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Abstract: In this paper we investigate sequence semantics for the modal
logic of belief. This semantics differs from the previously considered in this
that it allows flexibility in dealing with beliefs- those does not need to be
closed under provability. We prove completeness theorem for such logic (with
respect to this semantics) and show that stable theories correspond to con-
stant models.
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1 Introduction

2 Sequence semantics

In this section we introduce a semantics for the modal language with the sin-

gle modal operator S. This semantics is not based on the concept of possible

world- like Kripke semantics for modal logic but rather on the explicit listings

of statements ”believed to an extent”. Hence we have, informally speaking,

collections of sentences objectively true (in the opinion of the agent), then

the collection of statements that the agent finds plausible, then those which

she believes to plausible to be plausible and so on. Hence such semantics in-

volves infinitely many sets of formulas of the underlying language L. Initially,

we do not require any committement on the part of the agent. In particular

collections Σn of the sentences ”plausible in the opinion of the agent to the

degree 1/n” do not need to be closed under consequence. They even may be

inconsistent. Of course, when we show that, in fact our semantics includes

that of so-called stable sets of Stalnaker [Sta80] and Moore [Moo85] we set

natural conditions which allow us to get the embedding result.

Our semantics, called sequence semantics, is defined in steps. First of

all let us define our language. Hence let L be the language of propositional
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logic. The new language LS is obtained as follows:

(a) Treating the formulas of L as atoms.

(b) introducing new set of logical connectives (which, informally, can be

treated as those serving to discuss believability of formulas of L). The

connectives of LS are an 0-ary connective 0S, an unary connective S

and binary connective ⇒.

By LS we do not mean the closure of L (treated as atoms) by S and ⇒

but its subset defined inductively as follows:

(1) If φ belongs to L then Sφ belongs to LS.

(2) 0S ∈ LS.

(3) If φ and ψ belong to LS then φ⇒ ψ also belongs to LS.

In particular formulas of L are not members of LS.

Finally, S is an operation mapping L∪LS into LS, except that we define

S(0S) = 0S.

Hence, in particular, for φ, ψ ∈ L string φ ⇒ Sψ is not an expression

from LS, whereas, for instance, formula SSφ⇒ 0S is in LS.
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The idea of such a language over L is to have all the formulas of L

”encapsulated” in belief operator. In this fashion it is quite clear that we

discuss properties of the believing of these formulas.

The structures serving as models for our language are sequences of form:

Σ =< Σi : i ∈ ω >, of sets of formulas of L. The collection Mod, consists of

all the structures of this form.

We define two operations on models; one of these is taking the ”head” of

the structure, another the the ”tail” of it. Formally:

Σ! = Σ0

Σ† =< Σi+1 : i ∈ ω >

We introduce now the notion of satisfaction for the formulas of LS:

(Sat1) Σ 6|= 0S

(Sat2) If φ ∈ L then: (Σ |= Sφ iff φ ∈ Σ!).

(Sat3) If φ 6∈ L, Σ |= Sφ iff Σ† |= φ

(Sat4) Σ |= φ⇒ ψ iff (Σ |= φ implies Σ |= ψ).

Finally, for T ⊆ LS, Σ |= T iff Σ |= ψ for all ψ ∈ T . The notion

of satisfaction determines the corresponding notion of entailment; T |= ψ

4



meaning that every model of T satisfies ψ.

One checks immediately the following fact:

Σn = {φ ∈ L : Σ |= Sn+1φ}

We intend to prove a certain completeness theorem for our semantics.

Presently we introduce a collection of axioms, subsequently we prove com-

pleteness result.

First of all we introduce yet another operation which we call normaliza-

tion. This operation, called fS acts on L ∪ LS and is defined as follows:

(N 1) fS(0S) = 0S

(N 2) fS(φ) = Sφ, for φ ∈ L

(N 3) fS(Sφ) = SfS(φ), for φ 6∈ L

(N 4) fS(φ⇒ ψ) = fS(φ) ⇒ fS(ψ).

Let us look a little more closely at the operation fS; Notice that fS(Sφ) =

SSφ for φ ∈ L. On the other hand, fS(S(Sφ⇒ Sψ)) is SSSφ⇒ SSSψ.

Now we are ready to specify the axiom system for our logic:

(Ax 1) All substitutions of formulas of LS to the tautologies of propositional

calculus (with ⇒ and 0 as connectives)
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(Ax 2) All formulas of form:

Sφ⇔ fS(φ)

(Ax 3) Formulas Sφ for ψ axioms.

The only rule of inference is Modus Ponens. The notion of provability

(⊢) is defined via existence of proof.

Let us see what is an effect of the axioms of group Ax 2. For instance let

us look at the formula fS(S(Sφ⇒ Sψ)). According to Ax 2, this formula is

equivalent to the effect to computing fS on SSφ⇒ SSψ. The latter formula

is: SSSφ ⇒ SSSψ. The reader notices that we transformed our formula to

one in which there is no occurrence of ⇒ within the scope of S. In fact this

is precisely the effect of the multiple application of the Ax 2 in general.

Hence, let a normal form formula be one in which there is no ⇒ within

a scope of S. Hence, for instance: S(Sφ ⇒ Sφ) ⇒ Sθ is not a normal form

formula, whereas (SSφ⇒ Sψ) ⇒ Sθ is a normal form formula (φ, ψ, θ ∈ L).

Simple facts on normal form formulas are immediately established.

Lemma 1 (1) If Sφ is a normal form formula, then for some θ ∈ L, φ =

Skθ.

(2) If φ is in normal form, then so is fS(φ).
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Crucial fact is:

Lemma 2 (Normal Form) For every formula φ ∈ LS there is a normal form

formula ψ ∈ LS such that ⊢Ax φ ≡ ψ.

Proof: By induction on complexity of formula φ.

1. (a) The cases of 0S and Sθ for θ ∈ L are obvious.

2. (b) The case of φ = φ1 ⇒ φ2 where φ1, φ2 ∈ LS follows immediately by

induction.

3. (c) The case of φ of form Sθ. Here we apply repeatedly method used

in the example; Using axiom 2 we get an equivalent formula fS(θ).

The main connective of θ is either ⇒ or S. In the former case, θ =

θ1 ⇒ θ2, we use inductive assumption for θ1 and θ2, finding equivalent

formulas θ
′

1 and θ
′

2. Hence the formula θ
′

1 ⇒ θ
′

2 is a normal form

formula equivalent to fS(θ), hence Sθ. In case the main connective

of θ is S, we proceed as follows: fS(θ
′

) = SfS(θ
′

). By axiom 2 again

this formula is equivalent to fS(fS(θ
′

)). By inductive assumption θ
′

possesses equivalent normal form formula. Applying fS to it twice we

get a normal form formula. This completes the argument. 2.
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One needs to see that a ”shortcut”, namely applying applying a formula

θ ≡ θ‘ ⇒ Sθ ≡ Sθ
′

is impossible. Namely, this formula is not provable in

our system! Let us point that it is true for sequences Σ that are constant.

We are ready now to prove soundness of our axiomatization with respect

to the sequence semantics.

Theorem 1 (Soundness) If T is a theory in LS, and φ ∈ LS, then T ⊢Ax φ

implies that T semantically entails φ.

Proof: We need to prove that all our axioms are valid- which follows

easily by induction, and that modus ponens leads from valid formulas to

valid formula which is also obvious. 2.

Now, we are able to prove the completeness theorem for our semantics

using the usual consistency argument.

Theorem 2 (Consistency) If T is consistent (i.e. T 6⊢ 0S) then T possesses

a model.

Proof. Let T ′ be the collection of normal forms of formulas from T . If we

prove that T ′ possesses a model then, by normal form theorem and soundness

we are done.
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Now, since T ′ consists of normal form and is consistent, there is a 0 − 1

valuation V of formulas of form Sn+1φ, φ ∈ L such that treating these

formulas as atoms, V (φ) = 1 for all φ ∈ T ′.

We define the structure Σ as follows: For φ ∈ L, φ ∈ Σn if and only

if V (Sn+1(φ) = 1. Clearly, Σ is well defined. We just need to show that

Σ |= T ′. This, however is done easily by induction checking that:

V (φ) = 1 iff S |= φ

for all normal form formulas φ of LS. 2.

Corollary 1 (Completeness) For all theories T of LS and φ ∈ LS,

T ⊢A xφ iff T |= φ

Now we shall introduce the sequence semantics for full language of modal

logic (recall that the language LS was only a subset of the modal language

with the modal operator S).

In order to stress this difference we arbitrarily chose a new modal operator

B and consider now full modal language LB. In particular formulas of L are

not treated in LB as atoms. First we define an operation E which we call

encapsulation embedding. This mapping of LB into the language LS is defined

as follows:
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1. (1) E(φ) = Sφ when φ ∈ L,

2. (2) E(0B) = 0S,

3. (3) E(Bφ) = SE(φ),

4. (4) E(φ⇒ ψ) = E(φ) ⇒ E(ψ) providing that at least one of φ, ψ does

not belong to L.

Now, the action of E looks at the first glance misterious but in fact its

action is the following: We isolate in the formula φ maximal parts that do

not contain the modal operator B and encapsulate those with the modal

operator S. Then, B is changed to S.

Hence the operator ⇒ has a double meaning: if it connects formulas which

are objective, that is do not contain B then it is not interpreted as the

operator ⇒ of LS. If, however it connects formulas (at least one of) which

involves belief then it is interpreted as the operator of LS. It may seem

to look strange at the first glance but a moments reflection show that it

is precisely in this fashion that the connectives are interpreted in related

modes of reasoning (see [HM90], [Moo85]), for instance stable theories: The

symbol ⇒ in formula Kp⇒ (r ⇒ s) has, in fact two meanings: One of these

is epistemic implication, it says that if p is in T (T is agent’s knowledge
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base) then also r ⇒ is in T ; the other one does not tell us anything about

relationship of r and s with respect to T .

We define now the satisfaction relation |=B, between structures and for-

mulas of LB. 1j

1. (SatB1) If φ ∈ L then Σ |=B φ iff φ ∈ Σ!

2. (SatB2) Not(Σ |=B 0B)

3. (SatB3) If at least one of formulas φ, ψ 6∈ L then:

Σ |=B φ⇒ ψ iff Σ |=B φ implies Σ |=B ψ

4. (SatB4) Σ |=B Bφ iff Σ† |=B φ.

We have the following theorem:

Theorem 3 Σ |=B φ iff Σ† |= E(φ)

Proof: By induction on the number of connectives B in φ and subse-

quently nestings of ⇒ within the scope of B.
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