspective of a programmer, not an OS (etc.) designer.
 Experience comes from developing/running programs on real machines.
 Abstraction is wonderful, but must be grounded in reality.

 Lay the foundation for upper-level classes
 Many upper-division classes assume the ability to write and debug large

programs that interact with a variety of components of a system (e.g.,
compilers, operating systems, databases, networking, graphics, etc.)

CS 485: Systems Programming

3

Programs are just a small part of the picture

 Even simple programs are part of a larger system
 Rely on several other system components to “run”.
 One source of bugs: incorrect assumptions about those components.
 Or not even having thought about them at all!

 Need an understanding of the system in which you code will run:
 To debug your program.
 To write efficient code.
 To write secure code.

 How a computer system does something is too often “magic” to
programmers. It should not be: computers are not magic!

 What happens when you run a program?

CS 485: Systems Programming

4

Abstraction Is Good, But Don’t Forget Reality

 Most CS and CE courses emphasize abstraction
 Matches how humans think
 Hides complexity so you can think about more at once
 E.g. abstract data types, asymptotic analysis

 But abstractions are only a model of reality
 Especially in the presence of bugs
 Hardware has limitations not reflected in the model.
 Hiding implementation details makes it harder to know how things interact

with other components of the system.
 Hiding complexity can lead to inefficiency.

 What can go wrong?

CS 485: Systems Programming

5

Pure math vs computer math:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Floats: Yes!

 Ints:
 40000 * 40000 → 1600000000
 50000 * 50000 → ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Ints: Yes!
 Floats:
 (1e20 + -1e20) + 3.14 --> 3.14
 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

CS 485: Systems Programming

6

Code Security Example
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find vulnerabilities
in programs

CS 485: Systems Programming

7

Typical Usage

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf(“%s\n”, mybuf);
}

CS 485: Systems Programming

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

8

Malicious Usage

CS 485: Systems Programming

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 . . .
}

9

High-Level Languages Map to Assembly

 Chances are, you’ll never write programs in assembly
 Compilers are much better and more patient than you are

 But: Understanding assembly is key to machine-level execution
model
 Behavior of programs in presence of bugs
 High-level language models break down

 Tuning program performance
 Understand optimizations done / not done by the compiler
 Understanding sources of program inefficiency

 Implementing system software
 Compiler has machine code as target
 Operating systems must manage process state

 Creating / fighting malware
 x86 assembly is the language of choice!

CS 485: Systems Programming

10

Memory Referencing Errors
 C and C++ do not provide any memory protection
 Out of bounds array references
 Invalid pointer values
 Abuses of malloc/free (or new/delete)
 C++11 can help avoid some problems, but not all.

 Can lead to nasty bugs
 Whether or not the bug has any effect depends on system and compiler
 Action at a distance
 Corrupted object logically unrelated to one being accessed
 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby or ML
 Understand what possible interactions may occur
 Use or develop tools to detect referencing errors (e.g. Valgrind)

CS 485: Systems Programming

11

Memory Referencing Bug Example
double fun(int i)
{
 volatile int a[2];
 volatile double d[1] = {3.14};
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) → 3.14
fun(1) → 3.14
fun(4) → 3.1399998664856
fun(5) → 2.00000061035156
fun(8) → 3.14, then segmentation fault

 Result depends heavily on architecture and even compiler flags

CS 485: Systems Programming

12

Memory Referencing Bug Example

Location accessed by
fun(i)

Explanation: Saved State 8
… 6-7
d[0] (part 2) 5
d[0] (part 1) 4
… 2-3
a[1] 1
a[0] 0

CS 485: Systems Programming

double fun(int i)
{
 volatile int a[2];
 volatile double d[1] = {3.14};
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

13

Memory System Performance Example

 Hierarchical memory organization
 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

~26 times slower
on the class VMs!

CS 485: Systems Programming

14

The Memory Mountain

64
M

8M

1M 12
8K 16

K 2K

0

1000

2000

3000

4000

5000

6000

7000

s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s3
2

Size (bytes)

R
ea

d
 th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

CS 485: Systems Programming

15

Policies etc.
 Assignments/Grading
 Programming assignments: 50% (45% for grad students)

 Approximately every 3 weeks.
 In-class labs: 5%

 Generally on Fridays
 Bring your laptop on Friday! (required)

 Midterm exam: 20%
 Friday, 4 March, in class

 Final exam: 25%
 Monday, 2 May, 10:30am

 Grad students: research paper: 5%
 Decide on a topic with me.
 More details around midterm.

 Standard grading scale: 90%+ A, 80%+ B, 70%+ C, 60%+ D, else E

CS 485: Systems Programming

16

Policies etc.
 Academic Integrity
 Submitted work must be your own.
 Can discuss assignments with others, not share or show code.
 If you get ideas, code snippets, etc. from somewhere, cite it!

 Somewhere prominent in your documentation.
 That includes fellow students, tutors, etc.
 “Jane Doe, personal communication, March 1 2016.”

 When in doubt, ask me!

 Attendance
 Not taken most days, but still expected.
 Required on lab and exam days (most Fridays)
 See syllabus for make-up and absence policy.

 Late policy (if no excused absence)
 -10% of the total per business day, no credit after 5 days.

CS 485: Systems Programming

	Slide Number 1
	Course Goals
	Programs are just a small part of the picture
	Abstraction Is Good, But Don’t Forget Reality
	Pure math vs computer math: �Ints are not Integers, Floats are not Reals
	Code Security Example
	Typical Usage
	Malicious Usage
	High-Level Languages Map to Assembly
	Memory Referencing Errors
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory System Performance Example
	The Memory Mountain
	Policies etc.
	Policies etc.

