Proceedings of the 12th International Con-
ference on Logic Programming, MIT Press,
Cambridge, MA., 1995

Experimenting with Nonmonotonic
Reasoning

Pawel Cholewinski, V. Wiktor Marek,
Artur Mikitiuk, Mirostaw Truszczynski
Department of Computer Science

University of Kentucky

Lexington, KY 40506-0046
{pawel|marek|artur|mirek}@cs.engr.uky.edu

Abstract

In this paper, we describe a system, called TheoryBase, whose goal is to facil-
itate experimental studies of nonmonotonic reasoning systems. TheoryBase
generates test default theories and logic programs. It has an identification
system for generated theories, which allows us to reconstruct a logic program
or a default theory from its identifier. Hence, exchanging test cases requires
only exchanging identifiers. TheoryBase can generate a large variety of ex-
amples of default theories and logic programs. We believe that its universal
adoption may significantly advance experimental studies of nonmonotonic
reasoning systems.

1 Introduction

Nonmonotonic reasoning has been introduced in the 1970s [21, 31]. The first
full-fledged nonmonotonic formalisms — circumscription, default logic and
modal nonmonotonic logics — were proposed in early 1980s [20, 32, 23, 22,
24, 25]. Initially, understanding commonsense reasoning and knowledge rep-
resentation applications served as main motivations driving the development
of the discipline. In the late 1980s, however, it was observed that nonmono-
tonic logics offer insights on semantics for negation in logic programming
[9, 17, 3]. Since then, the connections between logic programming and non-
monotonic reasoning have been extensively studied [30, 1]. These efforts
related several semantics for logic programs (supported semantics, stable se-
mantics, well-founded semantics) to objects (expansions or extensions) one
assigns to theories in nonmonotonic reasoning. For an overview of nonmono-
tonic systems as well as notation the reader is referred to [19].

Despite advances in our understanding of nonmonotonic logics, imple-
mentation efforts and experimentation with nonmonotonic reasoning sys-
tems have been lagging behind. There are only few reported examples of
such work [29, 10, 7, 35, 2]. If the area of nonmonotonic reasoning is to
grow, this state of affairs must change. It is especially true in view of several
recent complexity results [12, 34, 27]. This work shows that, in contrast with

early hopes [21], nonmonotonic reasoning is not simpler than classical logic
reasoning. Basic decision problems underlying nonmonotonic reasoning are
complete for classes at the second level of the polynomial hierarchy. Even sig-
nificantly restricted versions of these problems remain NP- or coNP-complete
[18, 14]. Is there, then, any hope that nonmonotonic reasoning will prove
practical? Can it be made competitive with automated reasoning based on
classical logic?

Complexity results tell only half of the story. Nonmonotonic theories
encoding graph problems are often smaller in size than corresponding clas-
sical logic descriptions. Hence, loss in complexity may be offset by the drop
in the size of input (see [5]). Systematic experimentation may be the most
direct way and, perhaps, the only way to answer the above questions. In
addition to complexity results mentioned earlier, several algorithms for rea-
soning from default theories and logic programs with negation were presented
in [19, 13, 28, 26]. In view of the large body of these results, it seems that
the main problem hindering the research on these algorithms and the efforts
to develop reasoning systems based on nonmonotonic logics is the lack of
adequate experimentation testbed. In this paper we address this issue.

To experiment with software systems we need easily generated, realistic
and meaningful input instances. The input data should be easy to reproduce
and disseminate so that other researchers can use it. The generation method
should allow the users to control basic parameters of test cases to facilitate
comprehensive testing of the software.

The problem of producing sets of benchmark data appears in all areas
of experimental research. A possible approach is to produce and distribute
a database of real-life examples. For example, databases of benchmarks
were created for experimentation with linear programming algorithms, for
investigation of methods to solve the travelling salesman problem, for a
number of VLSI problems, and in numerous other areas of experimental
research in computer science. The benefits of this method are evident. The
problems are realistic and meaningful, and they can easily be disseminated.
But there are also drawbacks. The data can be used only in a specific
application domain and often does not provide enough flexibility to allow full-
fledged testing. The other approach frequently used in experimental research
is to generate data randomly. This approach offers an unlimited number of
test cases and the user has control over at least some important parameters
of data generated. For example, when generating random graphs, one can
request a specific number of vertices and edges. However, the data generated
randomly has often properties that rarely occur in real-life examples. It is
well known that (under some technical assumptions) almost every connected
random graph is hamiltonian [4]. Similarly, it is now believed that random
3-SAT problems do not provide an adequate model for problems likely to
occur in real-life applications [11, 6].

None of these approaches has been fully developed for experimenting
with logic programming or nonmonotonic reasoning. In logic programming

research, benchmark programs usually come from a small set of problems
including the “naive reverse” program [33]. Moreover, no notion of a random
logic program or default theory has been proposed yet.

The proposal we are describing in this paper is based on the work by
Knuth [15] on methods to generate graphs, and on our results providing
encodings of graph problems in terms of default theories and logic programs.

Knuth in [15] argues that random graphs do not constitute an adequate
tool for testing graph algorithms. Instead, Knuth develops a graph genera-
tion system, the Stanford GraphBase. This system is publicly available (see
[15] for details) and, thus, can be used as a “common denominator” for work
requiring experimenting with graphs. The core of the system is formed by
several graph generating procedures. Some of the methods employed root
the graphs they generate in real-life objects such as maps and dictionaries.
At the same time, these methods are flexible and can generate large families
of graphs preserving some randomness appearance. An important feature of
GraphBase is that every graph generated gets a unique label (or identifier).
It is essential for storing and easy reproduction of test cases generated.

The main contribution of this paper is an extension of the Stanford
GraphBase to a system that generates logic programs and default theories.
Our idea is simple. Problems on graphs such as coloring, hamiltonicity, exis-
tence of kernels, have encodings as default theories and logic programs. This
is, of course, implied by complexity considerations [18, 12, 16]. However, to
build a system, we need ezplicit encodings. Several such encodings will be
presented in Section 2 of this paper.

To generate test theories, we propose to first generate graphs (using
GraphBase) and then to encode problems (coloring, hamiltonicity, etc.) for
these graphs as logic programs and default theories. By coupling Knuth’s
GraphBase and these translations we get a system for creating examples of
meaningful, interesting, and yet sufficiently randomized default theories and
logic programs. This system will be referred to as TheoryBase.

The identification system for TheoryBase allows us to easily reproduce
theories out of their identifiers. Thus, it facilitates an exchange of test default
theories and logic programs. In this fashion, a useful and functional system
of benchmarks for nonmonotonic reasoning can be created.

TheoryBase was motivated by Default Reasoning System project, DeReS,
currently being carried out at the University of Kentucky. The need to build
an experimentation testbed for DeReS prompted our TheoryBase project.
Several elements of DeReS are now completed (propositional logic program-
ming with stable semantics, default logic with Reiter’s extensions) and we
are now beginning a systematic experimentation effort.

The paper consists of two main parts. The next section presents encod-
ings of graph problems as logic programs and default theories. Section 3
describes how these encodings are used in the design of TheoryBase.

2 Default theories and logic programs for graph
problems

In [18] it was shown that the problem of existence of stable models of a logic
program is NP-complete. This result implies that for every problem P in
NP there is a polynomially constructible encoding of P as a logic program,
say Ip(P), such that P has a solution if and only if the program Ip(P) has a
stable model. Similarly, the ¥1’-completeness of existence of extensions for
a default theory [12] implies that there are efficient encodings of problems
in the class X4 as default theories. These encodings form the core of our
testbed system — TheoryBase. The problems we focus on in this paper are:
maximal independent sets and maximal matchings, colorings, existence of
kernels and existence of hamiltonian cycles (see [8] for graph theory termi-
nology). For each of these problems we will present one or more encodings in
nonmonotonic formalisms together with theorems asserting the correspon-
dence between the graph problem and the encoding. These problems appear
in numerous applications. Hence, as long as underlying graphs are realistic,
our logic programs and default theories have meaningful interpretations.

The complexity results show only existence of encodings. To build The-
oryBase, we need their explicit description. This is the topic of this section.

In the paper we are using the following notation. By G = (V,E) we
denote a graph with the vertex set V' and the edge set E. The set E consists
of two-element sets or ordered pairs of vertices, depending on whether the
graph is undirected or directed. We also denote |V| by n and |E| by m. For
undirected graphs we denote the set of neighbors of a vertex v by I'(v). For
directed graphs we define

') ={weV:(v,w) € E and v # w}
and

I (v)={weV:(w,v) € E and v # w}.

2.1 Maximal independent sets and maximal matchings

Let G = (V, E) be an undirected graph. For every v € V| we define a default

P —in(vy), ..., in(vg)
v in(v) '

where I'(v) = {v1,...,v} and in(v;) are propositional atoms (intuitively,
in(v) says that v is in an independent set).

Theorem 2.1 Let G = (V,E) be an undirected graph and let D = {d, :
v eV} AsetU CV is a mazimal independent set in G if and only if
Cn({in(v):v € U}) is an extension for the default theory Ni,q = (D,0). O

As a corollary, we obtain an encoding for the maximal matching problem.
For every e € E, define a default

P —in(e1),...,nin(eg)
e - I
in(e)
where ey, ..., e are all the edges adjacent to e and in(e;) are propositional

atoms.

Theorem 2.2 Let G = (V, E) be an undirected graph and let D = {d, : e €
E}. A set F C E is a mazimal matching in G if and only if Cn({in(e):e €
F1}) is an extension for the default theory Apaien = (D, 0). O

Remark 2.1 The encoding of the maximal independent set problem uses n
defaults and the encoding of the maximal matching problem uses m defaults.
The size of the first encoding is O(2m +n). The size of the second encoding
is O(mK), where K is the largest vertex degree in G.

Remark 2.2 Both problems presented above can be encoded as logic pro-
grams. For example, using a translation described in [17], each default d,
can be expressed by the clause

in(v) < not(in(vy)),...,not(in(vg)).

Under this encoding, maximal independent sets correspond to stable models
of the resulting logic program.

2.2 Colorings

Let G = (V, E) be an undirected graph with the set of vertices {vy,...,v,},
where each v; is a positive integer. Let C = {c;,..., ¢} be a set of colors. A
coloring of G is any mapping f : V' — C. Given a coloring f, R(f) denotes
the set of propositional atoms {clr(v, f(v)) : v € V'}. This set represents an
assignment of colors to the vertices of G.

For each vertex v;,% = 1,...,n, and for each color ¢;,7 = 1,...,k, we
define the default rule

s =elr(vi, 1), ..., melr(vg, ¢j—1), nelr(vi, ¢j41), ...y 2elr (vg, o)

color(vj, ¢j) = () .
C iy Cj

The set of default rules {color(vi,c;) : j = 1,...,k} is used to assign
exactly one color to a vertex v;. Let

Dy = {color(vi,¢cj):i=1,...,n, j=1,...,k}.

The default theory (Dy, D) has k™ extensions corresponding to all possible
colorings (not necessarily proper) of the vertices of G. To describe proper
colorings, that is, colorings where any two vertices connected by an edge

have different colors, we will use additional default rules. These rules will
kill extensions which define “non-proper” colorings. They will be called
killing defaults. To describe them we define several auxiliary formulas.

Let E = {e1,...,en} and let ¢ = {x;,y;}, where z;,yp € V are the
endpoints of ;. By ¢(l,j) we denote the following formula:

o(l,5) = clr(zi, ;) Aclr(yi, cj).-

The formula 9 (l) = \/le w(l, j) expresses the fact that both end vertices
of the edge e; have the same color. For a vertex v;, let E; be the set of all
edges connecting v; to smaller vertices. That is,

Ei={ee E:e={vj,w} and w <wv;}.

(The condition w < v; ensures that every edge appears in exactly one set
E;.) Now, for every vertex v; € V define

@ = \/ ()

e €l;

(if B; = () then we assume that ®; = 1). The formulas ®; are used to ensure
that no two connected vertices receive the same color. Finally, let F', F;
and Fj ; be arbitrary auxiliary atoms, that is any atoms different from the
atoms of the form clr(v, ¢). The intuitive meaning of these auxiliary atoms is
falsity. They are used to prevent undesirable theories from being generated
as solutions. We define the following killing default rules:

Vit Vi o(l,4) : ~F

global =

F)
1k
partial(i) = ZFi Loi=1,...,n,
[,7) : ~F
local(l7j):¢(7j) lj’ l_17 7m7 j:17 7k
£

Default global performs a global (over all edges) check of the proper
coloring condition. Default partial(i) verifies the condition for all edges in
E;. Finally, default local(l, j) verifies the proper coloring condition for edge
e; and color j.

Theorem 2.3 Let G = (V, E) be an undirected graph. For any of the fol-
lowing default theories:

1. Al = (Dy U {global},D),

C

2. A%, = (Do U {partial(i) : i =1,...,n},0),

C

8. A3, = (DoU{local(l,5) :l=1,....,m,5=1,...,k},0),

C

if f:V = C is a proper coloring of G then Cn(R(f)) is an extension for
Al i =1,2,3. Moreover, if S is an extension for Al ,, for some i =1,2,3,

then S = Cn(R(f)) for some proper coloring f of G. O

Remark 2.3 We presented three encodings of the graph coloring problem.
They differ in the technique used to check that a coloring is proper. All these
theories have nk default rules to generate a coloring and some additional
default rules to ensure that the coloring is proper. The total number of
default rules is nk + 1 for Al ;. nk +n for A2, and nk + mk for A2 .

However, the length of the resulting default theory is approximately the
same in all cases and is given by O((nk + m)k).

Remark 2.4 The encoding A3, has a straightforward translation into a
logic program. To this end just replace each default rule color(v;,c;) by a
logic program clause

clr(vi,c;) < mot(clr(vi,c1)),...,not(clr(vi, cj—1)), not(clr(vi, cj41)),

..,not(clr(v;, cx))
and each default local(l, 7) by a logic program clause

Eyj < clr(z, ¢j), clr(yi, ¢j), not (Fy ;).

2.3 Kernels

Let G = (V, E) be a directed graph with the set of vertices {v1,...,v,}. Let
us identify the set of vertices of G with a set of atoms of a propositional
language. Let Pg be the following logic program:

Pg = {v < not(w) : (v,w) € E}.

It was shown [18] that the stable models of Py are precisely the sets of the
form V' \ K where K is a kernel of G. The straightforward rewriting of
the clause ¢ = v «+ not(w) as a default rule d. = =¥ leads to a default
theory whose extensions correspond to kernels of G. Specifically, K is a
kernel of G if and only if Cn(V \ K) is an extension of the default theory
AIlcer = ({dc tcE P(;},@).

Here we present two other encodings of kernels in the language of default
logic. For each vertex v € V we will use a propositional atom out(v) with
the intuitive meaning that v is out of kernel. First, we define two default
rules for each vertex v; € V:

s out(v;) : —out(v;)

(1)

out(v;) ’ —out(v;)

Let

po=] t out(v;) :wutm)}_ o)

= Lout(vi) 7 —out(v;)

The default theory (Dy,) has 2" extensions corresponding to all subsets
of V. To leave only those subsets of V' whose complements correspond to
kernels of G, we need to use either additional propositional formulas or
additional defaults. We will explore both possibilities.

To ensure that vertices of the kernel form an independent set we will use
propositional formulas

(v, w) = out(v) V out(w),

where (v,w) € E. To ensure that for a vertex v which does not belong to
the kernel there is an edge (v, w) € E such that w is in the kernel we will
use the formula

Y(v) = out(v) D —out(wy) V...V —-out(w;), where T'"(v)={wi,...,w;}.
Now, we can state our first result on kernels.
Theorem 2.4 Let G = (V,E) be a directed graph and let A2, = (Do, W)
be a default theory such that
W ={pw,w): (v,w) € E}U{y(v) :v eV}

If K CV is a kernel of G then Cn({—out(v) : v € K}U{out(v) :v € K}) is
a consistent extension for A%er. Conversely, if S is a consistent extension

for A2 then S is of the form Cn({-out(v) : v € K} U {out(v) : v € K}),
a

ker

where K CV and K is a kernel of G.

The third encoding of the kernel problem will be obtained by replacing
propositional formulas from W in Theorem 2.4 by default rules. To this end
we define the following killing defaults:

—out(v) A —out(w) : =F, 4

ind(v,w) = —, (v,w) € E,
Fv,w
t(v) : out t(w;), - F,
dom(v) = out(v) : ou (wl)l,? , out(w;), R
v
where, as previously, ' (v) = {wy,...,w;} and F,,’s and F,’s are arbi-

trary auxiliary atoms different from the atoms of the form out(v). Defaults
{ind(v,w) : (v,w) € E} ensure that the set of selected vertices is an in-
dependent set. Defaults {dom(v) : v € V'} ensure that the set of selected
vertices is a dominating set.

Theorem 2.5 Let G = (V,E) be a directed graph and let A}, = (Do U
Dy, 0) be a default theory where Dy is defined by (2) and

Dy = {ind(v,w) : (v,w) € E} U{dom(v) :v € V}.

If K CV is a kernel of G then Cn({—out(v) : v € K} U {out(v) : v ¢ K})
is an extension for A%er. Conversely, if S is an extension for A%er then S
is of the form Cn({-out(v) : v € K} U {out(v) :v ¢ K}) where K CV and
K is a kernel of G. O

Remark 2.5 The encodings A? and A?_differ in the way they verify

ker ker
kernel conditions. In both cases we use 2n default rules to generate a subset
of V. In the case of A%er we use, in addition, n + m propositional formulas
to check whether a given subset is a kernel. In the case of Azer
n + m additional default rules to verify conditions for a kernel. Thus, the
total number of default rules is 2n for A?_ —and 3n +m for A} . But in
A%er we have n + m propositional formulas in W, while in the case of A%er
the set W is empty. Therefore, in both cases the total length of encoding is

proportional to 3n + m, that is, it is bounded by O(n 4+ m).

we use

Remark 2.6 The encoding A}, can be translated into a logic program.
To this end we will use a positive literal in(v) instead of a negative literal
—out(v). Now, a pair of default rules (1) can be rewritten as a pair of logic
program clauses

out(v;) < not(in(v;)) and in(v;) < not(out(v;)).
The default rule ind(v,w) can be replaced with a logic program clause
F, 4 < not(out(v)), not(out(w)), not (F,)
and the default rule dom(v) with a clause

F, < out(v),out(w),...,out(w;), not(F,).

2.4 Directed hamiltonian cycles

Let G = (V,E) be a directed graph with the set of vertices {vi,...,v,}.
We assume that n > 3. We will construct a default theory (D, W) whose
extensions correspond to hamiltonian cycles in G. We will use atoms vstd(v)
(intuitively, v has been visited) and e(v, w) (intuitively, (v, w) is an edge of
a hamiltonian cycle).

Let W = {vstd(v1)}. Let v € V and I'"(v) = {wy,...,wx}. We define k
default rules for vertex v in the following way:

() vstd(v) : me(v,wr), ..., e(v, wj—1), "e(v, Wjt1), ..., ~e(v, wy)
move(v, w;j) = :
o e(v,wj) A vstd(w;)

Now we define the first group of defaults:
Dy = {move(v,w) :v €V and w € " (v)}. (3)

The role of the defaults in Dg is to select one outcoming edge for every
“misited” vertex. To make sure that every vertex is visited, we define the
second group of default rules using additional new atoms Fy,v € V:

D, = {: —wstd(v), —F,
F,

ZUGV}. (4)

Finally, to make sure that the edges selected by the default rules from Dy
form a cycle, we need an additional default:

: _'e(ulalvl)u - .,_'e(Uk,’Ul),_'F
F)

cycle =

where I'"(v1) = {u1,...,u;} and F is an auxiliary atom. We have the
following theorem.

Theorem 2.6 Let G = (V, E) be a directed graph. Let W = {vstd(v1)}
(v1 € V) and Apam = (DoUDU{cycle}, W), where Dy and Dy are defined by
(3) and (4). If S is an extension for Apgm then the set of edges C = {(v,w) :
S =e(v,w)} is a hamiltonian cycle in G. Also, if C is a hamiltonian cycle
in G then

Cn({e(v,w) : (v,w) € C} U{vstd(v) :v e V})

is an extension for Apgm. O

Remark 2.7 The encoding of hamiltonian cycles presented in this section
uses at most m + n + 1 default rules. The length of the resulting default
theory is O(mK + n), where K is the maximal vertex outdegree in G. The
theory Apem presented in this section can be rewritten as a logic program
using the translation defined in [17].

3 TheoryBase

In this section we will briefly describe TheoryBase. TheoryBase is an ex-
tension of the Stanford GraphBase [15], created by Donald E. Knuth at the
Stanford University. The Stanford GraphBase is a collection of datasets,
procedures which generate graphs and several demo programs. It allows the
users to generate families of directed, undirected, weighted, unweighted, bi-
partite, planar, regular and random graphs. The Stanford GraphBase also
contains procedures to generate graphs by means of graph operations such as
union, intersection, complement, cartesian, direct or strong product. Other
graph operations are also available. The Stanford GraphBase procedures
make it possible to generate permutation graphs and partition graphs. An
interesting family of graphs can be generated from a table of highway dis-
tances between 128 North American cities. For detailed description of the
Stanford GraphBase see [15]. Each graph generated from GraphBase has an
identifier from which the graph can be reconstructed.

TheoryBase is a tool to create default theories and logic programs for
experimentation with nonmonotonic reasoning systems. The main idea is to
apply the encodings presented in Section 2 to graphs which are the outputs
of GraphBase.

TheoryBase associates an identifier with each theory it generates. This
is an extension of the concept of a graph identifier in GraphBase. A The-
oryBase identifier is a pair (a,3), where « is a GraphBase identifier and

0 is the name of a translation described in Section 2. We described here
nine translations into default theories: A4, Amatchs A(ljol, Azol, Ag’ol, A}Cer,
an nam (several modifications of these nine translations are
Az, A} and A 1 modificati f th ine translati
also available). In addition, as we pointed out in Section 2, some of them
(Ainds Dmatens A2, Mg, A3, and Apgy,) imply encodings into logic pro-
grams.
The semantics of a TheoryBase identifier («, 3) is given by a logic pro-

gram or a default theory obtained by the following process:

1. generate a graph G from the GraphBase identifier @ (« encodes the
generation method to be used),

2. produce a logic program or a default theory by applying the translation
B to G.

It should be clear that an identifier uniquely determines a logic program
or a default theory. Hence, to exchange test cases, it is sufficient to exchange
their TheoryBase identifiers only.

We will present now two graphs from GraphBase and two corresponding
theories from TheoryBase.

The first theory is determined by the TheoryBase identifier («, 3), where:

a = complement(gunion(board(7,0,0,0,2,0,0), simplex(2,2,2,2,0,0,0),0,0),0,0,0),
B = Aind-

Its first component is a GraphBase identifier of the graph G shown in Figure
1. The second part, A4, indicates the encoding used to produce a theory (in
this case, the encoding describing maximal independent sets). The resulting
set of defaults is given below:

=i (2),—in(4),~in(5),—in(6) =i (5),—in(6) =i (0),—in(3),—in(5),—in(6)
in(0) in(1) n(2)

:=in(2),-in(6) :=in(0),—in(6) :=in(0),—in(1),~in(2),-in(6)

:=in(0),—in(1),—in(2),—in(3),~in(4),~in(5)
in(6) :

It is easy to see that Cn({in(0),in(1),in(3)}) is an extension of this
default theory. It corresponds to the maximal independent set {0, 1,3} in
Gl.

Next, we show the theory determined by the identifier

id = (econ(8,0,10000,0), Apam)-

The graph G4 identified by the GraphBase identifier econ(8,0,10000,0) is
also shown in Figure 1.

Figure 1: Graphs G; and G9

The second component of the identifier id is Apg.,. Hence, the theory
described by id encodes the problem of existence of hamiltonian cycles for
G9. Its defaults are listed below.

vstd(0): vstd(1): vstd(4): vstd(5):
€(0,2)Avstd(2) e(1,7)Avstd(T) e(4,7)Avstd(7) e(5,7)Avstd(T)

vstd(7):—e(7,1),-e(7,2),-e(7,3),—e(7,4),—¢(7,5),-e(7,6)
e(7,0)Avstd(0)

vstd(7):—e(7,0),—e(7,2),-e(7,3),—e(7,4),—e(7,5),—e(7,6)
e(7,1)Avstd(1)

vstd(7):—e(7,0),-e(7,1),-e(7,3),—e(7,4),—¢(7,5),-e(7,6)
e(7,2)Avstd(2)

vstd(7):—e(7,0),—e(7,1),7e(7,2),-e(7,4),—e(7,5),-e(7,6)

)7’,3)Avstd(3)

vstd(7):—e(7,0),-e(7,1),-e(7,2),-e(7,3),—e(7,5),-e(7,6)

)7’,4)/\ustd(4)

),—e(7,2),-e(7,3),-e(7,4),—e(7,6)
7,5)Avstd(5)

vstd(7):—e(7,0),—e(7 e(7,2),-e(7,3),-e(7,4),—¢(7,5)

),—
7,6)Avstd(6)

1
e(

e(7,1

e(
vstd(7):—e(7,0),—e(7,1
e(

e(7,1

e(

—wstd(0),—F(0) —wstd(1),-F (1) —wstd(2),-F(2)
£(0) F(1) F(2)

—wstd(3),—F(3) —wstd(4),-F(4) —wstd(5),-F(5)
F(3) F(4) F(5)

—wstd(6),-F(6) —wstd(7),-F(7) :=e(7,0),-F
7 (6) F(7) o

4 Conclusions

In this paper we presented a system, called TheoryBase, to generate test de-
fault theories and logic programs. This proposal was motivated by our work
on the implementation of Default Reasoning System, which requires exten-
sive experimentation. TheoryBase is based on a graph generating system,

the Stanford GraphBase. A wealth of graph examples created in GraphBase
induces a large number of examples that can be generated from Theory-
Base. Consequently, TheoryBase will greatly facilitate experimental studies
of nonmonotonic systems.

However, the number of procedures in TheoryBase is, so far, restricted.
In the future, encodings of additional graph problems need to be added to
TheoryBase. Moreover, systems for nonmonotonic reasoning are suitable
for solving not only problems on graphs and we hope to add to Theory-
Base methods to generate theories based on problems in other application
domains.

Finally, let us observe that the methodology presented in our paper can
be used to produce test cases for other domains. For example, by encoding
graph problems as propositional theories, one can obtain a test generating
tool to facilitate experimental work on algorithms for satisfiability testing.

References

[1] C. Baral and V.S. Subrahmanian. Dualities between alternative seman-
tics for logic programming and nonmonotonic reasoning. In A. Nerode,
W. Marek, and V.S. Subrahmanian, editors, Logic programming and
non-monotonic reasoning, pages 69-86. MIT Press, 1991.

[2] C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Implementing
stable semantics by linear programming. In A. Nerode and L. Pereira,
editors, Logic programming and non-monotonic reasoning, pages 23 42.
MIT Press, 1993.

[3] N. Bidoit and C. Froidevaux. Negation by default and unstratifiable
logic programs. Theoretical Computer Science, 78:85 112, 1991.

[4] B. Bollobas. Random Graphs. Academic Press, 1985.

[5] Marco Cadoli, Francesco M. Donini, and Marco Schaerf. Is intractabil-
ity of non-monotonic reasoning a real drawback? In Proceedings of
the Twelfth National Conference on Artificial Intelligence (AAAI-9),
pages 946 951, Seattle, USA, 1994.

[6] J.M. Crawford and A.B. Baker. Experimental results on the application
of satisfiability algorithms to scheduling problems. In Proceedings of
AAAI-94, Menlo Park, CA., 1994. American Association for Artificial
Intelligence, Morgan Kaufmann.

[7] M. Dixon and J. de Kleer. Massively parallel assumption-based truth
maintenance. In M. Reinfrank, J. de Kleer, M.L. Ginsberg, and
E. Sandewall, editors, Non-monotonic reasoning, pages 131 142. Berlin:
Springer-Verlag, 1989. Lecture Notes in Artificial Intelligence, 346.

[8] M.R. Garey and D.S. Johnson. Computers and intractability; a guide
to the theory of NP-completeness. W.H. Freeman, 1979.

[9] M. Gelfond. On stratified autoepistemic theories. In Proceedings of
AAAI-87, pages 207211, Los Altos, CA., 1987. American Association
for Artificial Intelligence, Morgan Kaufmann.

[10]

[14]

22]
23]

[24]

M.L. Ginsberg. A circumscriptive theorem prover. In M. Reinfrank,
J. de Kleer, M.L. Ginsberg, and E. Sandewall, editors, Non-monotonic
reasoning, pages 100 114. Berlin: Springer-Verlag, 1989. Lecture Notes
in Artificial Intelligence, 346.

M.L. Ginsberg and D.A. McAllester. GSAT and dynamic bactracking.
In J. Doyle, E. Sandewall, and P. Torasso, editors, Principles of knowl-
edge representation and reasoning, KR 94, pages 226 237, Cambridge,
MA, 1994. Morgan Kaufmann.

G. Gottlob. Complexity results for nonmonotonic logics. Journal of
Logic and Computation, 2:397-425, 1992.

U. Junker and K. Konolige. Computing the extensions of autoepistemic
and default logics with a truth maintenance system. In Proceedings
of AAAI-90, Los Altos, CA., 1990. American Association for Artificial
Intelligence, Morgan Kaufmann.

H.A. Kautz and B. Selman. Hard problems for simple default logics. In
Proceedings of the 1st international conference on principles of knowl-
edge representation and reasoning, KR ’89, pages 189 197, San Mateo,
CA., 1989. Morgan Kaufmann.

D. E. Knuth. The Stanford GraphBase: a platform for combinatorial
computing. Addison-Wesley, 1993.

W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systems
I1. Annals of Mathematics and Artificial Intelligence, 5:229 263, 1992.
W. Marek and M. Truszczynski. Stable semantics for logic programs
and default theories. In E. Lusk and R. Overbeek, editors, Proceedings
of the North American conference on logic programming, pages 243-256,
Cambridge, MA., 1989. MIT Press.

W. Marek and M. Truszczynski. Autoepistemic logic. Journal of the
ACM, 38:588 619, 1991.

W. Marek and M. Truszczynski. Nonmonotonic logics; context-
dependent reasoning. Berlin: Springer-Verlag, 1993.

J. McCarthy. Circumscription — a form of non-monotonic reasoning.
Artificial Intelligence, 13:27 39, 1980.

J. McCarthy and P. Hayes. Some Philosophical Problems from the
Standpoint of Artificial Intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence 4, pages 463-502. Edinburgh University
Press, 1969.

D. McDermott. Nonmonotonic logic II: nonmonotonic modal theories.
Journal of the ACM, 29:33 57, 1982.

D. McDermott and J. Doyle. Nonmonotonic logic 1. Artificial Intelli-
gence, 13:41 72, 1980.

R.C. Moore. Possible-world semantics for autoepistemic logic. In R. Re-
iter, editor, Proceedings of the workshop on mon-monotonic reasoning,
pages 344 354, 1984. (Reprinted in: M.Ginsberg, editor, Readings on
nonmonotonic reasoning. pages 137-142, 1990, Morgan Kaufmann.).

[25]

[26]

R.C. Moore. Semantical considerations on non-monotonic logic. Artifi-
cial Intelligence, 25:75 94, 1985.

I. Niemela. Constructive tightly grounded autoepistemic reasoning. In
Proceedings of IJCAI-91, pages 399 404, San Mateo, CA., 1991. Morgan
Kaufmann.

I. Niemela. On the decidability and complexity of autoepistemic rea-
soning. Fundamenta Informaticae, 17:117 155, 1992.

C. Papadimitriou and M. Yannakakis. Tie-breaking semantics and
structural totality. In Proceedings of 11th Symposium on Principles
of Database Systems, pages 16 — 22, 1992.

D. Poole. A logical framework for default reasoning. Artificial Intelli-
gence, 36:27 47, 1988.

T. Przymusinski. Autoepistemic logic of closed beliefs and logic pro-
gramming. In A. Nerode, W. Marek, and V.S. Subrahmanian, ed-
itors, Logic programming and non-monotonic reasoning, pages 3—20.
MIT Press, 1991.

R. Reiter. On closed world data bases. In H. Gallaire and J. Minker,
editors, Logic and data bases, pages 55 76. Plenum Press, 1978.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81
132, 1980.

L. Sterling and E. Shapiro. The Art of Prolog. Cambridge, MA: MIT
Press, 1986.

J. Stillman. The complexity of propositional default logics. In Pro-
ceedings of AAAI-92, pages 794 799, Menlo Park, CA., 1992. American
Association for Artificial Intelligence, Morgan Kaufmann.

D.S. Warren W. Chen, T. Swift. Efficient computation of queries un-
der the well-founded semantics. Technical Report 93-CSE-33, Southern
Methodist Univeristy, 1993.

