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AbstractWe study the problem of reaching the consensus by a group of fully communicat-ing, intelligent agents. Firstly, we study the case of agents which have full informationabout other agents beliefs. Using previous work ([14, 15]), we establish the proper-ties of systems of agents. We �nd the relationship of consensus in smaller and largergroups. Subsequently, using the paradigm of "rough" sets and approximations, westudy formal properties of an epistemic variant of consensus reaching.1 IntroductionInvestigations concerning a systematic approach to reasoning by one or more intelligentagents have been pursued by both logicians and computer scientists for an extensive periodof time. In fact one can safely say that the management of knowledge of an agent ora group of agents is the one of most important motivations for development of variousmodal logics (e.g. S4 and S5 systems, see [1], and the bibliography there). More recentlyinvestigations on knowledge transfer in distributed environment, where several intelligentagents communicate have been conducted (e.g. [4, 3]). In most general terms the situationcan be described as follows: There is a collection of agents, A1; : : : ; An. These agentsobserve some processes (it may be the same process) and communicate among themselves.Each of these agents is able to reason (both about the reality it observes and about herself).Agents exchange the knowledge among themselves (in a synchronous or asynchronousmanner), have complete or incomplete knowledge about other agents assumptions andattempt{ or not { to modify the knowledge of other agents.Within this, very general, scheme various attempts to propose the concept of commonknowledge of totality of agents < A1; : : : ; An > are suggested. ([5, 7] and many others).In this paper we propose a scheme which deals with the following situation:�Institute of Mathematics, Warsaw University, Warsaw, Poland. Work partially supported by PolishGovernment grant CPBP08.15yComputer Science Department, University of Kentucky, Lexington, KY 40506{0027. Work partiallysupported by National Science Foundation grant RII 8610671 and the Commonwealth of Kentucky EP-SCoR program. 1



1) Totality of agents is (partially) ordered, with the intended meaning that t1 v t2intuitively means that \Perception of the agent At2 is sharper than that of the agentAt1 , but the agent At2 takes into consideration perceptions of the agent At1".2) The agents observe the same reality and each of them has her own perception of thatreality.3) Each agent is fully aware of other agents' observations and do not attempt to modifythat perception.4) The totality of agents attempts to reach conclusions via consensus, i.e. agreeing tocommon statements.This scheme of reasoning was treated extensively in [13, 14]. We review and extendsome results of that work in section 2, and in section 3 we propose an extension of thisscheme to epistemic situation. Here we apply an approach suggested by Orlowska ([10,11]) by using an approximation technique due to Pawlak and others, so called \roughsets" ([9, 8]). In that last paper it was observed that using of approximation techniquewith the single indiscernibility relation amounts to the consideration of the three-valuedPost algebra of truth values. Independently, the idea of using non-classical logics and inparticular Post algebras with the partially ordered sets of constants jointly with \roughsets" approximation methods was introduced in [14, 15].2 Consensus of agents reasoning about single realityLet us shortly describe a particular case of our scheme. Assume that four agents t1; t2; t3and t4 observe a certain reality, say patients, who may be ill. The universe of patientsobserved by each of the agents is same, consisting of individuals i1; : : : ; i6. We have asingle, unary, predicate letter p interpreted as \having a condition H". The totality ofagents t1; : : : ; t4 is ordered as follows:
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This is interpreted in our considerations as follows: Perception of the agent t2 is sharperthan that of the agent t1 and perception of the agent t4 is sharper than that of agent t3.



Moreover agent t2 takes into considerations negative observations of the agent t1, and,similarly, agent t4 negative information of the agent t3. There is no relationship assumedbetween t1 and t3; t4 and t2 and t3; t4 and conversly. Assume now that we have, for each tan interpretation of the predicate p. Pt1 = fi1; i2; i5gPt2 = fi1; i5gPt3 = fi2; i3; i5gPt4 = fi2; i5gA simple consensus can be reached about person i5 having the condition H. But whatabout the negative information? There are several options that can be taken, \local"and \global" negation. A \local" or Boolean negation assumes taking into account onlythe agent's observation. An agent assumes :� if she did not �nd �. In case of atomicstatement she assumes :p(a) because she failed to observe p(a). In our approach, theagent, in accepting negative information is more cautious: not only she takes into accounther own observations, but also those of the agents who are \less observant" (i.e. v-smaller).Then, the agent t2 perceives that the property :p holds not for i2; i3; i4 and i6 but ratherfor i3; i4 and i6 only (whereas the agent t1 perceives :p for i3; i4 and i6).Now, how is the consensus about negation of p reached? This happens, when everyagent perceives :p(a), i.e. none of the agents perceives p(a). In our example this happensprecisely for the case of i4 and i6. This is simple enough when we deal with atomicstatements (as we did above), but becomes more involved when we deal with more complexstatements. For instance it can be shown that (with T �nite), the property ::p(a) iscommonly perceived precisely, if no v-minimal agent observes :p(a).Firstly, let us describe the syntax of our theory. Consider the language L, �rst-orderpredicate calculus without the function or constant symbols, associated with some signature�. ([2]). Hence, we have a certain number of relational symbols pj, each having its aritynj. This �rst order language is now extended as follows. Let T be a collection of newsymbols (these are names of agents), partially ordered by the relation v. We assume hereT to be �nite. For each agent t 2 T we have a propositional constant et. In addition, foreach t 2 T we have a unary operator dt. The language of perception LT is de�ned as anextension of L by propositional constants et and modal operators dt for all t 2 T .The intuitive meaning of dt� is: \agent t perceives �". The formulas of LT not havingdt in front, in particular formulas of L itself, have di�erent meaning, namely, \There is aconsensus about �"We shall give now a semantics for our language and subsequently give a completeaxiomatization for our semantics.The structures for our language are of the following form: We have an universe M , andfor each predicate pj of the language L we have a relation rj � T �Mnj . The relationsrj are not arbitrary. They need to satisfy antimonotonicity property. This is the followingproperty: (rj(t; x) ^ s v t)) rj(s; x)



The antimonotonicity property means, intuitively, that the observations of t are \sharper",she can eliminate more objects. Consequently, rj is, in fact, a sequence of relations on theuniverse M , rj;t = f< x1; : : : ; xnj >:< t; x1; : : : ; xnj >2 rjg. Hence, besides the structureM = < M; rj >j2J we have \local" variants of M, Mt, where Mt =< M; rj;t >j2J .The antimonotonicity property requires, that the interpretations of predicates in the localstructure corresponding to more observant agent are smaller. Hence Ms is a structure forL, as observed by the agent s. A word of caution: in her perception of reality, the agent stakes into account also the perceptions of agents t, for t v s.We de�ne formally satisfaction for the formulas � 2 LT as follow: Let v be a valuationof variables, i.e. a function from the set V ar of variables of the language L to M . Wede�ne the relation M j= 	[v]in a roundabout manner. We �rst de�ne satisfaction for the formulas starting with theoperator dt:1) M j= dtpi(x1; : : : ; xm)[v] i� < t; v(1); : : : v(m) >2 ri.2) M j= dtes[v] i� t v s3) M j= dt(� _  )[v] i� M j= dt(�)[v] or M j= dt( )[v]4) M j= dt(� ^  )[v] i� M j= dt(�)[v] and M j= dt( )[v]5) M j= dt(�)  )[v] i� for all s v t, M j= ds(�)[v] impliesM j= ds( )[v]6) M j= dt(:�)[v] i� for all s v t, not (M j= ds(�)[v] )7) M j= ds(dt(�))[v] i� M j= dt(�)[v]8) M j= dt(8xi�)[v] i� for all a 2M , M j= dt(�)[v(i=a)]9) M j= dt(9xi�)[v] i� there exists a 2M , M j= dt(�)[v(i=a)]Next, we de�ne the satisfaction for all formulas of LT :M j= 	[v] if and only if M j= dt	[v] for all t 2 T .First of all notice that we use the satisfaction relation j= in two meanings; one forformulas of LT starting with dt, the other for all the formulas of LT . The clause 7 implies,however, that for the formulas of form dt( ) these de�nitions coincide, so no problem iscreated. Now, let us look at the meaning of the clauses 1-9 in our de�nition. The clause1) tells us that in case of atomic statements, each agent follows her observations. Clauses3 and 4 are self explanatory. Clauses 5 and 6 tell us that the agent evaluates the negativeinformation (as carried by implication or negation) taking into account perceptions of allthe agents which are \less informed" (i.e. are v-smaller). Clauses 8 and 9 are tailoredto the understanding of quanti�ers as generalized conjunctions and alternatives. Clause 2puts in the relationship of agents (v) into the language. Finally, the condition 7 tells us



that all the perceptions are generally known and that the agents do not attempt to modifyother agents opinions.We shall introduce now a complete axiomatization for the semantics j=.0) Axiomatization for intuitionistic logic ( [12])1) dt(� _	), dt(�) _ dt(	)2) dt(� ^	), dt(�) ^ dt(	)3) dt(�) 	), Vsvt(ds(�)) ds(	))4) dt(:�), Vsvt :ds(�).5) dtdw(�), dw(�).6) dtew for t v w.7) :dtew for t non-v w.8) dt(�) _ :dt(�), for every t 2 T .9) �, Wt2T (dt(�) ^ et)In addition to the usual rules of proof of intuitionistic logic ([12]), we need two morerules of proof, for introduction and elimination of the symbols ds.fds� : s 2 Tg��ds�We have the following result:Theorem 1 (a) The axiomatization (0) { (9), with the rules of proof for intuitionisticlogic and the introduction and elimination rules for ds, forms an adequate and completeaxiomatization of formulas of LT , that are valid in the above semantics.(b) For theories Th � LT semantic entailment generated by our semantics and provabilityby means of axioms 1-9 (with the rules of proof as listed above) coincide.The proof of this theorem is algebraical in its nature and analogous to the completenessargument of [15]. At this moment it is natural to see why we had to adopt the axioms ofintuitionistic and not of classical logic. First of all note that classical tautologies are notvalid under the above method of reaching consensus. To see this, let us look again at theabove example.



The sentence p(i3) _ :p(i3) is not satis�ed in the structure described in our exam-ple. It is, of course, not valid intuitionistically. To see why it fails, we proceed with thecomputation: M j= p(i3) _ :p(i3)if and only if for i = 1; : : : ; 4: M j= dti(p(i3) _ :p(i3))i.e. M j= dti(p(i3)) _ dti(:p(i3))It is easy to see that for i = 4 this alternative is not true.We shall state now two imbedding results for the structures under consideration; one\horizontal", that is with T changing, another \vertical", i.e. withM changing. To explainthe idea, let us look at the following interpretation: T corresponds to the \committee" ofexperts attempting consensus. What happens if the group becomes bigger? It turns outthat in this case change comes at two levels: �rstly, some members may be forced to changesome of their opinions. This happens when a new member is included in the panel andthat member's opinion has to be taken into account by an \old" member. If this does nothappen, the opinions of \old" members does not change, but the general consensus maystill change.With this intuition in mind we introduce the notion of ideal in < T;v> as follows: Asubset T1 of T is an ideal if and only if:8t2T18s2T (s v t) s 2 T1):In our example, there are nine ideals. For instance ft1; t2g is an ideal, and ft1; t3; t4g isan ideal, whereas ft2; t3; t4g is not an ideal. An ideal is principal if it possesses the largestelement. Of our two ideals, the �rst one is principal, the other is not. Ideals are, sometimescalled \initial segments", since in case of linearly ordered sets these notions coincide. Thecollection of all ideals in T =< T;v>, denoted by L(T ) is naturally ordered by inclusion.It is easy to check that it is a lattice ordering, in fact it is a complete lattice. Latticeoperations are set-theoretical unions and intersections. There is a natural imbedding ofT into L(T ); to every element t 2 T we assign principal ideal determined by t, that isthe initial segment determined by t. The lattice L(T ) is a Heyting lattice. The pseudo-complement of ideal I is the largest ideal disjoint with I (this construction was introducedin [6]).Now, for T1 � T and a structure M over T de�ne the restriction M1 as follows. Theuniverse of M1 is the same as that of M, but the relations are de�ned by eliminating\snapshots" corresponding to elements of T � T1. Formally:M1 =< M; r1;j >where: r1;j = rj \ (T1 �Mnj ):Thus, we leave only that part of M which pertain to T1. We have the following result onthe connection between M and M1.



Theorem 2 Let T1 be a nonempty ideal in the poset T and M1 be the restriction of Mto T1. Let � be a formula of the language corresponding to restriction. Then for all t 2 T1,and valuation v, M1 j= dt�[v] if and only if M j= dt�[v].The condition that T1 is an ideal in T cannot be omitted. In our example the setT 0 = ft1; t2; t4g provides a suitable counterexample.Besides \horizontal" restriction, that is one in which we deal with a smaller group ofagents, we have also a \vertical" one, when the collection of observed objects is larger.Here we have the following result:Theorem 3 Let M1 and M2 be two T -systems such that for all t 2 T the projection,M1;t is an elementary subsystem of the corresponding projection of M2, M2;t. Then thestructure M1 is an elementary substructure of M2, in particular for all the sentences � ofthe extended language LT , M1 j= � if and only if M2 j= �.3 Consensus with the epistemic operatorsIn this section we investigate the extension of the language LT by the \positive knowledge"or necessity operators IS and knowledge operators KS. The operators KS were introducedin case of propositional logic in [11, 10].Let s 2 T be an agent. Let inds be an equivalence relation on the universe M observedby that agent. We assign to inds the following meaning. From the point of view of theagent s, elements x and y of M , such that inds(x; y) are indistinguishable, any reasonableproperty possessed by x is shared by y. This means that the agent s does not have meanswhich allow her to �nd some properties that distinguish x and y. The relation inds induceson M an interior operation de�ned as follows: given X � M , Is(X) is the union of allequivalence classes of inds included in X. The properties of the operation Is were studiedin [9, 8]. The relation Is extends naturally to the Cartesian product of M , Mn by thefollowing: If x; y 2Mn then: inds(x; y) i� 8i�ninds(xi; yi):Given a poset T =< T;v> we assume that for all s and t in T , s v t implies inds � indt.This stipulation is justi�ed by our discussion of the perception of agents. When s v t,the perception of t is \sharper"- so there are less elements indistinguishable (by t) from agiven x 2M .Next, we see that given a group of agents S � T (remember that we deal with theposet T =< T;v> of agents), we can de�ne an associated indiscernibility relation indSby setting indS(x; y) = Ts2S inds. Thus indS is the joint capability of all agents from Stogether to discern objects in M . Clearly indS is an equivalence relation as well. It is



\�ner or equal" than all the relations inds for s 2 S. In particular, it follows that for anyt 2 T , the indiscernibility relation associated with the principal ideal fs: s v tg is identicalwith indt. This observation indicates that it is enough to consider indiscernibility relationsdetermined by ideals. The interior operation IS is de�ned in an analogous fashion.The interior operator IS is, of course, monotone: If X � Y , then IS(X) � IS(Y ). Itgenerates, however another, non-monotone operation KS associated with the knowledge ofthe agent s (or the group of agents S) about X. De�ne now:KS(X) = IS(X) [ IS(M �X):The operator KS has this meaning: Element x 2 M has the property KS(X) if either allelements indistinguishable from x are in X or none of them. Thus the elements of Ks (KS)are these which are known (from the point of view of s (or group S)) to be in X or outsideof X. The remaining elements (i.e. elements of M �KS(X) are elements which cannot bedistinguished both from elements in X and outside of X as well. One can argue that thecomplement M �Ks(X) is a \grey area" of s with respect to X.The meaning of the operation KS becomes clearer when we look at the following con-struction: Given X �M and the equivalence relation ind, consider the universe M=ind. Asubset X �M generates the following \three-valued" subset X=ind ofM=ind: [x] 2 X=indtakes value \truth" if [x] � X, [x] 2 (X=ind) takes value \false" if [x] \ X = ; (for re-maining x 2 X, the logical value of the formula [x] 2 X=ind is \unknown"). Then, KS(X)consists of these x for which the the above de�nition does not assign value \unknown". IfindS is a congruence with respect to X, then KS(X) is the whole set M , otherwise it isnot. The above construction can easily be extended to the subsets of Mn.In our setting, we are interested, of course, in the situation when the subsets X con-sidered in the previous paragraph are themselves de�nable. But from the point of view ofthe individual agent s or a group of agents S, their means may be not su�cient to de�neX. Hence the need to use IS and KS.In accordance to the above, we extend the language LT , by adjoining new binarypredicate symbols indS(x; y) for every S 2 L(T ) and modal operators IS and KS, againfor S 2 L(T ). The intended interpretation of IS and KS is as proposed above.With this intuition we shall extend now the context of the section 1 to the new situation.In view of the results of section 1 and in particular the role of ideals in the de�nition ofthe satisfaction relation j=, we shall add the modal operators IS and KS for S 2 L(T ).Let us notice, that the relation indS is de�nable in terms of relations inds for s 2 T .The knowledge structure M will be similar to the previously considered structuresexcept that now we have, for each S 2 L(T ) an equivalence relations indS. These relationssatisfy the following two conditions:a) S1 � S2 ) indS2 � indS1b) Setting inds = indft:tvsg, indS = Ts2S indsThe condition b implies that ind; is the complete relation. Condition a tells us thatthe more perceptive agent has a �ner indiscernibility relation at her disposal. Condition b



tells us what is the relationship between the indiscernibility relation indS and the relationsinds for s 2 S.The language L has more symbols. We have, as mentioned above, unary modal oper-ators IS and KS for S 2 L(T ). The language LT is de�ned as before, but with respect toricher L now.The satisfaction relation j= is de�ned as in Section 1, but additional clauses are nec-essary now for the relational symbols indS and formulas starting with IS and KS. Theseare as follows:10a) M j= dtindS(x1; x2)[v] i� indS(v(1); v(2)) (t 2 T , S 2 L(T ), S 6= ;).10a) M j= dtind;(x1; x2)[v] for every t 2 T and valuation v.11a) M j= dt(IS(�))[v] i� M j= dt((�)) when var(�) = ;,11b)M j= dt(IS(�))[v] i� for all sequences u1; : : : ; un, indS(v(x1); u1) and ... indS(v(xn); un)impliesM j= dt((�))[v0] where v0 = v[x1=u1; : : : xn=un] when var(�) = fx1; : : : xng.12a) M j= dt(KS(�))[v] i� M j= dt((�)) when var(�) = ;,12b)M j= dt(KS(�))[v] i� for all sequences u1; : : : ; un, indS(v(x1); u1) and ... indS(v(xn); un)implies M j= dt((�))[v0] or for all sequences u1; : : : ; un, indS(v(x1); u1) and ...-indS(v(xn); un) implies non M j= dt((�))[v0] (where v0 = v[x1=u1; : : : xn=un] whenvar(�) = fx1; : : : xng).As in Section 1 we extend the de�nition of satisfaction to all formulas of LT via con-sensus condition: M j= 	[v] if and only if M j= dt	[v] for all t 2 Tand prove that this extension preserves satisfaction (as introduced above) of formulasstarting with dt extend the completeness result of Section 1 to the present context weintroduce the following additional axioms:10) Equivalence relation axioms for each indS, S 2 L(T ); S 6= ;.11) dtindS(x; y), 8S1�SindS1(x; y), t 2 T , S; S1 2 L(T ).12) 8xyind;(x; y):13) IS�, �, if var(�) = ;.14) KS�, �, if var(�) = ;.15) KSdt�, ISdt� _ IS:dt�.16) dtIS(�), ISdt(�).



17) dtKS(�), KSdt(�).18) 8x;y(indS(x1; y1) ^ : : : ^ indS(xn; yn)) (dt�(y1; : : : ; yn), ISdt�(x1; : : : ; xn))).The axiom scheme 11 is used to prove that the operator dt acts identically on theindiscernibility relation indS, that is in our theory we can prove for every t 2 T andS 2 L(T ) that: dtindS(x; y), indS(x; y).The axiom scheme 11 is also used for proof of antimonotonicity property of relations ind.The formulas indS have property of excluded middle, that is the formula indS(x; y) _:indS(x; y) is provable in the axiomatization (0)-(18).Let us notice that the properties of knowledge operator, sometimes consider paradoxicalpersist in our logic. For instance the formula: (�(x)) 	(x)) ^KS�(x)) KS	(x) is notprovable in our system.With the above axiomatization we have the analogues of the results of Section 1.Theorem 4 The axiomatization consisting of formulas 0 { 18 is a complete axiom systemfor theories in the language LT , that is for an arbitrary theory Th, Th entails � semanti-cally if and only if Th together with the axioms 0 { 18 proves � using the rules of proof ofintuitionistic logic and two additional rules intoduced in Section 1.Theorem 5 If a poset T1 is an ideal in the poset T , and MT1 is the restriction of themodel M to T1, then for every formula � of the language corresponding to the restriction,and every valuation v, M j= �[v] if and only if MT1 j= �[v].Finally, we have:Theorem 6 If M1 and M2 are two T -systems satisfying the conditions of the theorem3 and satisfying the conditions that the interpretations of indS in M1 are elementarysubstructures of the interpretations of appropriate relations inM2, then for all the formulasof the extended language LT , M1 j= � if and only if M2 j= �.The additional condition in the theorem 6 is, in fact, quite strong. In case when theequivalence relations indS have property of having �nite equivalence classes, it implies thatthe universe of M1 is open in every topology generated by indS for S 2 L(T ).The proof of theorem 4 is algebraical, as in the case of theorem 1 and similar to that of4.2 in [15]. The argument of theorem 5 requires some preservation and imbedding results: IfT1 is an ideal in T , then there is a natural imbedding of L(T1) into L(T ). That embeddingis not a lattice imbedding (it does not preserve unit) but preserves lattice operations andzero element.
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