
Non-Monotonic Predicate Logics
Syntax, Semantics, Completeness

W. Marek,1 A. Nerode2 and J. Remmel3

1 Summary

To simplify our account, rewrite your favorite usual predicate logic, classical,
modal, intuitionistic, as a logic of the set L of all statements. This is an ines-
sential change. As Tarski once did, arrange it so that only statements occur
in all axioms a and rules of inference I, all of which have the (monotonic)
form ”from a, a′, ..., infer a′′. Then a deductively closed set D is merely a
subset D of L such that if a is an axiom, then a is in D; and for all such I, if
a, a′, ... are in D, then c is in D. If A is a subset of L, call D grounded in A if
every member of D has a finite derivation from A using the rules of inference
I. Call E an extension of A if E is deductively closed and grounded in A.
In the usual (monotonic) logics if E is an extension of A, then E is uniquely
determined, the deductive closure of A via an ordinary inductive definition.
We associate with each usual logic ”nonmonotonic prolongations” based on
additional rules of inference only, keeping the statements exactly the same
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and keeping all old axioms and rules of inference. But now allow a set N of
additional (nonmonotone) rules of inference, all of the form ”if a, a′, a′′, ...

are in E, and b, b′, b′′... are not in E, then c is in E. Define extension of A as
before, but allowing rules of inference in N too, getting the notion of exten-
sion relative to N . This notion is not given by a finite monotone inductive
definition, and A may have no, one (consistent or inconsistent), or many ex-
tensions relative to N . Non-monotonicity resides solely in the additional rules
of inference of N , not in the statements, and is adequate for intended com-
puter science applications, and gives well-behaved non-monotonic predicate
logics for default logics, diagnosis logics, truth maintanence logics, PROLOG
with negation as failure, in classical, intuitionistic or modal predicate logics.
Consistent extensions of A relative to N represent possible ”complete sets
of beliefs” that can be held, after having accepted the ”facts” in A, and the
”rules of thumb” in N . Given the underlying logic and N , under what con-
ditions does a given A have at least one consistent extension? We outline the
proof rules that answer this by a completeness theorem proved via systematic
tableaux appropriate to the calculus, for classical, intuitionistic, and modal
predicate logics. We also outline one inteneded application area. With our
results, non-monotonic predicate logics attain approximately the same degree
of maturity as programming logics such as predicate dynamic logic. A lot
of previously undiscovered connections with dynamic logic then surface, but
cannot be explored here. Proof rules can be given in any of the usual sty-
les, tableaux, natural deduction, sequents, etc. Here are some comparisons
with the usual logics mentioned above. In the usual predicate logics, tableau
proofs are recursive, finitely branching, well founded, trees labelled with sta-
tements; for our nonmonotonic predicate logics, the change needed here is
to allow the trees to countably branch. Just as for Beth-Smullyan-Fitting
tableaux for the usual logics, with every statement is recursively associated
a recursively generated systematic tableaux such that the statement is true
in all extensions of A (relative to N) if and only if the systematic tableaux
is well-founded (and then is a proof). This method, not withstanding the
potentially countably branching trees, does have a lot of ordinary computa-
tional content: an incidental byproduct is decision methods for propositional
finite nonmonotone theories for the usual propositional logics, classical, intui-
tionistic, modal, dynamic, most of which were not known before this. Just as
in ordinary logic the tableaux proof, which uses elimination rules only, sug-
gests introduction rules, leading to a full natural deduction system, and these
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lead to a full sequent calculus, and a corresponding consistency property. In
the usual logics, if a recursive theory has a model at all, then it has a model
recursive in a complete r.e. set. Here the analogue of a model is a consistent
extension, and here a recursive axiom set which has at least one consistent
extension has a consistent extension recursive in a complete Π1

1
set. This

is as well as one can do; there are recursive (or even finite) N which have
consistent extensions, but no consistent hyperarithmetic extensions (of the
null set). We can also develop a purely finitary version, based on induction
principles, analogous to arithmetical, or interpreted, dynamic logic, which
may prove useful for a belief revision calculus. The outline below is enough
so that, with [Marek-Nerode Remmel (a)], one could in principle work out
the rest. The full abstract for publication will outline all these results. In
this abstract we give definitions, motivation, and one proof outline.

2 Background

Non-monotonic logics are now ubiquitous in AI and computer science. These
can be thought of conveniently as dealing with possible ”points of view”
(technically, consistent extensions) based on knowledge (that is, currently
presented facts) and ”rules of thumb” (technically, additional nonmonoto-
nic inference rules). Among non-monotonic logics with large literatures are
truth maintainance systems [Doyle], default logics [Reiter], and PROLOG
with ”negation as failure” [Clark]. In 1990 most papers on nonmonotonic lo-
gics still only offer theorems in classical based propositional logics. We gave
a logic-free common generalization of the most important existing theories in
our theory of nonmonotonic rule systems [Marek-Nerode-Remmel (a) (b) (c)
(d)], announced in LICS 90. This gave a common simple abstract framework
for definitions, theorems, algorithms, semantics, syntax, for all these systems.
Among other things, we showed by uniform methods that any of the sub-
jects above is coextensive with any of the others. But, more important, these
subjects were seen to have the same set theoretic and computational content
as various mathematical theories, such as theories of marriage problems or
theories of coverings of partially ordered sets, a mathematical connection not
previously known, allowing application of known bodies of theories to non-
monotonic reasoning. But our previous papers did not grapple directly with
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the question of what are appropriate nonmonotonic predicate logics. Non-
monotonic predicate logics are of great potential importance. Most papers
on nonmonotonic propositional logics use as their principal computer science
motivation examples which are definitely in nonmonotonic predicate logic,
which therefore are not covered by the mostly propositional logic theorems
of the papers. There have been earlier attempts at developing nonmonono-
tonic predicate logics. They have a tenative flavor because either their proof
rules or their semantics or their motivations have been sketchy. This tenative
flavor looks in hindsight as if it was due to two sources. One was that there
is a need to fix firmly in mind the intended computer science application in
order to distill from many possibilities a single semantics, for which it ma-
kes sense to develop proof rules and a completeness theorem. (In fact, we
can now see that one gets different proof rules and semantics for different
applications.) Second, there is a need to use somewhat more than ordinary
first order logic methods, nonmonotonic predicate proof rules and semantics
are a bit more complicated than the literature might lead one to expect.
We find here that they are tractable for about the same reason that predi-
cate dynamic logic was tractable. In fact, there are deep relations between
non-monotone predicate logics and predicate dynamic logics, which will be
explored in later papers.

3 Non-monotone rule systems

We repeat here some of the terminology of [Marek-Nerode-Remmel (a)], so as
to set our work in perspective, although the definitions in the summary above
are enough for this paper. Define a nonmonotonic rule system as a pair (U,R)
consisting of a nonempty set U and a set R of rules of the following form.
(These rules are (implicit) conditions on a subset E of U .) If a, a′, a′′, ...,
are in E, and b, b′, b′′, ... are not in E, then c is in E. Here a, a′, ..., b, b′, ..., c

is a finite sequence of elements of U . The a, a′, ... are called premises, the
c is called the conclusion, the b, b′, ... are called restraints. If there are no
restraints, the rule is monotone; if there are no premises or restraints, the
rule is called an axiom. Each nonmonotone rule gives rise to a corresponding
monotone rule obtained by omitting all its restraints. Suppose A and E are
subsets of U . The fundamental concept is ”E is an extension of A”, defined
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as a subest of U satisfying two conditions.

1) E is closed under application of the nonmonotone rules. (This says
that E is deductively closed under the rules.)

2) Every element of E has a finite deduction from A using only monotone
rules arising from those nonmonotone rules of the system whose restraint
statements are correct for E . (This says that E is grounded in A.)

Without further restrictions on the nonmonotone rule system (U,R), an A

may have no extensions, one extension (which may be U), or many extensions.
In logics, extensions are regarded as possible ”points of view” based on facts
A and ”rules of thumb” the rules of the system.

Here is a convention extending that of the summary, leading to a short
exposition of an intended application and its connection with Dynamic Logic.
Choose a usual logic, such as propositional or predicate classical, intuitioni-
stic, or modal logic. Let L consist of all formulas. Use a formulation where
free variables are disjoint from the set of all bound variables. Further, make
the restiction that in deductions we never substitute for free variables and
never quantify over them; that is, treat them as if they are constants in all
deductions. All the standard proof systems, such as sequents, natural deduc-
tion, Hilbert type systems, or tableaux, can be trivially readjusted so that all
the axioms and rules of inference respect this. Write that predicate logic as a
nonmonotone rule system (L,M) with set M of monotone rules, all obtained
by translating an instance of each predicate logic rule of inference or axiom
into a rule. This is simply the nonmonotone rule system uniform notation for
the usual logic. If N is a set of (possibly non-monotone) rules containing M ,
then we call (L,N) a non-monotone predicate logic theory for L. To repeat,
we may now investigate consistent extensions for (L,N), for N a set of rules
in L, for any of the usual logics.

4 Motivating example

Think of a particular execution sequence of states of a computer, and fix in
mind a particular current machine state S from that sequence. Generalizing
the Propositional Dynamic Logic philosophy, choose a logic L which whose
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statements denote propositions about machine states. Associate with S the
theory in L of all statements true of that state. Usually, when using the
computer, we already know some set A of truths about the state S and also
have a set of ”rules of thunmb” for diagnosing some features of the state from
these known features, which we express as a set N of nonmonotone rules.
There may be no, one, or several consistent extensions of A in L to use as
a diagnosis system for diagnosing some propositions about current machine
state S from known propositions about machine state. If L is a propositional
logic, we have said enough to have a precise interpretation comparable with
the usual one for propositional dynamic logic. Now let’s look at the predicate
case.

Assume, as in models of Dynamic Logic based on shared memory ma-
chines, that machine state is described completely by the values stored in
program variables x, x′, x′′, .... Assume these values are from a fixed rela-
tional system. With abuse of notation, let these be the only allowed free
variables in formulas of L. (Remember that we don’t bind these variables
or substitute for them, we treat them as constants). A machine state S can
be defined either as a map of these program variables into the relational sy-
stem or as an n-tuple (S(x), S(x′), ..., ). This is interpreted as the n-tuple of
contents of the respective memory locations named by x, x′, x′′, ... We omit
discussion of the apparatus of dynamic logic, namely modal operators cor-
responding to programs, programs denoting accessibility relations between
states, test and assignment as atomic programs, etc. (But we would be per-
fectly happy if L were predicate dynamic logic We will use extensions in the
nonmonotone versions of dynamic logic in later papers introducing ”belief
revision programming”.)

At any state S, let T (S) be the set of all formulas F (x, x′, ...) such that
(S(x), S(x′), ...) satisfies F (x, x′, ...). That is, T (S) is the type of S in the
sense of model theory. Dynamic logic is concerned with statements in T (S)
as preconditions and postconditions of programs. What is the diagnosis
interpretation? Suppose we know some facts A from L satisfied at S and
have a set N of nonmonotonic rules of L, which we always assume contains
at least the actual deduction rules of the underlying calculus). This gives us
nonmonotone theory (L,N). A consistent extension E of A relative to N is
then a coherent system for diagnosis. We emphasize that the facts A and
the nonmonotone rules are applied to get ”diagnoses” assuming we know the

6



particular S. Note that A was merely assumed satisfied at state S, not at
other states the machine might take on. This is a ”local diagnosis” system
at a single current state, to used no matter what the current state is.

Remark. Here is another view of free variables in nonmonotonic rules,
the universal interpretation. Interpret them instead as universally quantified
and allow substitution of terms in x, x′, x′′, for the free variables x, x′, x′′....

What would be the meaning of a universal interpretation nonmonotonic rule
in the states model? In dynamic logic, the machine changes state (x, x′, ...)
according to a program always by an atomic assignment program substituting
a term for (say) x, to get new state (t(x), x′, x′′, ...). If we use a universally
interpreted nonmonotonic rule, allowing arbitrary substitutions of terms for
the program variables, to be used this rule has to be one valid in all accessible
machine states. Thus such a rule is a ”frame rule”, or universal program
invariant, correct at any state caused by execution of any program. Only a
few of the rules of a diagnostic system are likely to have this property, rules
distinguishing different states are the norm for diagnosis. Of course, using
these rules is no real generalization, each is merely a schema over our system;
that is, we can replace such a rule by all its substitutioin instances, and freeze
the free variables afterwards. Noteworthy is that this model makes sense in
the case of classical or constructive dynamic logic, sequential or concurrent;
see [Nerode-Wijesekera]. We can give similar motivating examples for the
other standard default applications, default logic, truth maintenanxce, and
PROLOG with ”negation as failure”.

5 Completeness

In the usual logics, semantic inconsistency of A means there is no model
of A. In clasical (intuitionistic) propositional logic, this means that there
is no proper maximal (prime) filter containing A in the Lindenbaum alge-
bra of statements. This represents the essential element of completeness for
such a calculus. What corresponds for nonmonotonic theories in logics like
these? In our view, based on the literature and the motivating examples, the
semantic inconsistency of a set A of statements in the usual logics relative
to a nonmonotone rule set N should be defined as the non-existence of any
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consistent extension for A. This leaves the question of defining syntactic
consistency, and giving a completeness proof.

We give a short proof-outline for completeness by tableau which applies
to all the usual calculi. But one gets a better computational proof and
a clearer semantic proof and better proof systems by doing the subjects
individually. The systems in [Nerode (a),(b)], [Nerode and Wijesekera of
tableaux for intuitionistic, modal, and dynamic logic respectively can be
extended to nonmonotonic theories in these logics neatly, and an outline of
this will go in the final abstract.

We look at the question of rules for developing tableaux for determining
whether a given N has at least one consistent extension (of the empty set
A); the case for general A presdents no additional difficulties.

Given N , what are the rules of development for a systematic tableaux
searching for a consistent extension? What we want to ensure is that any
infinite branch of the completed systematic tableaux describes a consistent
extension, and simultaneaously that in case every branch of the completed
systematic tableaux is finite, there cannot exist any consistent extension at
all. Every systematic tableau node is labelled ”x in E” or ”x not in E” for x

a formula of L. We outline the systematic tableaux development rules, and
leave the actual proof to the imagination. See Nerode, loc. cit, or Smullyan
[1968] or Fitting [1981] for unexplained noation.

EXHAUSTION DEVELOPMENT: At any stage n, we append to the
base of every open branch B two branching nodes labelled respectively ”x
in E” and ”x not in E”, where the n-th formula of L is x. This rule assures
that we cover all possibilities for extensions.

For each nonmonotone rule I in N of the form:

If a, a′, a′′, ... are in E, and b, b′, b′′, .. are not in E, then c is in E.

we have two corresponding tableau development rules

NONMONOTONE RULE DEVELOPMENT FOR I.
1) Suppose ”a in E”, ”a′ in E”, ..., ”b in E, ”b′ in E” all occur as enties on
open branch B. Then we must eventually append at the base of B a node
with ”c in E” as label, and the branch remains open.
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2) Suppose that ”c not in E” occurs as an entry on open branch B.
Then we must eventually append at the base of B separate branching nodes
labelled respectively ”a not in E”, ”a′ not in E”, ...”b in E”, ..”b′ in E”, ...

This development rule is much more powerful than it may appear. Alt-
hough it only enforces a Horn sentence, these Horn sentences I encompass the
whole deductive power of the underlying logic, since they encompass both
the axioms and rules of inference of the whole underlying logic.

VACUOUS EXTENSION RULE: At any stage n, for every open branch
B we append an unlabelled node below.

This rule simply will enforce that no finite branch defines a consistent
edxtension, or that all finite branches are closed.

CLOSURE RULES:
1) An open branch B is closed as soon as it contains as two entries a direct
contradiction ”a in E”, ”a not in E”.

2) An open branch is closed as soon as it contains two enties ”b in E”
and ”(not b) in E”.

The first enforcs that we eliminate impossible extensions, the second that
they be consistent.

Create a complete systematic tableaux development procedure using these
rules. This gives a finitely branching tree in which every infinite branch G

describes the consistent deductively closed set consisting of all x in L such
that ”x in E” is an entry on G. Further, if a consistent deductively closed
set exists at all relative to N , then there exists such an infinite branch. But
we are only interested in infinite branches G which descibe extensions, that
is, which are grounded. This means that every entry ”x in E” on B has a
valid (monotone) deduction arising from a valid non-monotone rule system
deduction from the axioms ”y in E” on that branch. (the axioms are the
conclusions of premiseless restraintless rules I.)

GROUNDING. Introduce a systematic procedure for listing all monmon-
motone deductions whatsoever, a certain finite number having been finished
by stage n of the construction of the systematic tableaux above. At a gi-
ven stage n, call a finite branch B′, properly extending a finite branch B, a
justifying extension at stage n, of B if the nonmonmotone deductions con-
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structed by stage n are adequate to ground every entry on B of the form
”x in E” from axioms which are entries on B′, and were not similarly ada-
quate at any earlier stage. Say that the triple (B,B′, n) is acceptable. Say
that accepted triple (C,C ′,m) is an immediate succsssor of accepted triple
(B,B′,m) if m is at least n, and C is B′. This gives the desired countably
branching tree such that if there is an extension at all, there is an infinite
branch describing an extension.

The listing of subsidiary grounding deductions can harmioniously be inte-
grated with the tableaux proof procedures for the underlying calculus, which
we do not do here. This can be done using classical tableaux for classi-
cal predicate logic [Smullyan 1968], intuitionistic tableaux for intuitionistic
logic [Fitting 1981], [Nerode (a)], using modal tableaux for predicate modal
logics [Nerode (b)], useing dynamic logic tableaux for dynamic logic [Nerode-
Wijesekera]. Once one has a completely described tableaux procedure, inclu-
ding the subsidiary tableaux, one write out natural deduction and sequent
calculi, consistency properties, and Hilbert type systems. This will be done
in the full abstract, along with a more detailed statement of other results
alluded to in the summary.

6 Conclusions

We have, for the first time, given a complete account of nonmonotonic ex-
tensions of the usual predicate logics of all kinds, and indicated the form of
completeness theorem. This is a mathematical foundation for much predi-
cate nonmonotonic predicate reasoning, including default logics, truth main-
tainance systems, diagnosis systems. The method of proof incidentally gives
the first known decision procedures for nonmonotonic theories in many non-
classical logics, including intuitionistic and modal.

Reesearch areas for the future include:

- Nonmonotonic dynamic logics as program logics for belief revison

- a finitary interpreted version of nonmonotonic logics akin to the inter-
preted versions of dynamic logics
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- A fundamental requirement on nonmonotone rule systems used as hard-
wired ”rules of thumb” to control motion is that as new facts about obstacles
are perceived, that a new extension to control motion can always be com-
puted. We have found a general class of nonmonotone systems (generalizing
Reiter’s normal systems) which satisfy this requirement and are much ea-
sier to compute with since they have a much easier completeness theorem
which much smaller proofs. These systems are under investigation, have an
understandable structure, and are suitable for a belief revision calculus.
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