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1 Introduction

1.1 Summary

In Logic Programming, ”negation as failure” has become an important area of research.

”Negation as failure” is ubiquitous in deductive databases ([Minker, 1987]), in truth main-

tenance systems ([Doyle, 1979]), and in default logic ([Reiter, 1980]). It is a naturally

occurring “non-monotonic logic”. The original (breadth-first) PROLOG is a (monotonic)

classical logic of pure Horn clauses. There, every Horn program possesses a least Herbrand

model. Correspondingly, an important tool for understanding the semantics of PROLOG

programs allowing “negation as failure” has been stable models ([Gelfond and Lifschitz,

1988]). But, unlike the situation for pure Horn clause logic, a program here may have

no least stable model in the Herbrand universe. In fact, a program may have no stable

model or many different stable models. Exactly how complicated can the set of all stable

models be? In this paper we determine this for programs with a recursive set of axioms.

See [Rogers, 1967] for all unexplained terminology. We show that, up to a 1:1 recursive
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renaming, the set of all stable models of a recursive program in the Herbrand universe is

the set of all infinite paths in a recursive, countably branching tree (theorem 3.1). One

immediate corollary of the relativised version of this result, using Cantor’s theorem, says

that a countable, not necessarily recursive, logic program has either countably many or a

continuum of stable models. Conversely, we show that the set of infinite paths of a count-

ably branching recursive tree is, up to 1:1 recursive renaming, the set of stable models of a

recursive program (Theorem 3.3). Thus the problem of finding a stable model of a recursive

program and the problem of finding an infinite path through a countably branching recur-

sive tree are essentially equivalent. An important consequence of these correspondences is

that the following problem is Σ1
1 complete: given a recursive program P, determine whether

or not there exists a stable model of P. That is, using indices of (characteristic functions of)

recursive logic programs, we prove that the set of indices of recursive programs possessing

stable models is a complete Σ1
1 set (Corollary 3.4). In addition we show that the set of

all indices of recursive programs with at least two stable models is Σ1
1, that the set of all

indices of recursive program with at most one stable model is Π1
1 (Corollary 3.5), and that

the set of all indices of recursive programs with exactly one stable model is ∆1
2. Moreover

our correspondences allow us to apply known results from recursion theory to show the

existence of programs whose stable models satisfy any number of special properties. For

example, using a result of Hinman ([Hinman, 1978]), we can conclude from our results that

for any recursive ordinal α, there exists a recursive program with exactly one stable model,

where that model has Turing degree equal to the αth jump of 0 (here 0 is the degree of the

recursive sets).

Our results in this paper stem from the authors’ work on non-monotone rule systems

([Marek, Nerode and Remmel, 1990]). The latter is a common framework for a mathematical
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development of syntax and semantics and algorithms for many non-monotonic logics which

have been offered in the literature, including all those mentioned above. In particular, this

work implies that the conclusions here also apply to truth maintenance systems and default

logic.

The paper is organized as follows: after the discussion of the problem, in Section 2

we introduce basic technique used throughout the paper. Basic results on correspondence

between collections of stable models of a recursive program and effective closed subsets of

Baire’ space as well as corollaries are proved in Section 3.

1.2 Discussion of the problem

We can rephrase the basic problem that we wish to study as: “What types of objects are

described by a logic program?”. The first result in this direction is the classical result im-

plicit in ([Smullyan, 1961]) and, more recently, reproved by Andreka and Nemeti ([Andreka

and Nemeti, 1978]). This can be summarized as follows: the least model of a recursive

Horn program is a recursively enumerable (r.e.) set, and every r.e. set so arises. But

general logic programs compute more complex sets. As mentioned above, such a program

does not necessarily have a least model. It may possess several or no minimal models. For

an important class of general programs, stratified programs and their generalizations, it is

possible to single out a distinguished model [Apt, Blair and Walker, 1987], called the perfect

model. The perfect model is constructed by combining the least fixed point constructions

for a suitably chosen sequence of operators. The arithmetical complexity of perfect models

of stratified programs was determined in ([Apt and Blair, 1990]). The results of Apt and

Blair showed that programs with stratification of length n compute, up to Turing degree,

the nth level of the arithmetical hierarchy.
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The concept of a perfect model of a program has been generalized in various ways. When

the underlying logic is ordinary two-valued logic, the most natural notion generalizing the

concept of a perfect model is that of a stable model of a program [Gelfond and Lifschitz,

1988]. Stable models of programs have been shown to be default interpretations, see [Reiter,

1980], in [Bidoit and Froidevaux, 1988] and in [Marek and Truszczyński, 1989]. There exist

logic programs which are not stratified but which possess a unique stable model [Gelfond and

Lifschitz, 1988]. Up to now there has been no general characterization of programs which

possess a unique stable model. Also, there is no natural method of selecting a particular

stable model from the set of stable models of a program with many stable models. Once

we accept the supposition that all the stable models of a program are “equally good”, that

each stable model represents an acceptable “points of view”, then it is natural to ask for a

characterization of the class S(P ) of all stable models of a program P . The authors proved

([Marek, Nerode and Remmel, 1990a]) that for every recursive program P , then the class

S(P ) is a Π0
2 subset of the Cantor space, under a suitable coding of the Herbrand universe

as ω. This converts questions about the complexity of stable models to questions in Cantor

space or Baire space. So we are presented with a problem in effective descriptive set theory:

How can we characterize the effective descriptive complexity of S(P )? Since stable models

are minimal models ([Gelfond and Lifschitz, 1988]), the class S(P ) forms an antichain, that

is, the elements of S(P ) are pairwise incompatible under inclusion. Our results show that

the classes S(P ) are notational variants of the effective closed sets, Π0
1 sets, in Baire space.

What we prove here is that for any given recursive program P , the class S(P ) is in effective

one-to-one degree preserving correspondence with a Π0
1 subset of Baire space. Conversly,

every Π0
1 set so arises.
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2 Operator TP,M . Parametrized derivations. Derivation

schemes for logic programs.

Let ΠP be the set of all the Herbrand (ground) substitutions of the logic program P . We

identify P with ΠP for the rest of the paper. If P is a program and M ⊆ BP is a subset of

the Herbrand base, define operator TP,M :P(BP )→ P(BP ) as follows:

TP,M (I) = {p: there exist a clause C = p← q1, . . . , qr,¬s1, . . . ,¬su

in P such that q1 ∈ I, . . . , qr ∈ I, s1 /∈M, . . . su /∈M}}

The following is immediate:

Proposition 2.1 For every program P and every subset M of BP , the operator TP,M is

monotone and finitizable.

(See [Apt, 1988] for unexplained notions.)

The operator TP,M , like all monotonic finitizable operators, possesses a least fixpoint

FP,M . In order to understand this fixpoint in the context of the models of the program P ,

recall the operational construction of a stable model of a logic program from ([Gelfond and

Lifschitz, 1988]).

Given program P and M ⊆ BP , first define the Gelfond-Lifschitz reduct of P as follows.

For every clause C of P , execute the following operation: If some atom a belongs to M and

its negation ¬a appears in C, then eliminate C altogether. In the remaining clauses that

have not been eliminated by the operation above, eliminate all the negated atoms.

The resulting program PGL
M is a Horn propositional program (possibly infinite). The

program PGL
M possesses a least Herbrand model. If that least model of PGL

M coincides with
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M , then M is called a stable structure for P . Gelfond and Lifschitz proved the following

result:

Proposition 2.2 ([Gelfond and Lifschitz, 1988]) If M is a stable structure for P , then M

is a minimal model of P .

Call a stable structure for P a stable model of P . Moreover, as shown in [Marek and

Subrahmanian, 1988], stable models of P are all minimal models of the completion of P

([Clark, 1978]). The Gelfond and Lifschitz construction is an operational reduction of the

construction of stable models to monotone, finitizable operators. This reduces the study of

the stability phenomenon to the study of the usual operator TP of van Emden and Kowalski

[1976].

One condition which ensures that P possesses a unique stable model is that P is stratified

([Gelfond and Lifschitz, 1988]). A similar result is proved in [Marek and Subrahmanian,

1988] for locally stratified programs. But in general P may possess infinitely many, and

even uncountably many, stable models.

We start from the following natural characterization of stability in terms of the fixpoints

of the operator TP,M .

Proposition 2.3 M is a stable model for program P if and only if M = FP,M .

Proof: Assume that M is a stable model of P . Let TGL
P,M be the operator associated with

the Horn program PGL
M . We prove by induction on n that for every n < ω, TP,M⇑n(∅) =

TGL
P,M⇑n(∅). For n = 0, the elements of TP,M⇑0(∅) are precisely those atoms p for which

“p ←” belongs to PGL
M . Such a “p ←” is either directly an element of P or, for some

atoms q1, . . . , qu /∈ M , p ← ¬q1, . . . ,¬qu ∈ P . In both cases p ∈ TP,M⇑0(∅). Conversely,
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if p ∈ TP,M⇑0(∅), then there is a C ∈ P such that C = p ← ¬q1, . . . ,¬qu ∈ P and

q1, . . . , qu /∈M . Then p← ∈ PGL
M and p ∈ TGL

P,M⇑n(∅).

The inductive step is similar and is left to the reader.

Consequently, M =
⋃

n<ω TP,M⇑n(∅) if and only if M =
⋃

n<ω TGL
P,M⇑n(∅). That is,

M =
⋃

n<ω TGL
P,M⇑n(∅) if and only if M = FP,M . 2

Having characterized stable models as fixpoints of (parametrized) operators, we look at

the form of elements belonging to FP,M .

A P, M -derivation of an atom p is a sequence 〈p1, . . . , ps〉 such that:

(1) ps = p,

(2) for every i ≤ s, either ”pi ←” is a member of P or there is a clause C = ”pi ←

r1, . . . , rn,¬q1, . . . ,¬qm” such that C ∈ P , r1, . . . , rn ∈ {p1, . . . , pi−1} , and q1, . . . , qm /∈M .

Proposition 2.4 FP,M is the set of all atoms possessing a P, M -derivation.

Proof: Both inclusions may be proved by a double induction on the number of iterations of

TP,M and on the length of the P, M -derivation. 2

Proposition 2.3 says that M is a stable model of the program P if and only if M consists

exactly of those atoms which possess a P, M -derivation. This fixpoint characterization

of stability explains the existence of programs with multiple stable models, and also the

existence of programs without any stable model.

The property that a sequence 〈p1, . . . , ps〉 is a P, M -derivation of an atom p does not

depend on the whole set M but only on the behavior of M on a finite set of atoms. In order

that the sequence 〈p1, . . . , ps〉 be a P, M -derivation of an atom ps, some atoms must be left

out of the set M . Each derivation depends on a finite number of such omitted atoms. In
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other words, if we classify the atoms according to whether they are “in” or “out” of M , the

property that a sequence 〈p1, . . . , ps〉 is a P, M -derivation depends only on whether a finite

number of elements are out of M . We formalize this notion.

An (annotated) (P-)proof scheme for an atom p is a sequence S = 〈〈pi, Ci, ui〉〉
s
i=1 of

triples such that for each triple 〈pi, Ci, ui〉, pi ∈ BP , Ci ∈ P is a clause with the head pi

and ui is a finite subset of BP . Such sequence S is a proof scheme for p if:

(1) ps = p,

and for every i

(2) Ci = pi ← r1, . . . , rn,¬q1, . . . ,¬qm, where {r1, . . . , rn} ⊆ {p1, . . . pi−1} and ui = ui−1 ∪

{q1, . . . , qm}.

(3) {p1, . . . , ps} ∩ us = ∅.

We call p the conclusion of S and denote this by writing p = cln(S). Call the set um

the support of S.

The notion of a proof scheme is needed because 〈p1, . . . , ps〉 may be a P, M -derivation for

many different M ’s. All that is needed for the sequence 〈p1, . . . , ps〉 to be a P, M -derivation

is that M satisfies certain negative requirements. These requirements are accumulated by

condition (2) above. The idea behind condition (3) is that if M is a stable model and the

derivation 〈p1, . . . , ps〉 requires that some atoms be out of M , but at the same time proves

one of these atoms, then this derivation can never be used to establish that its conclusion

is in M .

One needs to realize that, whereas the notion of P, M -derivation has been defined for

one model M , in contrast, the notion of P -proof scheme does not depend on M . We say

that a subset M ⊆ BP admits a proof scheme S = 〈〈pi, Ci, ui〉〉
s
i=1 if M ∩ us = ∅. We have
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the following fact.

Proposition 2.5 If M admits a proof scheme S = 〈〈pi, Ci, ui〉〉
s
i=1, then 〈p1, . . . , ps〉 is a

P, M -derivation of ps.

Proof: The result follows by a straightforward induction on s. 2

Thus, Proposition 2.5 characterizes of stability in terms of the existence of proof schemes.

Proposition 2.6 Let M ⊆ BP . Then M is a stable model of P if and only if

(1) for every p ∈M , there is a proof scheme S for p such that M admits S, and

(2) for every p /∈M , there is no proof scheme S for p such that M admits S.

Proof: If M is a stable model for P and p ∈ M , then there exists a P, M -derivation

〈p1, . . . , ps〉 of p. Since M is stable, for all i ≤ s, the atom pi belongs to M . Let C1, . . . , Cs

be the clauses used in the derivation. Let vi be the collection of atoms appearing negatively

in Ci. Then vi ∩M = ∅. Hence {p1, . . . , ps} ∩ vi = ∅. Thus if we set ui =
⋃

j≤i vi, we get

that S = 〈〈pi, Ci, ui〉〉
s
i=1 is a proof scheme for p admitted by M .

If p /∈M then, by proposition 2.5 there is no proof scheme for p admitted by M .

Conversely, assume that (1) and (2) hold for a particular M . Then all the elements of

M possess a P, M -derivation, but no other element does. Then by Proposition 2.3, M is a

stable model of P . 2

But how many derivation schemes for an atom p can there be? If we allow P to be

infinite, then it is easy to construct an example with infinitely many derivations of a single

atom. Moreover given two proof schemes, one can insert one into the other (increasing

appropriately the sets ui in this process, with obvious restrictions). Thus various clauses
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Ci may be immaterial to the purpose of deriving p. This leads us to introduce a natural

relation ≺ on proof schemes using a well-known device from proof theory. Namely, we define

S1 ≺ S2 if S1, S2 have the same conclusion and if every clause appearing in S1 also appears

in S2. Then a minimal proof scheme for p is defined to be a proof scheme S for p such that

whenever S′ is a proof scheme for p and S′ ≺ S, then S ≺ S′. Note that ≺ is reflexive and

transitive, but ≺ is not antisymmetric. However it is wellfounded. That is, given any proof

scheme S , there is an S′ such that S′ ≺ S and for every S′′, if S′′ ≺ S′ then S′ ≺ S′′.

Moreover, the associated equivalence relation, S ≡ S′, defined by S ≺ S′ and S′ ≺ S, has

finite equivalence classes.

Example 2.1 Let P1 be the following program:

C1: p(0)← ¬q(Y ).

C2: nat(0)← .

C3: nat(s(X))← nat(X).

Then atom p(0) possesses infinitely many minimal proof schemes. For instance, each one-

element sequence:

Si = 〈〈p(0), C1Θi, {si(0)}〉〉

where Θi is the operation of substituting si(0) for Y , is a minimal proof scheme for p(0).

Example 2.2 Let P2 be the following program:

C1: q(s(Y ))← ¬q(Y ).

C2: nat(0)← .

C3: nat(s(X))← nat(X).

For P2, each atom possesses only finitely many minimal proof schemes.
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We shall call a program P locally finite if for every atom p, there are only finitely many

minimal proof schemes with conclusion p. The assumption of local finiteness implies that

for every p, there is a finite subset Dp ⊆ BP such that, for every M , the behavior of M on

Dp (that is, the partition Dp = (Dp∩M)∪ (Dp \M)) determines whether or not p possesses

a P, M -derivation. This Dp is the union of the supports of the minimal proof schemes for

p. This implies that if P is locally finite, when we attempt to construct a subset M ⊆ BP

which is a stable structure for P , we can apply a straightforward (although still infinite)

tree construction to produce such an M , if such an M exists at all.

Next, we need to make the notion of a recursive program precise. First, assume that we

have a Gödel numbering of the elements of the Herbrand base BP . Thus, we can think of

each element of the Herbrand base as a natural number. If p ∈ BP , write c(p) for the code

or Gödel number of p. Let ω = {0, 1, 2, . . .}. Assume [, ] is a fixed recursive pairing function

[, ] which maps ω × ω onto ω and has recursive projection functions π1 and π2, defined

by πi([x1, x2]) = xi for all x1 and x2 and i ∈ {0, 1}. Code a finite sequence 〈x1, . . . , xn〉

for n ≥ 3 by the usual inductive defintion [x1, . . . , xn] = [x1, [x2, . . . , xn]]. Next, code

finite subsets of ω via “canonical indices”. The canonical index of the empty set, ∅, is the

number 0 and the set {x0, . . . , xn}, where x0 < . . . < xn, has canonical index
∑n

j=0 2xj .

Let Ek denote the finite set whose canonical index is k. Once finite sets and sequences of

natural numbers have been coded, we can code more complex objects such as clauses, proof

schemes, etc. as follows. Let the code c(C) of a clause C = p ← r1, . . . , rn,¬q1, . . . ,¬qm

be [c(p), k, l], where k is the canonical index of the finite set {c(r1), . . . , c(rn)}, and l is the

canonical index of the finite set {c(q1), . . . , c(qm)}. Similarly, let the code c(S) of a proof

scheme S = 〈〈pi, Ci, ui〉〉
s
i=1 be [s, [[c(p1), c(C1), c(u1)], . . . , [c(ps), c(Cs), c(us)]]], where for

each i, c(ui) is the canonical index of the finite set of codes of the elements of ui. The first
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coordinate of the code of a proof scheme is the length of the proof scheme. Once we have

defined the codes of proof schemes then for locally finite programs we can define the code

of the set Dp consisting of the union of the supports of all minimal proof schemes for P .

Finally we code recursive sets as natural numbers. Let φ0, φ1, . . . be an effective list of all

partial recursive functions then φe is the partial recursive function computed by the e-th

Turing machine. By definition, a (recursive) index of a recursive set R is an e such that

φe is the characteristic function of R. Call a program P recursive if the set of codes of the

Herbrand universe BP is recursive and the set of codes of the clauses of the program P is

recursive. If P is a recursive program, then by an index of P we mean the code of a pair

[u, p] where u is an index of the recusive set of all codes of elements in BP and p is an index

of the recursive set of the codes of all clauses in P .

For the rest of this paper we shall identify an object with its code as described above.

This means that we shall think of the Herbrand universe of a program, and the program

itself, as subsets of ω and clauses, proof schemes, etc. as elements of ω.

Even if P is a locally finite progam, there is no guarantee that the global behaviour of

the function p 7→ Dp, mapping ω into ω, has any sort of effective properties. Thus we are

led to define the following.

We say that a locally finite recursive program P possesses a recursive proof structure

(rps) if:

(1) P is locally finite, and

(2) The function p 7→ Dp is recursive.

A locally finite recursive program with an rps is called an rps program.
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In a forthcoming paper [Marek, Nerode and Remmel, 1991], we characterize the com-

plexity of the set of stable models for locally finite recursive programs and also the set of

stable models of a locally finite recursive program with a recursive proof structure. Here

we concentrate only on the most general case: recursive programs with no restrictions on

the number of minimal derivations.

3 Paths through Binary Trees and Stable Models

In this section, we show that the problem of finding a stable model for a recursive program

and the problem of finding a path through a recursive tree in ω<ω are recursively equivalent.

To make this statement precise, we need yet more notation. Recall that [, ]:ω× ω → ω is a

fixed one-to-one and onto recursive pairing function such that the projection functions π1

and π2 defined by π1([x, y]) = x and π2([x, y]) = y are also recursive. Let ω<ω denote the set

of all finite sequences from ω and let 2<ω denote the set of all finite sequences of 0’s and 1’s.

Given α = 〈α1, . . . , αn〉 and β = 〈β1, . . . , βk〉 in ω<ω, write α ⊑ β if α is initial segment of β;

that is, if n ≤ k and αi = βi for i ≤ n. For the rest of this paper, identify a finite sequence

α = 〈α1, . . . , αn〉 with its code c(α) = [n, [α1, . . . , αn]] in ω. Let 0 be the code of the empty

sequence ∅. Thus, when we say that a set S ⊆ ω<ω is recursive (recursively enumerable,

etc.), we will mean that the set {c(α): α ∈ S} is recursive, (recursively enumerable, etc.) A

tree T is a nonempty subset of ω<ω closed under initial segments. A tree T contained in

ω<ω is recursive if the set of codes of nodes in T is a recursive subset of ω. By a (recursive)

index of a tree T ⊆ ω<ω, we mean an index of the characteristic function of the recursive

set consisting of all codes of nodes in T . We shall identify a tree T contained in ω<ω with

the set of codes of the nodes in T . Thus we think of T as a certain subset of ω. Suppose

that T is a tree contained in ω<ω, then a function f : ω → ω is called an infinite path
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through T if for all n, < f(0), . . . , f(n) >∈ T . Let [T ] denote the set of all infinite paths

through T . A set A of functions is called a Π0
1-class if there is a recursive predicate R such

that A = {f : ω → ω :∀n(R([f(0), . . . , f(n)])}. Note that if T is a tree contained in 2<ω,

then [T ] is a collection of {0, 1}-valued functions. Identify each f ∈ [T ] with the set Af ,

Af = {x: f(x) = 1} and think of [T ] as a Π0
1 class of sets.

We say that there is an effective one-to-one degree preserving correspondence between

the set of stable models of a recursive program P , S(P ), and the set of infinite paths [T ]

through a recursive tree T if there are indices e1 and e2 of oracle Turing machines such that

(i) ∀f∈[T ]{e1}
gr(f) = Mf ∈ S(P ),

(ii) ∀M∈S(P ){e2}
M = fM ∈ [T ], and

(iii) ∀f∈[T ]∀M∈S(P )({e1}
gr(f) = M if and only if {e2}

M = f).

Here {e}B denotes the function computed by the eth oracle machine with oracle B. We

write {e}B = A for a set A if {e}B is a characteristic function of A. If f is a function

f : ω → ω, then gr(f) = {[x, f(x)]:x ∈ ω}. Condition (i) says that the branches, that is the

infinite paths of the tree T , uniformly produce stable models via an algorithm with index

e1. Condition (ii) says that stable models of P of S uniformly produce branches of the tree

T via an algorithm with index e2. A is Turing reducible to B, written A ≤T B, if {e}A = B

for some e. A is Turing equivalent to B, written A ≡T B, if both A ≤T B and B ≤T A.

Thus condition (iii) asserts that our correspondence is one-to-one and if {e1}
gr(f) = Mf ,

then f is Turing equivalent to Mf . In what follows we will not explicitly construct indices

e1 and e2, but it will be clear that such indices exist in each case.

We are ready to establish the relationship between stable models of recursive programs

and effective closed (Π0
1) subsets of Baire space. For any unexplained notion of effective

descriptive set theory see [Rogers, 1967].
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Theorem 3.1 Let P be a recursive program. Then there exists a recursive tree T ⊆ ω<ω

and an effective one-to-one degree preserving correspondence between the set S(P ) of stable

models of the program P , and the set [T ] of all infinite branches of the tree T .

Proof: Without loss of generality, we can assume that the Herbrand base of the program P

is ω. This can be always assured by adding superfluous atoms. This preserves the concept

of stable model. Thus we assume that B = ω.

Since the program P is recursive, the familyM(P ) of codes for minimal proof schemes

relative to P is also recursive. In fact, for every atom p, the setM(P, p) of codes for minimal

proof schemes d with cln(d) = p is also recursive.

We code a stable model M of program P by a path PM = 〈π0, π1, π2 . . .〉 through the

complete ω-branching tree Tω = ω<ω as follows. First, for all i > 0, π2i = χM (i). Next,

if π2i = 0, then also π2i+1 = 0. If, however, π2i = 1, so that i ∈ M , then π2i+1 =

dM (i) where dM (i) is the least d such that d is the code of a minimal proof scheme P =

〈〈p0, C0, G0〉, . . . , 〈pm, Cm, Gm〉〉 and pm = i, and Gm ⊆ ω \M . Since M is a stable model

for P , such a proof scheme must exist. Clearly M ≤T πM . Given an oracle for M , it is

easy to see that for each i ∈ M , we can use the oracle to effectively find dM (i). Therefore

πM ≤T M . It thus follows that the correspondence M 7→ πM is an effective one-to-one

degree preserving correspondence. All that is left is to prune the full tree Tω to a tree

T ⊆ ω<ω such that [T ] = {πM : M ∈ S(P )}.

Let Nk be the set of all codes of minimal proof schemes D = 〈〈p0, C0, G0〉, . . . , 〈pm, Cm, Gm〉〉

such that every atom appearing in any Ci for i ≤ m is contained in {0, . . . , k}. Note

that Nk is finite. Moreover, a canonical index of Nk can be uniformly computed from

k. Given a node σ = 〈σ(0), . . . , σ(k)〉 ∈ ω<ω, let Iσ = {i: 2i ≤ k ∧ σ(2i) = 1}. Let
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Oσ = {i: 2i ≤ k ∧ σ(2i) = 0}. Define T by putting σ = 〈σ(0), . . . , σ(k)〉 in T if and only if:

(a) ∀i(2i ≤ k ∧ σ(2i) = 0 ∧ 2i + 1 ≤ k ⇒ σ(2i + 1) = 0).

(b) ∀i(2i ≤ k ∧ σ(2i) = 1 ∧ 2i + 1 ≤ k ⇒ σ(2i + 1) = d, where the number d is a code

of a minimal proof scheme D = 〈〈p0, C0, G0〉, . . . 〈pm, Cm, Gm〉〉 such that pm = i and

Gm ∩ Iσ = ∅ ).

(c) ∀i(2i ≤ k ∧ σ(2i) = 1 ∧ 2i + 1 ≤ k ⇒ there is no code c ∈ N⌊k/2⌋ of a minimal

proof scheme D = 〈〈p0, C0, G0〉, . . . 〈pm, Cm, Gm〉〉 such that pm = i, Gm ⊆ Oσ, and

c < σ(2i + 1)).

(d) ∀i(2i ≤ k ∧ σ(2i) = 0 ⇒ there is no code c ∈ N⌊k/2⌋ of a minimal proof scheme

D = 〈〈p0, C0, G0〉, . . . 〈pm, Cm, Gm〉〉 such that pm = i, Gm ⊆ Oσ).

(Here ⌊t⌋ denotes the greatest integer ≤ t).

It is quite easy to see that T is a tree. That is, if σ ∈ T and τ ⊑ σ, then τ ∈ T . Moreover

it should be clear from our definition of T that T is a recursive subset of ω<ω. Thus T is a

recursive tree.

In case M is a stable model of P and πM = 〈π0, π1, . . .〉, it is routine to check that

〈π0, . . . , πn〉 ∈ T for all n. Thus πM ∈ [T ]. Conversely, assume that β = 〈β0, β1 . . .〉 ∈ [T ].

Define Mβ = {β2i = 1}. We must show that Mβ is a stable model for P . Suppose not.

Then:

(a) there exists an i belonging to Mβ \ FMβ ,P , or

(b) there exists an i belonging to FMβ ,P \Mβ .

We show that neither (a) nor (b) is possible.

Suppose (a) held. Then consider β2i+1. For 〈β0, . . . , β2i+1〉 = β(2i+1) to be in T , it must
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be that β2i+1 is a code of a minimal proof scheme 〈〈p0, C0, G0〉, . . . 〈pm, Cm, Gm〉〉 such that

pm = i, and Gm∩Iβ(2i+1) = ∅. However, since i /∈ FMβ ,P , there must be some n ∈ Gm∩Mβ .

But then β(2n) = 〈β0, . . . , β2n〉 /∈ T because Gm ∩ Iβ(2n) 6= ∅. Thus there is a k such that

βk /∈ T . So β /∈ [T ].

Suppose (b) held. Then for some n, there is a minimal proof scheme D = 〈〈p0, C0, G0〉, . . . ,

〈pm, Cm, Gm〉〉 such that pm = j, and Gm ⊆ Oβn . But then β(n) = 〈β0, . . . , βn〉 does

not satisfy condition (d) of our definition for β(n) to be in T . Thus β(n) /∈ T , and hence

β /∈ [T ]. Thus if β ∈ [T ], it must be the case that Mβ is a stable model of P . Finally,

we claim that if β ∈ [T ] then β = πMβ
. Indeed, if β 6= πMβ

then for some i ∈ Mβ , there

is a code c of a minimal proof scheme 〈〈p0, C0, G0〉, . . . 〈pm, Cm, Gm〉〉 such that pm = i,

Gm ⊆ ω \Mβ , and c < β2i+1. But then there is an n large enough so that Gm ⊆ Oβ(n) .

Hence β(n) = 〈β0, . . . , βn〉 does not satisfy condition (c) of our definition for β(n) to be in

T . Hence, if β 6= πMβ
, then β(n) /∈ T for some n. So β /∈ [T ]. We have proved that β ∈ [T ]

if and only if Mβ is a stable model for P and β = πMβ
. 2

The proof of Theorem 3.1 is uniform in indices of recursive programs. That is, the

proof the Theorem 3.1 gives an algorithm which, from an index of a recursive program

P , produces an index of a recursive tree T and an effective one-to-one degree preserving

correspondence between the set of stable models of P and the set of infinite paths through

T . It follows that there is a recursive one-to-one function h with the property that if e is

the index of a recursive program P , then h(e) is the index of a recursive tree T with an

associated one-to-one effective degree preserving correspondence between S(P ) and [T ].

One can easily modify the basic algorithm implicit in the proof of Theorem 3.1 to

ensure that if e is not an index of a recursive program P , then the algorithm produces an

index of a partial recursive function φf(e) such that φf(e) is not the characteristic function
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of a recursive tree contained in ω<ω. That is, given e, we first find k and l such that

e =< k, l >. We must check that φk and φl are total recursive functions whose range is

contained in {0, 1}, that for each x such that φl(x) = 1, x is a code of a clause involving

atoms from the set U = {z : φk(z) = 1}, and that U is a tree contained in ω<ω. Then the

basic idea is to start to compute φk(0), φl(0), φk(1), φl(1), . . . via the usual dovetailing of

computations (compute one step in the computations of φk(0) and φl(0), then compute two

steps in the computations of φk(0), φl(0), φk(1) and φl(1), etc). Whenever we are successful

in computing φl(x) = 1, we then compute a,b, and c such that x =< a, b, c >. Now x is

supposed to be a code of a clause, so the elements in Bx = {a}∪Eb∪Ec must be elements of

the Herbrand base. So we compute φk(y) and verify that φk(y) = 1 for all y ∈ Bx. Similarly,

if φk(z) = 1, we must find a sequence 〈σ0, . . . , σs〉 whose code is z and check that the codes

of 〈σ0, . . . , σr〉 for r ≤ s are in U . As we carry out these computations, we alternately

also carry our the computations to construct our tree, assuming that e is the index of a

program. (Of course, to define the tree, we will need to carry out various computations

about the program.) Our algorithm will thus ensure that no step in constructing the tree

can be performed unless all the information about the program that is required to perform

such a step has been computed by our dovetailing procedure. There may be some problems

with e being the index of tree; for example if either φk or φl is not total or we find that

there is an x for which φl(x) = 1 but it is not the case that φk(y) = 1 for all y ∈ Bx, etc.

Then we will not give a total description of the tree and we will end up decribing only the

index of a partial recursive function. In this way we can show that there exists a recursive

one-to-one function f such that f(e) is an index of a recursive tree T ⊆ ω<ω if and only if e

is an index of a recursive program P . Moreover, if e is an index of a recursive program P ,

then f(e) is an index of a recursive tree T such that there is an effective one-to-one degree

18



preserving correspondence between S(P ) and [T ].

If A and B are subsets of ω, then A is called 1-reducible to B (written A ≤1 B), if

there is a one-to-one recursive function g such that for all x ∈ ω, x ∈ A if and only if

g(x) ∈ B. Also A is said to be 1-equivalent to B (written A ≡1 B), if A ≤1 B and B ≤1 A.

Thus the existence of the one-to-one recursive function f described above shows that Stab

= {e: e is the index of a recursive program P such that P has a stable model} is 1-reducible

to Infpath = {r: r is the index of a recursive tree T such that T has an infinite path} and

that Nostab = {e: e is the index of a recursive program P without stable model } is 1-reducible

to Finpath = {r: r is the index of a recursive tree T such that T has no infinite path}.

Theorem 3.1 relativizes. That is, even if P is not recursive, the resulting tree is recursive

in P . Therefore the collection of stable models of P is in a one-to-one correspondence with

a closed subset of Baire space. Using Cantor’s theorem on the cardinality of closed subsets

we get the following

Corollary 3.2 If P is a logic program, then either P has at most denumerable number of

stable models, or P has exactly 2ℵ0 stable models.

Next, we prove a result which is the converse of the Theorem 3.1. That is, we encode an

effective closed subset of Baire space as the set of of stable models of a recursive program.

Theorem 3.3 Let T be a recursive tree contained in ω<ω. Then there exists a recursive

program P with an associated effective one-to-one degree preserving correspondence between

the collection [T ] of all paths through T and the collection S(P ) of all stable models of P .

Proof: Consider the collection of atoms B consisting of the union of three sets: {pσ: σ ∈ T},

{pσ: σ ∈ T}, and {p0, p1, . . .}. We identify each atom p in this union with its code c(p),
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where c(p) is defined as follows:

(a) if σ = 〈σ(0), . . . , σ(k)〉 then c(pσ) = 2[0, k, σ(0), . . . , σ(k)].

(b) if σ = 〈σ(0), . . . , σ(k)〉 then c(pσ) = 2[1, k, σ(0), . . . , σ(k)].

(c) c(p∅) = 0, c(p
∅
) = 1 and

(d) c(pi) = 2i + 3 for i ≥ 0.

For any node σ = 〈σ(0), . . . , σ(k)〉, let σ ◦ n denote the node 〈σ(0), . . . , σ(k), n〉. Our

program P consists of seven classes of clauses.

1. pσ ← ¬pσ

pσ ← ¬pσ

2. p← pσ, pσ, for all σ ∈ T , p ∈ B.

3. pσ◦j ← pσ◦n, for all σ such that σ ◦ n, σ ◦ j ∈ T , j 6= n.

4. pσ◦n ← pσ, whenever σ ∈ T and σ ◦ n ∈ T .

5. pk ← pσ whenever σ ∈ T , | σ |= k.

6. p← ¬pk for all k ≥ 0, p ∈ B.

7. p∅ ←.

Then P is a recursive program, since T is recursive. Now suppose that π: ω → ω is an

infinite path through T . Define:

Mπ = {pi: i ∈ ω} ∪ {pπ|n : n ∈ ω} ∪ {p∅} ∪ {pσ: σ /∈ {∅} ∪ {π |n: n ∈ ω}},

where π |n= 〈π0, . . . , πn〉.
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We claim that S(P ) is precisely {Mπ: π ∈ [T ]}. It is easy to see that the map π 7→Mπ

is an effective one-to-one degree preserving correspondence, so that P will be the desired

recursive program once we prove our claim.

The first step in proving our claim is to show that that B is not a stable model. To this

end, notice that only clauses of the form (1), (6), and (7) have no premises. The application

of any clause in (1) or (6) is blocked by B. Clause (7) implies that p∅ ∈ FM,P . Then, using

clause (5), we derive that p0 ∈ FP,M . In fact, FP,M = {p∅, p0}. This can easily be proved

by induction on the lengths of proof schemes. Thus TP,B⇑ω 6= B, and so B is not a stable

model of P .

Suppose M were a stable model of P . Clauses of the form (2) or (6) can never be used

in the M -derivations since M 6= B. By (6), we can conclude that pk ∈ M for all k. Since

clauses of type (6) cannot be used in M -derivation and we already established that pk is in

M , pk must be derived in some other fashion. It is easy to see that the only way pk can

be derived is by an application of a clause of type (5). This implies that for every k ∈ ω,

there is a σ ∈ T such that | σ |= k and pσ ∈ M . Next, the clauses of type (1) guarantee

that at least one of pσ, pσ belongs to M . That is, it can not be the case that both pσ and

pσ are not in M , since otherwise clauses of type (1) would show that both pσ and pσ are in

TP,M⇑ω, and hence that TP,M⇑ω 6= M , violating our assumption that M a stable model of

P . On the other hand, since M 6= B, at most one of pσ, pσ belongs to M due to clauses of

type (2). Therefore, for every σ ∈ T , | {pσ, pσ} ∩M |= 1. The fact that we have clauses of

type (3) and (4) allows us to prove by induction that for every k ∈ ω, there is exactly one σ

of length k such that pσ belongs to M . Moreover, an easy induction on k, l will show that

the unique sequences σ, τ (of length k and l respectively) with pσ, pτ ∈M are comparable.

Thus, setting π =
⋃
{σk: pσk

∈ M , | σk |= k}, we can easily check that M = Mπ. This
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shows that S(P ) ⊆ {Mπ: π ∈ [T ]}.

Finally, suppose that π = 〈π0, π1, . . .〉 is an infinite path through T . It is easy to see that

the presence of clauses of type (1) ensures that Mπ ⊆ FP,M . Moreover, it is not difficult to

prove, by induction on the length of the Mπ-deduction of the atom p that p ∈ FP,M implies

p ∈Mπ. This shows that for every π ∈ [T ], Mπ ∈ S(P ). This completes the proof. 2

As was the case with Thereom 3.1, the proof of Theorem 3.3 is uniform. Thus, implicit

in the construction of Theorem 3.3, there is an algorithm computing from an index of a

recursive tree T ⊆ ω<ω, the index of a recursive program P with associated effective degree

preserving one-to-one correspondence between [T ] and S(P ). Moreover, we can modify

this algorithm in much the same way that we modified the algorithm implicit in Theorem

3.1 to ensure that if e is not an index of a recursive tree, then our algorithm produces an

index which is not the index of any recusive program. Thus, there is a one-to-one recursive

function g such that g(e) is an index of a recursive program P if and only if e is an index

of a recursive tree T ⊆ ω<ω. Moreover, if e is an index of a recursive tree T contained in

ω<ω and P is the recursive program with index g(e), then there is an associated effective

one-to-one degree preserving correspondence between [T ] and S(P ). Thus, the recursive

function g shows that Infpath is 1-reducible to Stab and Finpath is 1-reducible to Nostab.

We thus have the following corollaries.

Corollary 3.4 (a) Stab is 1-equivalent to Infpath.

(b) Nostab is 1-equivalent to Finpath.

(c) Stab is a Σ1
1-complete set of natural numbers.

(d) Nostab is a Π1
1-complete set of natural numbers.
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Proof: The functions f and g mentioned in the remarks following Theorem 3.1 and Theorem

3.3 respectively verify (a) and (b). It is proved in [Rogers, 1967] that Finpath is a Π1
1-

complete set. It is easy to see, by writing out the definition, that Nostab is a Π1
1 set and

hence Nostab is a Π1
1-complete set. Similarly, Infpath is a Σ1

1-complete set. Again one can

write out the definition of Stab to show that Stab is Σ1
1 set. So Stab is a Σ1

1-complete set.

2

Corollary 3.5 The set of all indices of recursive programs which possess at least two stable

models is a Σ1
1 set of natural numbers. Hence the collection of indices of programs possessing

at most one stable model is a Π1
1 set of natural numbers.

Corollary 3.6 The set of all indices of recursive programs which possess exactly one stable

model is the intersection of a Π1
1 set and a Σ1

1 set, hence it is a ∆1
2 set of natural numbers.

The results of this section show that whenever we have a recursive program with the unique

stable model, we can produce a recursive tree with a unique infinite branch such that the

Turing degrees of the stable model and the branch are the same. Conversely, given a tree

with a unique branch, we can produce a program with a unique stable model such that the

Turing degrees of the branch and of the stable model are the same. Now if a recursive tree

has a unique branch, the branch is hyperarithmetical. Hence, if a recursive program has a

unique stable model, then that stable model is hyperarithmetical. This result can also be

derived from the fact that S(P ) is Π0
2.

In recursion theory, recursive trees with a unique branch have been investigated pre-

viously by Clote, Cenzer and Smith, and Hinman. Here is a sample of the type of result

that can be derived from their work. Hinman ([Hinman, 1978]) showed that for every re-
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cursive ordinal α, there exist a tree Tα ⊆ ω<ω such that T has a unique infinite path π and

π ≡T 0(α) (where 0(α) is the αth jump of 0 and 0 the degree of the recursive sets). So by

Theorem 3.3 we get the following:

Corollary 3.7 For each recursive ordinal α, there exists a recursive program P possessing

a unique stable model M such that M ≡T 0(α).

It is a well known result of Kleene (see [Rogers, 1967], Theorem XLII(a)]) that every

recursive tree T ⊆ ω<ω, which has an infinite branch, has an infinite branch which is

recursive in Finpath. However there is a recursive tree T ⊆ ω<ω such that [T ] is nonempty

but [T ] has no hyperarithmetical elements. These facts plus Theorems 3.1 and Theorem

3.3 immediately imply the following.

Corollary 3.8 (a) Every recursive program P which has a stable model has a stable model

M such that M ≤T B where B is a complete Π1
1-set.

(b) There a recursive program P such that P has a stable model but P has no stable model

which is hyperarithmetic.

4 Conclusion

We have characterized the set S(P ) of stable models of a logic program by using effective

descriptive set theory. This allows the latter subject to be applied to determine the com-

plexity of the set of stable models of a logic program. Our results explain why the problem

of testing whether a recursive program P possesses a stable model is complicated.

The fact that the class of stable models of a recursive program is a notational variant of

sets in lower levels of arithmetical hierarchy in Baire space or Cantor space instead of ω is
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new, and indicates that there are deep connections of ”negation as failure” in nonmonotonic

logic programming with classical effective descriptive set theory and therefore with recursion

theory.
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