
Proceedings of the 12th International Con-ference on Logic Programming, MIT Press,Cambridge, MA., 1995Experimenting with NonmonotonicReasoningPawe l Cholewi�nski, V. Wiktor Marek,Artur Mikitiuk, Miros law Truszczy�nskiDepartment of Computer ScienceUniversity of KentuckyLexington, KY 40506-0046{pawel|marek|artur|mirek}@cs.engr.uky.eduAbstractIn this paper, we describe a system, called TheoryBase, whose goal is to facil-itate experimental studies of nonmonotonic reasoning systems. TheoryBasegenerates test default theories and logic programs. It has an identi�cationsystem for generated theories, which allows us to reconstruct a logic programor a default theory from its identi�er. Hence, exchanging test cases requiresonly exchanging identi�ers. TheoryBase can generate a large variety of ex-amples of default theories and logic programs. We believe that its universaladoption may signi�cantly advance experimental studies of nonmonotonicreasoning systems.1 IntroductionNonmonotonic reasoning has been introduced in the 1970s [21, 31]. The �rstfull-
edged nonmonotonic formalisms | circumscription, default logic andmodal nonmonotonic logics | were proposed in early 1980s [20, 32, 23, 22,24, 25]. Initially, understanding commonsense reasoning and knowledge rep-resentation applications served as main motivations driving the developmentof the discipline. In the late 1980s, however, it was observed that nonmono-tonic logics o�er insights on semantics for negation in logic programming[9, 17, 3]. Since then, the connections between logic programming and non-monotonic reasoning have been extensively studied [30, 1]. These e�ortsrelated several semantics for logic programs (supported semantics, stable se-mantics, well-founded semantics) to objects (expansions or extensions) oneassigns to theories in nonmonotonic reasoning. For an overview of nonmono-tonic systems as well as notation the reader is referred to [19].Despite advances in our understanding of nonmonotonic logics, imple-mentation e�orts and experimentation with nonmonotonic reasoning sys-tems have been lagging behind. There are only few reported examples ofsuch work [29, 10, 7, 35, 2]. If the area of nonmonotonic reasoning is togrow, this state of a�airs must change. It is especially true in view of severalrecent complexity results [12, 34, 27]. This work shows that, in contrast with

early hopes [21], nonmonotonic reasoning is not simpler than classical logicreasoning. Basic decision problems underlying nonmonotonic reasoning arecomplete for classes at the second level of the polynomial hierarchy. Even sig-ni�cantly restricted versions of these problems remain NP- or coNP-complete[18, 14]. Is there, then, any hope that nonmonotonic reasoning will provepractical? Can it be made competitive with automated reasoning based onclassical logic?Complexity results tell only half of the story. Nonmonotonic theoriesencoding graph problems are often smaller in size than corresponding clas-sical logic descriptions. Hence, loss in complexity may be o�set by the dropin the size of input (see [5]). Systematic experimentation may be the mostdirect way and, perhaps, the only way to answer the above questions. Inaddition to complexity results mentioned earlier, several algorithms for rea-soning from default theories and logic programs with negation were presentedin [19, 13, 28, 26]. In view of the large body of these results, it seems thatthe main problem hindering the research on these algorithms and the e�ortsto develop reasoning systems based on nonmonotonic logics is the lack ofadequate experimentation testbed. In this paper we address this issue.To experiment with software systems we need easily generated, realisticand meaningful input instances. The input data should be easy to reproduceand disseminate so that other researchers can use it. The generation methodshould allow the users to control basic parameters of test cases to facilitatecomprehensive testing of the software.The problem of producing sets of benchmark data appears in all areasof experimental research. A possible approach is to produce and distributea database of real-life examples. For example, databases of benchmarkswere created for experimentation with linear programming algorithms, forinvestigation of methods to solve the travelling salesman problem, for anumber of VLSI problems, and in numerous other areas of experimentalresearch in computer science. The bene�ts of this method are evident. Theproblems are realistic and meaningful, and they can easily be disseminated.But there are also drawbacks. The data can be used only in a speci�capplication domain and often does not provide enough
exibility to allow full-
edged testing. The other approach frequently used in experimental researchis to generate data randomly. This approach o�ers an unlimited number oftest cases and the user has control over at least some important parametersof data generated. For example, when generating random graphs, one canrequest a speci�c number of vertices and edges. However, the data generatedrandomly has often properties that rarely occur in real-life examples. It iswell known that (under some technical assumptions) almost every connectedrandom graph is hamiltonian [4]. Similarly, it is now believed that random3-SAT problems do not provide an adequate model for problems likely tooccur in real-life applications [11, 6].None of these approaches has been fully developed for experimentingwith logic programming or nonmonotonic reasoning. In logic programming

research, benchmark programs usually come from a small set of problemsincluding the \naive reverse" program [33]. Moreover, no notion of a randomlogic program or default theory has been proposed yet.The proposal we are describing in this paper is based on the work byKnuth [15] on methods to generate graphs, and on our results providingencodings of graph problems in terms of default theories and logic programs.Knuth in [15] argues that random graphs do not constitute an adequatetool for testing graph algorithms. Instead, Knuth develops a graph genera-tion system, the Stanford GraphBase. This system is publicly available (see[15] for details) and, thus, can be used as a \common denominator" for workrequiring experimenting with graphs. The core of the system is formed byseveral graph generating procedures. Some of the methods employed rootthe graphs they generate in real-life objects such as maps and dictionaries.At the same time, these methods are
exible and can generate large familiesof graphs preserving some randomness appearance. An important feature ofGraphBase is that every graph generated gets a unique label (or identi�er).It is essential for storing and easy reproduction of test cases generated.The main contribution of this paper is an extension of the StanfordGraphBase to a system that generates logic programs and default theories.Our idea is simple. Problems on graphs such as coloring, hamiltonicity, exis-tence of kernels, have encodings as default theories and logic programs. Thisis, of course, implied by complexity considerations [18, 12, 16]. However, tobuild a system, we need explicit encodings. Several such encodings will bepresented in Section 2 of this paper.To generate test theories, we propose to �rst generate graphs (usingGraphBase) and then to encode problems (coloring, hamiltonicity, etc.) forthese graphs as logic programs and default theories. By coupling Knuth'sGraphBase and these translations we get a system for creating examples ofmeaningful, interesting, and yet su�ciently randomized default theories andlogic programs. This system will be referred to as TheoryBase.The identi�cation system for TheoryBase allows us to easily reproducetheories out of their identi�ers. Thus, it facilitates an exchange of test defaulttheories and logic programs. In this fashion, a useful and functional systemof benchmarks for nonmonotonic reasoning can be created.TheoryBase was motivated by Default Reasoning System project, DeReS,currently being carried out at the University of Kentucky. The need to buildan experimentation testbed for DeReS prompted our TheoryBase project.Several elements of DeReS are now completed (propositional logic program-ming with stable semantics, default logic with Reiter's extensions) and weare now beginning a systematic experimentation e�ort.The paper consists of two main parts. The next section presents encod-ings of graph problems as logic programs and default theories. Section 3describes how these encodings are used in the design of TheoryBase.

2 Default theories and logic programs for graphproblemsIn [18] it was shown that the problem of existence of stable models of a logicprogram is NP-complete. This result implies that for every problem P inNP there is a polynomially constructible encoding of P as a logic program,say lp(P), such that P has a solution if and only if the program lp(P) has astable model. Similarly, the �P2 -completeness of existence of extensions fora default theory [12] implies that there are e�cient encodings of problemsin the class �P2 as default theories. These encodings form the core of ourtestbed system | TheoryBase. The problems we focus on in this paper are:maximal independent sets and maximal matchings, colorings, existence ofkernels and existence of hamiltonian cycles (see [8] for graph theory termi-nology). For each of these problems we will present one or more encodings innonmonotonic formalisms together with theorems asserting the correspon-dence between the graph problem and the encoding. These problems appearin numerous applications. Hence, as long as underlying graphs are realistic,our logic programs and default theories have meaningful interpretations.The complexity results show only existence of encodings. To build The-oryBase, we need their explicit description. This is the topic of this section.In the paper we are using the following notation. By G = (V;E) wedenote a graph with the vertex set V and the edge set E. The set E consistsof two-element sets or ordered pairs of vertices, depending on whether thegraph is undirected or directed. We also denote jV j by n and jEj by m. Forundirected graphs we denote the set of neighbors of a vertex v by �(v). Fordirected graphs we de�ne�+(v) = fw 2 V : (v; w) 2 E and v 6= wgand ��(v) = fw 2 V : (w; v) 2 E and v 6= wg:2.1 Maximal independent sets and maximal matchingsLet G = (V;E) be an undirected graph. For every v 2 V , we de�ne a defaultdv = : :in(v1); : : : ;:in(vk)in(v) ;where �(v) = fv1; : : : ; vkg and in(vi) are propositional atoms (intuitively,in(v) says that v is in an independent set).Theorem 2.1 Let G = (V;E) be an undirected graph and let D = fdv :v 2 V g. A set U � V is a maximal independent set in G if and only ifCn(fin(v): v 2 Ug) is an extension for the default theory �ind = (D; ;). 2

As a corollary, we obtain an encoding for the maximal matching problem.For every e 2 E, de�ne a defaultde = : :in(e1); : : : ;:in(ek)in(e) ;where e1; : : : ; ek are all the edges adjacent to e and in(ei) are propositionalatoms.Theorem 2.2 Let G = (V;E) be an undirected graph and let D = fde : e 2Eg. A set F � E is a maximal matching in G if and only if Cn(fin(e): e 2Fg) is an extension for the default theory �match = (D; ;). 2Remark 2.1 The encoding of the maximal independent set problem uses ndefaults and the encoding of the maximal matching problem usesm defaults.The size of the �rst encoding is O(2m+n). The size of the second encodingis O(mK), where K is the largest vertex degree in G.Remark 2.2 Both problems presented above can be encoded as logic pro-grams. For example, using a translation described in [17], each default dvcan be expressed by the clausein(v) not(in(v1)); : : : ;not(in(vk)):Under this encoding, maximal independent sets correspond to stable modelsof the resulting logic program.2.2 ColoringsLet G = (V;E) be an undirected graph with the set of vertices fv1; : : : ; vng,where each vi is a positive integer. Let C = fc1; : : : ; ckg be a set of colors. Acoloring of G is any mapping f : V ! C. Given a coloring f , R(f) denotesthe set of propositional atoms fclr(v; f(v)) : v 2 V g. This set represents anassignment of colors to the vertices of G.For each vertex vi; i = 1; : : : ; n, and for each color cj ; j = 1; : : : ; k, wede�ne the default rulecolor(vi; cj) = : :clr(vi; c1); :::;:clr(vi; cj�1);:clr(vi; cj+1); :::;:clr(vi; ck)clr(vi; cj) :The set of default rules fcolor(vi; cj) : j = 1; : : : ; kg is used to assignexactly one color to a vertex vi. LetD0 = fcolor(vi; cj) : i = 1; : : : ; n; j = 1; : : : ; kg:The default theory (D0; ;) has kn extensions corresponding to all possiblecolorings (not necessarily proper) of the vertices of G. To describe propercolorings, that is, colorings where any two vertices connected by an edge

have di�erent colors, we will use additional default rules. These rules willkill extensions which de�ne \non-proper" colorings. They will be calledkilling defaults. To describe them we de�ne several auxiliary formulas.Let E = fe1; : : : ; emg and let el = fxl; ylg, where xl; yl 2 V are theendpoints of el. By '(l; j) we denote the following formula:'(l; j) = clr(xl; cj) ^ clr(yl; cj):The formula (l) = Wkj=1 '(l; j) expresses the fact that both end verticesof the edge el have the same color. For a vertex vi, let Ei be the set of alledges connecting vi to smaller vertices. That is,Ei = fe 2 E : e = fvi; wg and w < vig:(The condition w < vi ensures that every edge appears in exactly one setEi.) Now, for every vertex vi 2 V de�ne�i = _el2Ei (l)(if Ei = ; then we assume that �i = ?). The formulas �i are used to ensurethat no two connected vertices receive the same color. Finally, let F , Fiand Fl;j be arbitrary auxiliary atoms, that is any atoms di�erent from theatoms of the form clr(v; c). The intuitive meaning of these auxiliary atoms isfalsity. They are used to prevent undesirable theories from being generatedas solutions. We de�ne the following killing default rules:global = Wml=1Wkj=1 '(l; j) : :FF ;partial(i) = �i : :FiFi ; i = 1; : : : ; n;local(l; j) = '(l; j) : :Fl;jFl;j ; l = 1; : : : ;m; j = 1; : : : ; k:Default global performs a global (over all edges) check of the propercoloring condition. Default partial(i) veri�es the condition for all edges inEi. Finally, default local(l; j) veri�es the proper coloring condition for edgeel and color j.Theorem 2.3 Let G = (V;E) be an undirected graph. For any of the fol-lowing default theories:1. �1col = (D0 [fglobalg; ;),2. �2col = (D0 [fpartial(i) : i = 1; : : : ; ng; ;),3. �3col = (D0 [flocal(l; j) : l = 1; : : : ;m; j = 1; : : : ; kg; ;),

if f : V ! C is a proper coloring of G then Cn(R(f)) is an extension for�icol, i = 1; 2; 3. Moreover, if S is an extension for �icol, for some i = 1; 2; 3,then S = Cn(R(f)) for some proper coloring f of G. 2Remark 2.3 We presented three encodings of the graph coloring problem.They di�er in the technique used to check that a coloring is proper. All thesetheories have nk default rules to generate a coloring and some additionaldefault rules to ensure that the coloring is proper. The total number ofdefault rules is nk + 1 for �1col, nk + n for �2col and nk + mk for �3col.However, the length of the resulting default theory is approximately thesame in all cases and is given by O((nk +m)k).Remark 2.4 The encoding �3col has a straightforward translation into alogic program. To this end just replace each default rule color(vi; cj) by alogic program clauseclr(vi; cj) not(clr(vi; c1)); : : : ;not(clr(vi; cj�1));not(clr(vi; cj+1));: : : ;not(clr(vi; ck))and each default local(l; j) by a logic program clauseFl;j clr(xl; cj); clr(yl; cj);not(Fl;j):2.3 KernelsLet G = (V;E) be a directed graph with the set of vertices fv1; : : : ; vng. Letus identify the set of vertices of G with a set of atoms of a propositionallanguage. Let PG be the following logic program:PG = fv not(w) : (v; w) 2 Eg:It was shown [18] that the stable models of PG are precisely the sets of theform V n K where K is a kernel of G. The straightforward rewriting ofthe clause c = v not(w) as a default rule dc = ::wv leads to a defaulttheory whose extensions correspond to kernels of G. Speci�cally, K is akernel of G if and only if Cn(V n K) is an extension of the default theory�1ker = (fdc : c 2 PGg; ;).Here we present two other encodings of kernels in the language of defaultlogic. For each vertex v 2 V we will use a propositional atom out(v) withthe intuitive meaning that v is out of kernel. First, we de�ne two defaultrules for each vertex vi 2 V :: out(vi)out(vi) ; : :out(vi):out(vi) : (1)Let D0 = n[i=1� : out(vi)out(vi) ; : :out(vi):out(vi) � : (2)

The default theory (D0; ;) has 2n extensions corresponding to all subsetsof V . To leave only those subsets of V whose complements correspond tokernels of G, we need to use either additional propositional formulas oradditional defaults. We will explore both possibilities.To ensure that vertices of the kernel form an independent set we will usepropositional formulas '(v; w) = out(v) _ out(w);where (v; w) 2 E. To ensure that for a vertex v which does not belong tothe kernel there is an edge (v; w) 2 E such that w is in the kernel we willuse the formula (v) = out(v) � :out(w1) _ : : : _ :out(wi); where �+(v) = fw1; : : : ; wig:Now, we can state our �rst result on kernels.Theorem 2.4 Let G = (V;E) be a directed graph and let �2ker = (D0;W)be a default theory such thatW = f'(v; w) : (v; w) 2 Eg [f (v) : v 2 V g:If K � V is a kernel of G then Cn(f:out(v) : v 2 Kg[fout(v) : v 62 Kg) isa consistent extension for �2ker. Conversely, if S is a consistent extensionfor �2ker then S is of the form Cn(f:out(v) : v 2 Kg [fout(v) : v 62 Kg),where K � V and K is a kernel of G. 2The third encoding of the kernel problem will be obtained by replacingpropositional formulas from W in Theorem 2.4 by default rules. To this endwe de�ne the following killing defaults:ind(v; w) = :out(v) ^ :out(w) : :Fv;wFv;w ; (v; w) 2 E;dom(v) = out(v) : out(w1); : : : ; out(wi);:FvFv ; v 2 V;where, as previously, �+(v) = fw1; : : : ; wig and Fv;w's and Fv's are arbi-trary auxiliary atoms di�erent from the atoms of the form out(v). Defaultsfind(v; w) : (v; w) 2 Eg ensure that the set of selected vertices is an in-dependent set. Defaults fdom(v) : v 2 V g ensure that the set of selectedvertices is a dominating set.Theorem 2.5 Let G = (V;E) be a directed graph and let �3ker = (D0 [D1; ;) be a default theory where D0 is de�ned by (2) andD1 = find(v; w) : (v; w) 2 Eg [fdom(v) : v 2 V g:If K � V is a kernel of G then Cn(f:out(v) : v 2 Kg [fout(v) : v 62 Kg)is an extension for �3ker. Conversely, if S is an extension for �3ker then Sis of the form Cn(f:out(v) : v 2 Kg [fout(v) : v 62 Kg) where K � V andK is a kernel of G. 2

Remark 2.5 The encodings �2ker and �3ker di�er in the way they verifykernel conditions. In both cases we use 2n default rules to generate a subsetof V . In the case of �2ker we use, in addition, n+m propositional formulasto check whether a given subset is a kernel. In the case of �3ker we usen +m additional default rules to verify conditions for a kernel. Thus, thetotal number of default rules is 2n for �2ker and 3n +m for �3ker. But in�2ker we have n+m propositional formulas in W , while in the case of �3kerthe set W is empty. Therefore, in both cases the total length of encoding isproportional to 3n+m, that is, it is bounded by O(n+m).Remark 2.6 The encoding �3ker can be translated into a logic program.To this end we will use a positive literal in(v) instead of a negative literal:out(v). Now, a pair of default rules (1) can be rewritten as a pair of logicprogram clausesout(vi) not(in(vi)) and in(vi) not(out(vi)):The default rule ind(v; w) can be replaced with a logic program clauseFv;w not(out(v));not(out(w));not(Fv;w)and the default rule dom(v) with a clauseFv out(v); out(w1); : : : ; out(wi);not(Fv):2.4 Directed hamiltonian cyclesLet G = (V;E) be a directed graph with the set of vertices fv1; : : : ; vng.We assume that n � 3. We will construct a default theory (D;W) whoseextensions correspond to hamiltonian cycles in G. We will use atoms vstd(v)(intuitively, v has been visited) and e(v; w) (intuitively, (v; w) is an edge ofa hamiltonian cycle).Let W = fvstd(v1)g. Let v 2 V and �+(v) = fw1; : : : ; wkg. We de�ne kdefault rules for vertex v in the following way:move(v; wj) = vstd(v) : :e(v; w1); :::;:e(v; wj�1);:e(v; wj+1); :::;:e(v; wk)e(v; wj) ^ vstd(wj) :Now we de�ne the �rst group of defaults:D0 = fmove(v; w) : v 2 V and w 2 �+(v)g: (3)The role of the defaults in D0 is to select one outcoming edge for every\visited" vertex. To make sure that every vertex is visited, we de�ne thesecond group of default rules using additional new atoms Fv; v 2 V :D1 = � : :vstd(v);:FvFv : v 2 V � : (4)

Finally, to make sure that the edges selected by the default rules from D0form a cycle, we need an additional default:cycle = : :e(u1; v1); : : : ;:e(uk; v1);:FF ;where ��(v1) = fu1; : : : ; ukg and F is an auxiliary atom. We have thefollowing theorem.Theorem 2.6 Let G = (V;E) be a directed graph. Let W = fvstd(v1)g(v1 2 V) and �ham = (D0[D1[fcycleg;W), where D0 and D1 are de�ned by(3) and (4). If S is an extension for �ham then the set of edges C = f(v; w) :S j= e(v; w)g is a hamiltonian cycle in G. Also, if C is a hamiltonian cyclein G then Cn(fe(v; w) : (v; w) 2 Cg [fvstd(v) : v 2 V g)is an extension for �ham. 2Remark 2.7 The encoding of hamiltonian cycles presented in this sectionuses at most m + n + 1 default rules. The length of the resulting defaulttheory is O(mK + n), where K is the maximal vertex outdegree in G. Thetheory �ham presented in this section can be rewritten as a logic programusing the translation de�ned in [17].3 TheoryBaseIn this section we will brie
y describe TheoryBase. TheoryBase is an ex-tension of the Stanford GraphBase [15], created by Donald E. Knuth at theStanford University. The Stanford GraphBase is a collection of datasets,procedures which generate graphs and several demo programs. It allows theusers to generate families of directed, undirected, weighted, unweighted, bi-partite, planar, regular and random graphs. The Stanford GraphBase alsocontains procedures to generate graphs by means of graph operations such asunion, intersection, complement, cartesian, direct or strong product. Othergraph operations are also available. The Stanford GraphBase proceduresmake it possible to generate permutation graphs and partition graphs. Aninteresting family of graphs can be generated from a table of highway dis-tances between 128 North American cities. For detailed description of theStanford GraphBase see [15]. Each graph generated from GraphBase has anidenti�er from which the graph can be reconstructed.TheoryBase is a tool to create default theories and logic programs forexperimentation with nonmonotonic reasoning systems. The main idea is toapply the encodings presented in Section 2 to graphs which are the outputsof GraphBase.TheoryBase associates an identi�er with each theory it generates. Thisis an extension of the concept of a graph identi�er in GraphBase. A The-oryBase identi�er is a pair (�; �), where � is a GraphBase identi�er and

� is the name of a translation described in Section 2. We described herenine translations into default theories: �ind, �match, �1col, �2col, �3col, �1ker,�2ker, �3ker and �ham (several modi�cations of these nine translations arealso available). In addition, as we pointed out in Section 2, some of them(�ind, �match, �3col, �1ker, �3ker and �ham) imply encodings into logic pro-grams.The semantics of a TheoryBase identi�er (�; �) is given by a logic pro-gram or a default theory obtained by the following process:1. generate a graph G from the GraphBase identi�er � (� encodes thegeneration method to be used),2. produce a logic program or a default theory by applying the translation� to G.It should be clear that an identi�er uniquely determines a logic programor a default theory. Hence, to exchange test cases, it is su�cient to exchangetheir TheoryBase identi�ers only.We will present now two graphs from GraphBase and two correspondingtheories from TheoryBase.The �rst theory is determined by the TheoryBase identi�er (�; �), where:� = complement(gunion(board(7,0,0,0,2,0,0), simplex(2,2,2,2,0,0,0),0,0),0,0,0),� = �ind.Its �rst component is a GraphBase identi�er of the graph G1 shown in Figure1. The second part, �ind, indicates the encoding used to produce a theory (inthis case, the encoding describing maximal independent sets). The resultingset of defaults is given below:::in(2);:in(4);:in(5);:in(6)in(0) ::in(5);:in(6)in(1) ::in(0);:in(3);:in(5);:in(6)in(2)::in(2);:in(6)in(3) ::in(0);:in(6)in(4) ::in(0);:in(1);:in(2);:in(6)in(5)::in(0);:in(1);:in(2);:in(3);:in(4);:in(5)in(6) :It is easy to see that Cn(fin(0); in(1); in(3)g) is an extension of thisdefault theory. It corresponds to the maximal independent set f0; 1; 3g inG1.Next, we show the theory determined by the identi�erid = (econ(8; 0; 10000; 0);�ham):The graph G2 identi�ed by the GraphBase identi�er econ(8; 0; 10000; 0) isalso shown in Figure 1.

7

0 2

3

45

6

1

G1 G2

2

3

6

0

4

5

1Figure 1: Graphs G1 and G2The second component of the identi�er id is �ham. Hence, the theorydescribed by id encodes the problem of existence of hamiltonian cycles forG2. Its defaults are listed below.vstd(0):e(0;2)^vstd(2) vstd(1):e(1;7)^vstd(7) vstd(4):e(4;7)^vstd(7) vstd(5):e(5;7)^vstd(7)vstd(7)::e(7;1);:e(7;2);:e(7;3);:e(7;4);:e(7;5);:e(7;6)e(7;0)^vstd(0)vstd(7)::e(7;0);:e(7;2);:e(7;3);:e(7;4);:e(7;5);:e(7;6)e(7;1)^vstd(1)vstd(7)::e(7;0);:e(7;1);:e(7;3);:e(7;4);:e(7;5);:e(7;6)e(7;2)^vstd(2)vstd(7)::e(7;0);:e(7;1);:e(7;2);:e(7;4);:e(7;5);:e(7;6)e(7;3)^vstd(3)vstd(7)::e(7;0);:e(7;1);:e(7;2);:e(7;3);:e(7;5);:e(7;6)e(7;4)^vstd(4)vstd(7)::e(7;0);:e(7;1);:e(7;2);:e(7;3);:e(7;4);:e(7;6)e(7;5)^vstd(5)vstd(7)::e(7;0);:e(7;1);:e(7;2);:e(7;3);:e(7;4);:e(7;5)e(7;6)^vstd(6)::vstd(0);:F (0)F (0) ::vstd(1);:F (1)F (1) ::vstd(2);:F (2)F (2)::vstd(3);:F (3)F (3) ::vstd(4);:F (4)F (4) ::vstd(5);:F (5)F (5)::vstd(6);:F (6)F (6) ::vstd(7);:F (7)F (7) ::e(7;0);:FF :4 ConclusionsIn this paper we presented a system, called TheoryBase, to generate test de-fault theories and logic programs. This proposal was motivated by our workon the implementation of Default Reasoning System, which requires exten-sive experimentation. TheoryBase is based on a graph generating system,

the Stanford GraphBase. A wealth of graph examples created in GraphBaseinduces a large number of examples that can be generated from Theory-Base. Consequently, TheoryBase will greatly facilitate experimental studiesof nonmonotonic systems.However, the number of procedures in TheoryBase is, so far, restricted.In the future, encodings of additional graph problems need to be added toTheoryBase. Moreover, systems for nonmonotonic reasoning are suitablefor solving not only problems on graphs and we hope to add to Theory-Base methods to generate theories based on problems in other applicationdomains.Finally, let us observe that the methodology presented in our paper canbe used to produce test cases for other domains. For example, by encodinggraph problems as propositional theories, one can obtain a test generatingtool to facilitate experimental work on algorithms for satis�ability testing.References[1] C. Baral and V.S. Subrahmanian. Dualities between alternative seman-tics for logic programming and nonmonotonic reasoning. In A. Nerode,W. Marek, and V.S. Subrahmanian, editors, Logic programming andnon-monotonic reasoning, pages 69{86. MIT Press, 1991.[2] C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Implementingstable semantics by linear programming. In A. Nerode and L. Pereira,editors, Logic programming and non-monotonic reasoning, pages 23{42.MIT Press, 1993.[3] N. Bidoit and C. Froidevaux. Negation by default and unstrati�ablelogic programs. Theoretical Computer Science, 78:85{112, 1991.[4] B. Bollob�as. Random Graphs. Academic Press, 1985.[5] Marco Cadoli, Francesco M. Donini, and Marco Schaerf. Is intractabil-ity of non-monotonic reasoning a real drawback? In Proceedings ofthe Twelfth National Conference on Arti�cial Intelligence (AAAI-94),pages 946{951, Seattle, USA, 1994.[6] J.M. Crawford and A.B. Baker. Experimental results on the applicationof satis�ability algorithms to scheduling problems. In Proceedings ofAAAI-94, Menlo Park, CA., 1994. American Association for Arti�cialIntelligence, Morgan Kaufmann.[7] M. Dixon and J. de Kleer. Massively parallel assumption-based truthmaintenance. In M. Reinfrank, J. de Kleer, M.L. Ginsberg, andE. Sandewall, editors, Non-monotonic reasoning, pages 131{142. Berlin:Springer-Verlag, 1989. Lecture Notes in Arti�cial Intelligence, 346.[8] M.R. Garey and D.S. Johnson. Computers and intractability; a guideto the theory of NP-completeness. W.H. Freeman, 1979.[9] M. Gelfond. On strati�ed autoepistemic theories. In Proceedings ofAAAI-87, pages 207{211, Los Altos, CA., 1987. American Associationfor Arti�cial Intelligence, Morgan Kaufmann.

[10] M.L. Ginsberg. A circumscriptive theorem prover. In M. Reinfrank,J. de Kleer, M.L. Ginsberg, and E. Sandewall, editors, Non-monotonicreasoning, pages 100{114. Berlin: Springer-Verlag, 1989. Lecture Notesin Arti�cial Intelligence, 346.[11] M.L. Ginsberg and D.A. McAllester. GSAT and dynamic bactracking.In J. Doyle, E. Sandewall, and P. Torasso, editors, Principles of knowl-edge representation and reasoning, KR '94, pages 226{237, Cambridge,MA, 1994. Morgan Kaufmann.[12] G. Gottlob. Complexity results for nonmonotonic logics. Journal ofLogic and Computation, 2:397{425, 1992.[13] U. Junker and K. Konolige. Computing the extensions of autoepistemicand default logics with a truth maintenance system. In Proceedingsof AAAI-90, Los Altos, CA., 1990. American Association for Arti�cialIntelligence, Morgan Kaufmann.[14] H.A. Kautz and B. Selman. Hard problems for simple default logics. InProceedings of the 1st international conference on principles of knowl-edge representation and reasoning, KR '89, pages 189{197, San Mateo,CA., 1989. Morgan Kaufmann.[15] D. E. Knuth. The Stanford GraphBase: a platform for combinatorialcomputing. Addison-Wesley, 1993.[16] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systemsII. Annals of Mathematics and Arti�cial Intelligence, 5:229{263, 1992.[17] W. Marek and M. Truszczy�nski. Stable semantics for logic programsand default theories. In E. Lusk and R. Overbeek, editors, Proceedingsof the North American conference on logic programming, pages 243{256,Cambridge, MA., 1989. MIT Press.[18] W. Marek and M. Truszczy�nski. Autoepistemic logic. Journal of theACM, 38:588{619, 1991.[19] W. Marek and M. Truszczy�nski. Nonmonotonic logics; context-dependent reasoning. Berlin: Springer-Verlag, 1993.[20] J. McCarthy. Circumscription | a form of non-monotonic reasoning.Arti�cial Intelligence, 13:27{39, 1980.[21] J. McCarthy and P. Hayes. Some Philosophical Problems from theStandpoint of Arti�cial Intelligence. In B. Meltzer and D. Michie,editors, Machine Intelligence 4, pages 463{502. Edinburgh UniversityPress, 1969.[22] D. McDermott. Nonmonotonic logic II: nonmonotonic modal theories.Journal of the ACM, 29:33{57, 1982.[23] D. McDermott and J. Doyle. Nonmonotonic logic I. Arti�cial Intelli-gence, 13:41{72, 1980.[24] R.C. Moore. Possible-world semantics for autoepistemic logic. In R. Re-iter, editor, Proceedings of the workshop on non-monotonic reasoning,pages 344{354, 1984. (Reprinted in: M.Ginsberg, editor, Readings onnonmonotonic reasoning. pages 137{142, 1990, Morgan Kaufmann.).

[25] R.C. Moore. Semantical considerations on non-monotonic logic. Arti�-cial Intelligence, 25:75{94, 1985.[26] I. Niemel�a. Constructive tightly grounded autoepistemic reasoning. InProceedings of IJCAI-91, pages 399{404, San Mateo, CA., 1991. MorganKaufmann.[27] I. Niemel�a. On the decidability and complexity of autoepistemic rea-soning. Fundamenta Informaticae, 17:117{155, 1992.[28] C. Papadimitriou and M. Yannakakis. Tie-breaking semantics andstructural totality. In Proceedings of 11th Symposium on Principlesof Database Systems, pages 16 { 22, 1992.[29] D. Poole. A logical framework for default reasoning. Arti�cial Intelli-gence, 36:27{47, 1988.[30] T. Przymusinski. Autoepistemic logic of closed beliefs and logic pro-gramming. In A. Nerode, W. Marek, and V.S. Subrahmanian, ed-itors, Logic programming and non-monotonic reasoning, pages 3{20.MIT Press, 1991.[31] R. Reiter. On closed world data bases. In H. Gallaire and J. Minker,editors, Logic and data bases, pages 55{76. Plenum Press, 1978.[32] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132, 1980.[33] L. Sterling and E. Shapiro. The Art of Prolog. Cambridge, MA: MITPress, 1986.[34] J. Stillman. The complexity of propositional default logics. In Pro-ceedings of AAAI-92, pages 794{799, Menlo Park, CA., 1992. AmericanAssociation for Arti�cial Intelligence, Morgan Kaufmann.[35] D.S. Warren W. Chen, T. Swift. E�cient computation of queries un-der the well-founded semantics. Technical Report 93-CSE-33, SouthernMethodist Univeristy, 1993.

