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Abstract

Let L be a computable first order predicate language with infinitely
many constant symbols and infinitely many n-ary predicate symbols and
n-ary functions symbols for all n ≥ 1 and let Q0, Q1, . . . be an effective
list all the finite normal predicate logic programs over L. Given some
property P of finite normal predicate logic programs over L, we define
the index set IP to be the set of indices e such that Qe has property P .
Let T0, T1, . . . be an effective list of all primitive recursive trees contained
in ω<ω. Then [T0], [T1], . . . is an effective list of all Π0

1 classes where for
any tree T ⊆ ω<ω, [T ] denotes the set of infinite paths through T . We
modify constructions of Marek, Nerode, and Remmel [25] to construct
recursive functions f and g such that for all e, (i) there is a one-to-one
degree preserving correspondence between the set of stable models of Qe

and the set of infinite paths through Tf(e) and (ii) there is a one-to-one
degree preserving correspondence between the set of infinite paths through
Te and the set of stable models Qg(e). We shall use these two recursive
functions to reduce the problem of finding the complexity of the index
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set IP for various properties P of normal finite predicate logic programs
to the problem of computing index sets for primitive recursive trees for
which there is a large variety of results [17, 18, 19, 16, 6, 8].

For example, we use our correspondences to determine the complexity
of the index sets relative to all finite predicate logic programs and relative
to certain special classes of finite predicate logic programs of properties
such as (i) having no stable models, (ii) having at least one stable model,
(iii) having exactly c stable models for any given positive integer c, (iv)
having only finitely many stable models, or (vi) having infinitely many
stable models.

1 Introduction

Past research demonstrated that logic programming with the stable model se-
mantics and, more generally, with the answer-set semantics, is an expressive
knowledge representation formalism. The availability of the non-classical nega-
tion operator ¬ allows the user to model incomplete information, frame axioms,
and default assumptions. Modeling these concepts in classical propositional
logic is less direct and requires much larger representations. In this paper, we
investigate the complexity of index sets of various properties of finite normal
predicate logic programs associated with the stable model semantics as defined
by Gelfond and Lifschitz [15]. There are several other semantics of logic pro-
grams that have been studied in the literature such as the well-founded semantics
[37] and other 3-valued semantics [30]. An algebraic analysis of well-founded
semantics in terms of four-valued logic and the four-valued van Emden-Kowalski
operator has been done in [9], see also [10].

It is generally accepted that the stable models semantics is the correct se-
mantics for logic programs. In particular a number of implementations of the
stable semantics of logic programs (usually known as Answer Set Programming)
are now available [29, 21, 14]. These implementations are, basically, limited to
finite propositional programs or finite predicate programs not admitting func-
tion symbols. In addition, the well-founded semantics of fragments of first-order
logic extended by inductive definitions has been implemented as well [11, 13].

The main goal of this paper is to study the the complexity of various proper-
ties finite predicate logic programs with respect to the stable model semantics.
To be able to precisely state our results, we must briefly review the basic con-
cepts of normal logic programs. We shall fix a recursive language L which has
infinitely many constant symbols c0, c1, . . ., infinitely many variables x0, x1, . . .,
infinitely many propositional letters A0, A1, . . ., and for each n ≥ 1, infinitely
many n-ary relation symbols Rn0 , R

n
1 , . . . and n-ary function symbols fn0 , f

n
1 , . . ..

We note here that we shall generally use the terminology recursive rather than
the equivalent term computable and likewise use recursively enumerable rather
than computably enumerable. These terms have the same meaning, but the for-
mer are standard in the logic programming community which is an important
audience for our paper.

A literal is an atomic formula or its negation. A ground literal is a literal
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which has no free variables. The Herbrand base of L is the set HL of all ground
atoms (atomic statements) of the language.

A (normal) logic programming clause C is of the form

c← a1, . . . , an,¬b1, . . . ,¬bm (1)

where c, a1, . . . , an, b1, . . . , bm are atoms of L. Here we allow either n or m to be
zero. In such a situation, we call c the conclusion of C, a1, . . . , an the premises
of C, b1, . . . , bn the constraints of C and a1, . . . , an,¬b1, . . . ,¬bm the body of C
and write concl(C) = c, prem(C) = {a1, . . . , an}, constr(C) = {b1, . . . , bm}. A
ground clause is a clause with no free variables. C is called a Horn clause if
constr(C) = ∅, i.e., if C has no negated atoms in its body.

A finite normal predicate logic program P is a finite set of clauses of the
form (1). P is said to be a Horn program if all its clauses are Horn clauses.
A ground instance of a clause C is a clause obtained by substituting ground
terms (terms without free variables) for all the free variables in C. The set of
all ground instances of the program P is called ground(P ). The Herbrand base
of P , H(P ), is the set of all ground atoms that are instances of atoms that
appear in P . For any set S, we let 2S denote the set of all subsets of S.

Given a Horn program P , we let TP : 2H(P ) → 2H(P ) denote the usual
one-step provability operator [22] associated with ground(P ). That is, for S ⊆
H(P ),

TP (S) = {c : ∃C∈ground(P )((C = c← a1, . . . , an) ∧ (a1, . . . , an ∈ S))}.

Then P has a least model Herbrand M = TP ↑ω (∅) =
⋃
n≥0 T

n
P (∅) where for

any S ⊆ H(P ), T 0
P (S) = S and T n+1

P (S) = TP (T
n
P (S)). We denote the least

model of a Horn program P by lm(P ).
Given a normal predicate logic program P and M ⊆ H(P ), we define the

Gelfond-Lifschitz reduct of P , PM , via the following two step process. In Step
1, we eliminate all clauses C = p ← q1, . . . , qn,¬r1, . . . ,¬rm of ground(P )
such that there exists an atom ri ∈ M . In Step 2, for each remaining clause
C = p ← q1, . . . , qn,¬r1, . . . ,¬rm of ground(P ), we replace C by the Horn
clause C = p ← q1, . . . , qn. The resulting program PM is a Horn propositional
program and, hence, has a least model. If that least model of PM coincides with
M , then M is called a stable model for P .

Next we define the notion of P -proof scheme of a normal propositional logic
program P . Given a normal propositional logic program P , a P -proof scheme
is defined by induction on its length n. Specifically, the set of P -proof schemes
is defined inductively by declaring that
(I) 〈〈C1, p1〉, U〉 is a P -proof scheme of length 1 if C1 ∈ P , p1 = concl(C1),

prem(C1) = ∅, and U = constr(C1) and
(II) for n > 1, 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme of length n if

〈〈C1, p1〉, . . . , 〈Cn−1, pn−1〉, Ū〉 is a P -proof scheme of length n− 1 and Cn
is a clause in P such that concl(Cn) = pn, prem(Cn) ⊆ {p1, . . . , pn−1}
and U = Ū ∪ constr(Cn)
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If S = 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 is a P -proof scheme of length n, then we let
supp(S) = U and concl(S) = pn.

Example 1.1. Let P be the normal propositional logic program consisting of
the following four clauses:
C1 = p←, C2 = q ← p,¬r, C3 = r ← ¬q, and C4 = s← ¬t.
Then we have the following useful examples of P -proof schemes:
(a) 〈〈C1, p〉, ∅〉 is a P -proof scheme of length 1 with conclusion p and empty

support.
(b) 〈〈C1, p〉, 〈C2, q〉, {r}〉 is a P -proof scheme of length 2 with conclusion q and

support {r}.
(c) 〈〈C1, p〉, 〈C3, r〉, {q}〉 is a P -proof scheme of length 2 with conclusion r and

support {q}.
(d) 〈〈C1, p〉, 〈C2, q〉, 〈C3, r〉, {q, r}〉 is a P -proof scheme of length 3 with con-

clusion r and support {q, r}.
In this example we see that the proof scheme in (c) had an unnecessary item,
the first term, while in (d) the proof scheme was supported by a set containing
q, one of atoms that were proved on the way to r. �

A P -proof scheme differs from the usual Hilbert-style proofs in that it carries
within itself its own applicability condition. In effect, a P -proof scheme is a con-
ditional proof of its conclusion. It becomes applicable when all the constraints
collected in the support are satisfied. Formally, for a set M of atoms, we say
that a P -proof scheme S isM -applicable or thatM admits S ifM ∩supp(S) = ∅.
The fundamental connection between proof schemes and stable models is given
by the following proposition.

Proposition 1.1. For every normal propositional logic program P and every
set M of atoms, M is a stable model of P if and only if
(i) for every p ∈M , there is a P -proof scheme S with conclusion p such that

M admits S and
(ii) for every p /∈M , there is no P -proof scheme S with conclusion p such that

M admits S.

A P -proof scheme may not need all its clauses to prove its conclusion. It may
be possible to omit some clauses and still have a proof scheme with the same
conclusion. Thus we define a pre-order on P -proof schemes S, T by declaring
that S ≺ T if

1. S,T have the same conclusion,
2. Every clause in S is also a clause of T.

The relation ≺ is reflexive, transitive, and well-founded. Minimal elements of
≺ are minimal proof schemes. A given atom may be the conclusion of no,
one, finitely many, or infinitely many different minimal P -proof schemes. These
differences are clearly computationally significant if one is searching for a justi-
fication of a conclusion.

If P is a finite normal predicate logic program, then we define a P -proof
scheme to be a ground(P )-proof scheme. Since we are considering finite nor-
mal programs over our fixed recursive language L, we can use standard Gödel
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numbering techniques to assign code numbers to atomic formulas, clauses, and
proof schemes. That is, we can effectively assign a natural number to each
symbol in L. Strings may be coded by natural numbers in the usual fashion.
Let ω = {0, 1, 2, . . .} denote the set of natural numbers and let [x, y] denote
the standard pairing function 1

2 (x
2 + 2xy + y2 + 3x + y) and, for n ≥ 2, we

let [x0, . . . , xn] = [[x0, . . . , xn−1], xn]. Then a string σ = (σ(0), . . . , σ(n− 1)) of
length n may be coded by c(σ) = [n, [σ(0), σ(1), . . . , σ(n−1)]] and also c(∅) = 0.
We define the canonical index of any finite set X = {x1 < · · · < xn} ⊆ ω by
can(X) = 2x1 + 2x2 + · · · + 2xn . We define can(∅) = 0. Then we can think of
formulas of L as sequences of natural numbers so that the code of a formula
is just the code of the sequence of numbers associated with the symbols in the
formula. Then a clause C as in (1) can be assigned the code of the triple (x, y, z)
where x is the code of the conclusion of C, y is the canonical index of the set of
codes of prem(C), and z is the canonical index of the set of codes of constr(C).
Finally the code of a proof scheme S = 〈〈C1, p1〉, . . . , 〈Cn, pn〉, U〉 consists of the
code of a pair (s, t) where s is the code of the sequence (a1, . . . , an) where ai is
the code of the pair of codes for Ci and pi and t is the canonical index of the set
of codes for elements of U . It is then not difficult to verify that for any given
finite normal predicate logic program P , the questions of whether a given n is
the code of a ground atom, a ground instance of a clause in P , or a P -proof
are primitive recursive predicates. The key observation to make is that since P
is finite and the usual unification algorithm is effective, we can explicitly test
whether a given number m is the code of a ground atom or a ground instance
of a clause in P without doing any unbounded searches. It is then easy to see
that, once we can determine if a number m is a code of ground instance of a
clause of P in a primitive recursive fashion, then there is a primitive recursive
algorithm which determines whether a given number n is the code of a minimal
P -proof scheme.

If P is a finite normal predicate logic program over L, we let Nk(P ) be the
set of all codes of minimal P -proof schemes S such that all the atoms appearing
in all the rules used in S are smaller than k. Obviously Nk(P ) is finite. Since
the predicate “minimal P -proof scheme”, which holds only on codes of minimal
P -proof schemes, is a primitive recursive predicate, it easily follows that we can
uniformly construct a primitive recursive function hP such that hP (k) equals
the canonical index for Nk(P ).

A finite normal predicate logic program Q over L may be written out as a
finite string over a finite alphabet and thus may be assigned a Gödel number
e(Q) in the usual fashion. The set of Gödel numbers of well-formed programs is
well-known to be primitive recursive (see Lloyd [22]). Thus we may let Qe be the
program with Gödel number e when this exists and let Qe be the empty program
otherwise. For any property P of finite normal predicate logic programs, let I(P)
be the set of indices e such that Qe has property P .

Next we define the notions of decidable normal logic programs and of normal
logic programs which have the finite support property. Proposition 1.1 says that
the presence and absence of the atom p in a stable model of a finite normal
predicate logic program P depends only on the supports of its ground(P )-proof
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schemes. This fact naturally leads to a characterization of stable models in
terms of propositional satisfiability. Given p ∈ H(P ), the defining equation for
p with respect to P is the following propositional formula:

p⇔ (¬U1 ∨ ¬U2 ∨ . . .) (2)

where 〈U1, U2, . . .〉 is the list of all supports of minimal ground(P )-proof schemes.
Here for any finite set S = {s1, . . . , sn} of atoms, ¬S = ¬s1∧· · ·∧¬sn. If U = ∅,
then ¬U = ⊤. Up to a total ordering of the finite sets of atoms such a formula
is unique. For example, suppose we fix a total order on H(P ), p1 < p2 < . . ..
Then given two sets of atoms, U = {u1 < . . . < um} and V = {v1 < . . . < vn},
we say that U ≺ V , if either (i) um < vn, (ii) um = vn and m < n, or (iii)
um = vn, n = m, and (u1, . . . , un) is lexicographically less than (v1, . . . , vn).
We also define ∅ ≺ U for any finite nonempty set U . We say that (2) is the
defining equation for p relative to P if U1 ≺ U2 ≺ . . .. We will denote the
defining equation for p with respect to P by EqPp . When P is a Horn program,
an atom p may have an empty support or no support at all. The first of these
alternatives occurs when p belongs to the least model of P , lm(P ). The second
alternative occurs when p /∈ lm(P ). The defining equations are p ⇔ ⊤ when
p ∈ lm(P ) and p⇔ ⊥ when p /∈ lm(P ).

Let ΦP be the set {EqPp : p ∈ H(P )}. We then have the following conse-
quence of Proposition 1.1.

Proposition 1.2. Let P be a normal propositional logic program. Then the
stable models of P are precisely the propositional models of the theory ΦP .

When P is purely negative, i.e. all clauses C of P have prem(C) = ∅, the
stable and supported models of P coincide [12] and the defining equations reduce
to Clark’s completion [7] of P .

Let us observe that, in general, the propositional formulas on the right-hand-
side of the defining equations may be infinitary.

Example 1.2. Let P be an infinite normal propositional logic program con-
sisting of clauses p ← ¬pi, for all i ∈ n. Then the defining equation for p in P
is the infinitary propositional formula

p⇔ (¬p1 ∨ ¬p2 ∨ ¬p3 . . .).

�

The following observation is quite useful. If U1, U2 are two finite sets of
propositional atoms, then

U1 ⊆ U2 if and only if ¬U2 |= ¬U1

Here |= is the propositional consequence relation. The effect of this observation
is that only the inclusion-minimal supports are important.
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Example 1.3. Let P be an infinite normal propositional logic program con-
sisting of clauses p ← ¬p1, . . . ,¬pi, for all i ∈ N . The defining equation for p
in P is

p⇔ [¬p1 ∨ (¬p1 ∧ ¬p2) ∨ (¬p1 ∧ ¬p2 ∧ ¬p3) . . . ]

which is infinitary. But our observation above implies that this formula is equiv-
alent to the formula

p⇔ ¬p1.

�

Motivated by the Example 1.3, we define the reduced defining equation for p
relative to P to be the formula

p⇔ (¬U1 ∨ ¬U2 ∨ . . .) (3)

where Ui range over inclusion-minimal supports of minimal P -proof schemes
for the atom p and U1 ≺ U2 ≺ · · · . We denote this formula as rEqPp , and define

rΦP to be the theory consisting of rEqPp for all p ∈ H(P ). We then have the
following strengthening of Proposition 1.2.

Proposition 1.3. Let P be a normal propositional program. Then stable models
of P are precisely the propositional models of the theory rΦP .

In our example 1.3, the theory ΦP was infinitary, but the theory rΦP was
finitary.

Suppose that P is a normal propositional logic program P which consists of
ground clauses from L and a is an atom in H(P ). Then we say that a has the
finite support property relative of P if the reduced defining equation for a is fi-
nite. We say that P has the finite support (FS) property if for all a ∈ H(P ), the
reduced defining equation for a is a finite propositional formula. Equivalently,
a program P has the finite support property if for every atom a ∈ H(P ), there
are only finitely many inclusion-minimal supports of minimal P -proof schemes
for a. We say that P has the almost always finite support (a.a.FS) property if
for all but finitely many atoms a ∈ H(P ), there are only finitely many inclusion-
minimal supports of minimal P -proof schemes for a. We say that P is recursive
if the set of codes of clauses of P is recursive and the set of codes of atoms in
H(P ) is recursive. Note that for any finite normal predicate logic program Q,
ground(Q) will automatically be a recursive normal propositional logic program.
We say that P has the recursive finite support (rec.FS) property if P is recursive,
has the finite support property, and there is a uniform effective procedure which
given any atom a ∈ H(P ) produces the code of the set of the inclusion-minimal
supports of P -proof schemes for a. We say that P has the almost always recur-
sive finite support (a.a.FS) property if P is recursive, has the a.a.FS property,
and there is a uniform effective procedure which for all but a finite set of atoms
a ∈ H(P ) produces the code of the set of the inclusion-minimal supports of
P -proof schemes for a. We say that a finite normal predicate logic program
has the FS property (rec.FS property, a.a.FS property, a.a.rec.FS property) if
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ground(P ) has the FS property (rec.FS property, a.a.FS property, a.a.rec.FS
property).

Next we define two additional properties of recursive normal propositional
logic programs that have not been previously defined in the literature. Suppose
that P is a recursive normal propositional logic program consisting of ground
clauses in L and M is a stable model of P . Then for any atom p ∈ M , we say
that a minimal P -proof scheme S is the smallest minimal P -proof for p relative
to M if concl(S) = p and supp(S) ∩M = ∅ and there is no minimal P -proof
scheme S′ such that concl(S′) = p and supp(S′)∩M = ∅ and the Gödel number
of S′ is less than the Gödel number of S. We say that P is decidable if for any
finite set of ground atoms {a1, . . . , an} ⊆ H(P ) and any finite set of minimal
P -proof schemes {S1, . . . , Sn} such that concl(Si) = ai, we can effectively decide
whether there is a stable model of M of P such that
(a) ai ∈ M and Si is the smallest minimal P -proof scheme for ai such that
supp(Si) ∩M = ∅ and
(b) for any ground atom b /∈ {a1, . . . , an} such that the code of b is strictly less
than the maximum of the codes of a1, . . . , an, b /∈M .

We now introduce and illustrate a technical concept that will be useful for
our later considerations. At first glance, there are some obvious differences
between stable models of normal propositional logic programs and models of
sets of sentences in a propositional logic. For example, if T is a set of sentences
in a propositional logic and S ⊆ T , then it is certainly the case that every model
of T is a model of S. Thus a set of propositional sentences T has the property
that if T has a model, then every subset of T has a model. This is certainly not
true for normal propositional logic programs. That is, consider the following
example.

Example 1.4. Let P consists of the following two clauses:

C1 = a← ¬a,¬b and
C2 = b←

Then it is easy to see that {b} is a stable model of P . However the subpro-
gram Q consisting of just clause C1 does not have a stable model. That is, b can
not be in any stable model of Q since there is no clause in Q whose conclusion
is b. Thus the only possible stable models of Q are M1 = ∅ and M2 = {a}.
But it is easy to see that both M1 and M2 are not stable models of Q. That
is, the Gelfond-Lifschitz reduct Q∅ = a ← whose least model is {a} and the
Gelfond-Lifschitz reduct Q{a} = ∅ whose least model is ∅.

Next we note that there is no analogue of the Compactness Theorem for
stable models. That is, the Compactness Theorem for propositional logic says
that if Θ is a collection of sentences and every finite subset of Θ has a model,
then Θ has a model. Marek and Remmel [27] proposed the following analogue
of the Compactness Theorem for normal propositional logic programs.

(Comp) If for any finite normal propositional logic program P ′ ⊆ P , there exist
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a finite program P ′′ such that P ′ ⊆ P ′′ ⊆ P such that P ′′ has a stable model,
then P has a stable model.

However, Marek and Remmel [27] showed that Comp fails for normal propo-
sitional logic programs.

Finally, we observe that a normal propositional logic program P can fail to
have a stable model for some trivial reasons. That is, suppose that P0 is a normal
propositional logic program which has a stable model and a is atom which is not
in the Herbrand base of P0, H(P0). Then if P is the normal propositional logic
program consisting of P0 plus the clause C = a ← ¬a, then P automatically
does not have a stable model. That is, consider a potential stable model M of
P . If a ∈M , then C does not contribute to PM so that there will be no clause
of PM with a in the head. Hence, a is not in the least model of PM so that M
is not a stable model of P . On the other hand, if a 6∈M , then C will contribute
the clause a ← to PM so that a must be in the least model of PM and, again,
M is not equal to the least model of PM . For this reason, we say that a finite
normal predicate logic program Qe over L has an explicit initial blocking set if
there is an m such that

1. for every i ≤ m, either i is not the code of an atom of ground(P ) or the
atom a coded by i has the finite support property relative to P and

2. for all S ⊆ {0, . . . ,m}, either
(a) there exists an i ∈ S such that i is not the code of an atom in H(P ),
(b) there is an i 6∈ S such that there exists a minimal P -proof scheme p

such that concl(p) = a where a is the atom of H(P ) with code i and
supp(p) ⊆ {0, . . . ,m} − S, or

(c) there is an i ∈ S such that every minimal P -proof scheme S of the
atom a of H(P ) with code i has supp(S) ∩ S 6= ∅.

The definition of a finite normal predicate logic program Qe over L having an
initial blocking set is the same as the definition of Qe having an explicit initial
blocking set except that we drop the condition that for every i ≤ m which is
the code of an atom a ∈ H(P ), a must have the finite support property relative
to P .

If Σ ⊆ ω, then Σ<ω denotes the set of finite strings of letters from Σ and
Σω denotes the set of infinite sequences of letters from Σ. For a string σ =
(σ(0), σ(1), . . . , σ(n − 1)), we let |σ| denote the length n of σ. The empty
string has length 0 and will be denoted by ∅. A constant string σ of length n
consisting entirely of k’s will be denoted by kn. For m < |σ|, σ ↾ m is the string
(σ(0), . . . , σ(m − 1)). We say σ is an initial segment of τ (written σ ≺ τ) if
σ = τ ↾ m for some m < |σ|. The concatenation σaτ (or sometimes just στ) is
defined by

σaτ = (σ(0), σ(1), . . . , σ(m− 1), τ(0), τ(1), . . . , τ(n − 1))

where |σ| = m and |τ | = n. We write σaa for σa(a) and aaσ for (a)aσ. For
any x ∈ Σω and any finite n, the initial segment x ↾ n of x is (x(0), . . . , x(n−1)).
We write σ ≺ x if σ = x ↾ n for some n. For any σ ∈ Σn and any x ∈ Σω, we
let σax = (σ(0), . . . , σ(n− 1), x(0), x(1), . . .).
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If Σ ⊆ ω, a tree T over Σ∗ is a set of finite strings from Σ<ω which contains
the empty string ∅ and which is closed under initial segments. We say that
τ ∈ T is an immediate successor of a string σ ∈ T if τ = σaa for some a ∈ Σ.
We will identify T with the set of codes c(σ) for σ ∈ T . Thus we say that T is
recursive, r.e., etc. if {c(σ) : σ ∈ T } is recursive, r.e., etc. If each node of T has
finitely many immediate successors, then T is said to be finitely branching.

Definition 1.1. Suppose that g : ω<ω → ω. Then we say that
1. T is g-bounded if for all σ and all integers i, σai ∈ T implies i ≤ g(σ),
2. T is almost always g-bounded if there is a finite set F ⊆ T of strings such

that for all strings σ ∈ T \ F and all integers i, σai ∈ T implies i < g(σ),
3. T is nearly g-bounded if there is an n ≥ 0 such that for all strings σ ∈ T

with |σ| ≥ n and all integers i, σai ∈ T implies i < g(σ),
4. T is bounded if it is g-bounded for some g : ω<ω → ω,
5. T is almost always bounded (a.a.b.) if it is almost always g-bounded for

some g : ω<ω → ω,
6. T is nearly bounded if it is nearly g-bounded for some g : ω<ω → ω,
7. T is recursively bounded (r.b.) if T is g-bounded for some recursive g :
ω<ω → ω,

8. T almost recursively bounded (a.a.r.b.) if it is almost always g-bounded
for some recursive g : ω<ω → ω, and

9. T nearly recursively bounded ( nearly r.b.) if it is nearly g-bounded for
some recursive g : ω<ω → ω.

For any tree T , an infinite path through T is a sequence (x(0), x(1), . . .) such
that x ↾ n ∈ T for all n. Let [T ] be the set of infinite paths through T . We let
Ext(T ) denote the set of all σ ∈ T such that σ ≺ x for some x ∈ [T ]. Thus
Ext(T ) is the set of all σ in T that lie on some infinite path through T . We say
that T is decidable if T is recursive and Ext(T ) is recursive.

The two main results of this paper are the following theorems.

Theorem 1.1. There is a uniform effective procedure which given any recursive
tree T ⊆ ω<ω produces a finite normal predicate logic program PT such that the
following hold.

1. There is an effective one-to-one degree preserving correspondence between
the set of stable models of PT and the set of infinite paths through T .

2. T is bounded if and only if PT has the FS property.
3. T is recursively bounded if and only if PT has the rec.FS property.
4. T is decidable and recursively bounded if and only if PT is decidable and

has the rec.FS property.

Theorem 1.2. There is a uniform recursive procedure which given any finite
normal predicate logic program P produces a primitive recursive tree TP such
that the following hold.

1. There is an effective one-to-one degree-preserving correspondence between
the set of stable models of P and the set of infinite paths through TP .

2. P has the FS property or P has an explicit initial blocking set if and only
if TP is bounded.
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3. If P has a stable model, then P has the FS property if and only if TP is
bounded.

4. P has the rec.FS property or an explicit initial blocking set if and only if
TP is recursively bounded.

5. If P has a stable model, then P has the rec.FS property if and only if TP
is recursively bounded.

6. P has the a.a.FS property or P has an explicit initial blocking set if and
only if TP is nearly bounded.

7. If P has a stable model, then P has the a.a.FS property if and only if TP
is nearly bounded.

8. P has the a.a.rec.FS property or an explicit initial blocking set if and only
if TP is nearly recursively bounded.

9. If P has a stable model, then P has the a.a.rec.FS property if and only if
TP is nearly recursively bounded.

10. If P has a stable model, then P is decidable if and only if TP is decidable.

The idea of Theorems 1.1 and 1.2 is to show that index sets for certain prop-
erties of trees have the same complexity as corresponding index sets for various
properties of finite normal predicate logic programs. For example, suppose that
we want to find the complexity of

A = {e : Qe has the FS property and has exactly 2 stable models}.

Let B = {e : Te is r.b. and Card([Te]) = 2}. Then Theorem 1.1 allows us to
prove that B is one-to-one reducible to A and Theorem 1.2 allows us to prove
that A is one-to-one reducible to B. Now Cenzer and Remmel [4, 5] have proved
a large number of results about the index sets for primitive recursive trees. In
particular, they have shown that B is Σ0

3-complete. Thus A is also Σ0
3-complete.

The outline of this paper is as follows. In Section 2, we shall provide the basic
background on Π0

1 classes and recursive trees that we shall need. In Section 3,
we shall give the proofs of Theorems 1.1 and 1.2. In Section 4, we shall use
Theorems 1.1 and 1.2 to prove a variety of index set results relative to all finite
normal predicate logic programs, to all finite normal predicate logic programs
which have the FS property, and to all finite normal predicate logic programs
which have the rec.FS property. In Section 5, we shall prove a variety of index
set results relative to all finite normal predicate logic programs which have the
a.a.FS property and to all finite normal predicate logic programs which have the
a.a.rec.FS property. Section 6 contains conclusions and suggestions of further
work.

A preliminary extended abstract of this paper [3] appeared in the proceed-
ings of a workshop at the Federated Logic Conference FLOC’99 which were
distributed at the conference.
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2 Π0
1 classes and trees

In this section, we shall review the basic background facts on the complexity of
various properties of Π0

1 classes and primitive recursive trees that are relevant
to classifying the index sets of the properties of finite normal predicate logic
programs that will be of interest to us.

Let φe denote the partial recursive function which is computed by the e-th
Turing machine. Thus φ0, φ1, . . . is a list of all partial recursive functions. We
let We be the set of all x ∈ ω such φe(x) converges. Thus W0,W1, . . . is a list
of all recursively enumerable (r.e.) sets. More generally, a recursive functional
φ takes as inputs both numbers a ∈ ω and functions x : ω → ω. The function
inputs are treated as “oracles” to be called on when needed. Thus a particular
computation φ(a1, . . . , an;x1, . . . , xm) only uses a finite amount of information
xi ↾ c about each function xi. Thus we shall write φe(a1, . . . , an;x1, . . . , xm) for
the recursive functional computed by the e-th oracle machine. In the special case
where n = m = 1 and x1 is a sequence of 0s and 1s and X = {n : x1(n) = 1},
then we shall write φXe (a1) or {e}X(a1) instead of φe(a1;x1). The jump of a
set A ⊆ ω, denoted A′, is the set of all e such that φAe (e) converges. We let
0′ denote the jump of the empty set. For A,B ⊆ ω, we write A ≤T B if A is
Turing reducible to B and A ≡T B if A ≤T B and B ≤T A.

We shall assume the reader is familiar with the usual arithmetic hierarchy
of Σ0

n and Π0
n subsets of ω as well as Σ1

1 and Π1
1 sets, see Soare’s book [36]

for any unexplained notation. A subset A of ω is said to be Dm
n if it is the

difference of two Σmn sets. A set A ⊆ ω is said to be an index set if for any a, b,
a ∈ A and φa = φb imply that b ∈ A. For example, Fin = {a : Wa is finite}
is an index set. We are particularly interested in the complexity of such index
sets. Recall that a subset A of ω is said to be Σmn -complete (respectively,
Πmn -complete, Dm

n -complete ) if A is Σmn (respectively, Πmn , Dm
n ) and any Σmn

(respectively, Πmn , Dm
n ) set B is many-one reducible to A. For example, the set

Fin = {e :We is finite} is Σ0
2-complete.

A recursive tree T is said to be highly recursive if T is finitely branching
and there is a partial recursive function f such that, for any σ ∈ T , f(σ) is the
canonical index of the set of codes of all immediate successors in T . It is easy
to show that T is highly recursive if and only if T is recursive and recursively
bounded.

A set C of functions f : N → N is a Π0
1-class if and only if

f ∈ C ⇔ ∀n([f(0), . . . , f(n)] ∈ R)

where R is some recursive predicate. It is well known that C is a Π0
1-class if and

only if X = [T ] for some recursive tree T . In fact, the following lemma is true.

Lemma 2.1. For any class C ⊆ ωω, the following are equivalent.
1. C = [T ] for some recursive tree T ⊆ ω<ω.
2. C = [T ] for some primitive recursive tree T .
3. C = {x : ω → ω : (∀n)R(n, [x ↾ n])}, for some recursive relation R.
4. C = [T ] for some tree T ⊆ ω<ω which is Π0

1.
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We say that a Π0
1 class C is

1. bounded if C = [T ] for some recursive tree T which is bounded,
2. almost always bounded (a.a.b.) if C = [T ] for some recursive tree T which

is almost always bounded,
3. nearly bounded (n.b.) if C = [T ] for some recursive tree T which is nearly

bounded,
4. recursively bounded (r.b.) if C = [T ] for some highly recursive tree T ,
5. almost always recursively bounded (a.a.r.b.) if C = [T ] for some recursive

tree T which is almost always recursively bounded,
6. nearly recursively bounded (n.r.b.) if C = [T ] for some recursive tree T

which is nearly recursively bounded, and
7. decidable if C = [T ] for some decidable tree T .
We now spell out the indexing for Π0

1 classes and primitive recursive trees
that we will use in this paper. Let π0, π1, . . . be an effective enumeration of the
primitive recursive functions from ω to {0, 1} and let

Te = {∅} ∪ {σ : (∀τ � σ)πe(c(τ)) = 1}

where c(τ) is the code of τ . It is clear that each Te is a primitive recursive tree.
Observe also that if {σ : πe(c(σ)) = 1} is a primitive recursive tree, then Te
will be that tree. Thus every primitive recursive tree occurs in our enumeration
T0, T1, . . .. (Note that, henceforth, we will generally identify a finite sequence
τ ∈ ω<ω with its code.) Then we let Ce = [Te] be the e-th Π0

1 class. It follows
from Lemma 2.1 that every Π0

1 class occurs in the enumeration Ce.
There is a large literature on the complexity of elements in Π0

1 classes and
index sets for primitive recursive trees. In the remainder of this section, we
shall list the key results which will be needed for our applications to index sets
associated with finite normal predicate logic programs.

Theorem 2.1. For any recursive tree T ⊆ ω<ω, the following hold.
(a) Ext(T ) is a Σ1

1 set.
(b) If T is finitely branching, then Ext(T ) is a Π0

2 set.
(c) If T is highly recursive, then Ext(T ) is a Π0

1 set.

For any nonempty Π0
1 class C = [T ], one can compute a member of C from

the tree Ext(T ) by always taking the leftmost branch in Ext(T ).
The following theorem immediately follows from Theorem 2.1.

Theorem 2.2. For any nonempty Π0
1 class C ⊆ ω<ω,

(a) C has a member which is recursive in some Σ1
1 set.

(b) If C is bounded, nearly bounded, or almost always bounded, then C has a
member which is recursive in 0′′,

(c) If C is recursively bounded, nearly recursively bounded, or almost always
recursively bounded, then C has a member which is recursive in 0′, and

(d) If C = [T ], where T is decidable, then C has a recursive member.

If T ⊆ ω<ω is tree and f ∈ [T ], then we say that f is isolated, if there is
k > 0 such that f is the only element of [T ] which extends (f(0), . . . , f(k)). The
complexity of isolated paths in recursive trees was determined by Kreisel.
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Theorem 2.3. [Kreisel 59] Let C be a Π0
1 class.

(a) Any isolated member of C is hyperarithmetic.
(b) Suppose that C is bounded, nearly bounded, or almost always bounded. Then

any isolated member of C is recursive in 0′.
(c) Suppose C is recursively bounded, nearly recursively bounded, or almost al-

ways recursively bounded. Then any isolated member of C is recursive.

A set A ⊆ ω is low if A′ = 0′. Jockusch and Soare [17, 18, 19] proved the
following important results about recursively bounded Π0

1 classes.

Theorem 2.4. (a) (Low Basis Theorem) Every nonempty r.b. Π0
1 class C con-

tains a member of low degree.
(b) There is a low degree a such that every nonempty r.b. Π0

1 class contains
a member of degree ≤ a.

(c) If C is r.b., then P contains a member of r.e. degree.
(d) Every r.b. Π0

1 class C contains members a and b such that any function
recursive in both a and b is recursive.

(e) If C is s bounded Π0
1 class, then C contains a member of Σ0

2 degree.
(f) Every bounded Π0

1 class contains a member a such that a′ ≤T 0′′.
(g) Every bounded Π0

1 class C contains members a and b such that any function
recursive in both a and b is recursive in ∅′.

Cenzer and Remmel [4, 5] proved a large number of results about index sets
for Π0

1 classes and primitive recursive trees. Below we list a sample of such
results which will be important for us to establish corresponding results for
index sets of finite normal predicate logic programs.

Our first results establish the complexity of determining whether a primi-
tive recursive tree is recursively bounded, almost always recursively bounded,
nearly recursively bounded, bounded, almost always bounded, nearly bounded,
or decidable.

Theorem 2.5. (a) {e : Te is r.b.} is Σ0
3-complete.

(b) {e : Te is a.a.r.b.} is Σ0
3-complete.

(c) {e : Te is n.r.b.} is Σ0
3-complete.

(d) {e : Te is bounded} is Π0
3-complete.

(e) {e : Te is a.a.b.} is Σ0
4-complete.

(f) {e : Te is n.b.} is Σ0
4-complete.

(g) {e : Te is r.b. and decidable} is Σ0
3-complete.

Proof. The only parts which are not proved by Cenzer and Remmel in [4] are
parts (b) and (e). (In [4], Cenzer and Remmel used the term almost bounded
for what we call nearly bounded.)

We shall show how to modify the proofs of (c) and (f) in [4] to prove (b)
and (e), respectively. Similar modifications of the proofs in [4] for index sets
relative to nearly bounded and nearly recursively bounded trees can be used to
establish the remaining index set results which we list in this section.

The facts that {e : Te is a.a.r.b.} is Σ0
3 and {e : Te is a.a.b} is Σ0

4 are easily
established by simply writing out the definitions.
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To prove the Σ0
3-completeness of {e : Te is a.a.r.b.}, we can use the same

proof that was used by Cenzer and Remmel [4] to establish that {e : Te is r.b.}
is Σ0

3-complete. It is easy to see that a tree T is r.b. if and only if there is a
recursive function g : ω → ω such that if (a0, . . . , an) ∈ T , then ai < g(i) for all
i ∈ T . Similarly, a tree T is a.a.r.b. if and only if there is a recursive function
g : ω → ω such that for all but finitely many (a0, . . . , an) ∈ T , ai < g(i) for all
i ∈ T . In each case, we shall call such a function g a bounding function.

Now, Rec = {e : We is recursive} is Σ0
3-complete, see Soare’s book [36]. We

define a reduction f of Rec to {e : Te is r.b.}. This will be done so that [Tf(e)]
is empty if We is finite and [Tf(e)] has a single element if We is infinite. The
primitive recursive tree Tf(e) is defined so that we put σ = (s0, s1, . . . , sk−1) ∈
Tf(e) if and only if s0 < s1 < · · · < sk−1 and there exists a sequence m0 < m1 <
· · · < mk−1 such that, for each i < k, mi ∈ We,si \We,si−1 and mi is the least
element of We,sk−1

\ {m0, . . . ,mi−1}. We observe that if We is finite, then Tf(e)
is also finite and therefore recursively bounded. Now fix e and suppose that We

is infinite. Then we define a canonical sequence n0 < n1 < . . . of elements of
We and corresponding sequence of stages t0 < t1 < . . . such that, for each i,
ni ∈ We,ti \We,ti−1 and (t0, t1, . . . , ti) ∈ Tf(e) as follows. Let n0 be the least
element of We and t0 is the least stage t such that n0 ∈ We,t. Then for each
k, let nk+1 be the least element of We \ We,tk and tk+1 be the least stage t
such that nk+1 ∈ We,t. Then for each k, (t0, . . . , tk) ∈ Tf(e) and nk ∈ We,tk .
Furthermore, we can prove by induction on k that

k ∈We → k ∈ We,tk .

For k = 0, this is because n0 = 0 if 0 ∈ We. Assuming the statement to be
true for all i < k, we see that if k ∈We, then either k ∈ We,tk−1

, or else nk = k.
In either case, we have k ∈ We,tk .

The key fact to observe is that for any (s0, . . . , sk) ∈ Tf(e), sk ≤ tk. To
see this, let (s0, . . . , sk) ∈ Tf(e), let (m0, . . . ,mk) be the associated sequence of
elements of We. Suppose by way of contradiction that sk > tk. It follows from
the definitions of Tf(e) and of t0, . . . , tk that in fact si = ti and mi = ni for all
i ≤ k. Thus if we let g(n) = tn+1, then g will be a bounding function for Tf(e).
Now, if We is recursive. then the sequence t0 < t1 < . . . is also recursive and
thus Tf(e) is recursively bounded.

Now suppose that Tf(e) has a recursive bounding function h. Then we must
have tk < h(k) for each σ of length k. It then follows from the equation above
that k ∈ We ⇐⇒ k ∈ We,h(k), so that We is recursive. Thus Tf(e) is r.b if
and only if We recursive and, hence, {e : Te is r.b.} is Σ0

3-complete. However,
note that if h : ω<ω → ω is a function that witnesses that Tf(e) is almost always
recursively bounded, then there will be a n such that tk < h(k) for all k ≥ n.
In that case, for all k ≥ n, k ∈ We ⇐⇒ k ∈ We,h(k) which still implies that
We is recursive. Thus Tf(e) is a.a.r.b. if and only if We is recursive so that
{e : Te is a.a.r.b.} is also Σ0

3-complete.
This argument is typical of the completeness arguments for the properties

about cardinalities of [T ] or the number of recursive elements of [T ] that appear
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in the rest of the theorems in this section. That is, the completeness argument
for r.b. trees also works for a.a.r.b. trees.

For the completeness argument for (d), we shall use the fact that Cof =
{e : ω \We is finite} is Σ0

3-complete set, see [36]. We let We,s denote the set
of elements that are enumerated into We in s or fewer steps as in [36]. By
definition, all x ∈ We,s are less than or equal to s and the question of whether
x ∈ We,s is a primitive recursive predicate. Then we can define a primitive
recursive function φ(e,m, s) = (least n > m)(n /∈ We,s \ {0}). For any given e,
let Ue be the tree such that (m) ∈ Ue for all m ≥ 0 and (m, s+ 1) ∈ Ue if and
only if m is the least element such that φ(e,m, s + 1) > φ(e,m, s). Note that
when m ≥ s+1, the least n such that n > m and n /∈We,s is just m+1 since all
elements of We,s+1 are less than s+ 1. Thus the only candidates for (m, s+ 1)
to be in Ue are m ≤ s+ 1. Thus the tree Ue will be primitive recursive. Now if
We \ {0} is not cofinite, then for each m, there is a minimal n > m such that
n /∈We. It follows that lims φ(e,m, s) = n, so that φ(e,m, s+1) > φ(e,m, s) for
only finitely many s, which will make Ue finitely branching. On the other hand,
ifWe \{0} is cofinite and we choosem so that n ∈We \{0} for all n > m, then it
is clear that there will be infinitely many s such that φ(e,m, s+1) > φ(e,m, s).
It follows that if m is the largest element not in We \ {0}, then for infinitely
many s, (m, s + 1) will be in Ue and for all p > m, there can be only finitely
many s such that (p, s + 1) is in Ue. Thus if We \ {0} is cofinite, then there
will be exactly one node which has infinitely many successors. Clearly there is
a recursive function f such that Tf(e) = Ue. But then

e ∈ ω \ Cof ⇐⇒ Tf(e) is bounded.

Since ω \Cof is Π0
3-complete, it follows that {e : Te is bounded} is Π0

3-complete.
Now, let S be an arbitrary Σ0

4 set and suppose that a ∈ S ⇐⇒ (∃k)R(a, k)
where R is Π0

3. By the usual quantifier methods, we may assume that R(a, k)
implies that R(a, j) for all j > k. By our argument for the Π0

3-completeness of
{e : Te is bounded}, there is a recursive function h such that R(a, k) holds if
and only if Uh(a,k) is bounded and such that Uh(a,k) is a.a.b. for every a and k.
Now we can define a recursive function φ so that

Tφ(a) = {(0)} ∪ {(k + 1)aσ : σ ∈ Uh(a,k)}.

If a ∈ S, then Uh(a,k) is bounded for all but finitely many k and is a.a.b. for
the remaining k’s. Thus Uφ(a) is a.a.b. If a /∈ S, then, for every k, Uh(a,k) is not
bounded, so that Uφ(a) is not a.a.b. Thus a ∈ S if and only if Tφ(a) is a.a.b and
{e : Te is a.a.b. } is Σ0

4-complete.

As it stands, it is clear that there are no infinite paths through Tφ(a) since
every node Tφ(a) has length at most 3. The reason that we constructed the tree
Tφ(a) to contain the node (0) is for the remaining completeness arguments which
follow in this section. That is, we are now free to modify the construction to
add a tree above (0) which has a number of infinite paths. Now, completeness
arguments to establish the complexity for various properties concerning the
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number of infinite paths or infinite recursive paths through r.b. trees in [4]
always produced bounded trees. Since the complexity results for r.b. trees were
bounded by Σ0

4, it follows that we can modify the construction by placing trees
above (0) in Tφ(a) to show that complexity for various properties concerning
the number of infinite paths or infinite recursive paths through a.a.b. trees is
Σ0

4-complete. Thus we shall not give the details of such arguments. �

Next, we give several index set results concerning the size of [T ] for primitive
recursive trees T which have various properties. These results are either proved
in [4] or follow by modifying the results in [4] as described in Theorem 2.5 to
prove results about a.a.b. or a.a.r.b. trees. In fact, in all the results that follow,
the index set results for properties relative to a.a.b. trees are exactly the same
as the index set results for n.b. trees and the index set results for properties of
a.a.r.b. trees are exactly the same as the index set results for n.r.b. trees. Thus
we shall only state the results for a.a. and a.a.r.b. trees.

Theorem 2.6. (a) {e : Te is r.b. and [Te] is empty} is Σ0
2-complete.

(b) {e : Te is r.b. and [Te] is nonempty} is Σ0
3-complete.

(c) {e : Te is bounded and [Te] is empty} is Σ0
2-complete.

(d) {e : Te is bounded and [Te] is nonempty} is Π0
3-complete.

(e) {e : Te is a.a.r.b. and [Te] is nonempty} and
{e : Te is a.a.r.b. and [Te] is empty} are Σ0

3-complete.
(f) {e : Te is a.a.b. and [Te] is nonempty} and
{e : Te is a.a.b. and [Te] is empty} are Σ0

4-complete.
(g) {e : [Te] is nonempty} is Σ1

1-complete and
{e : [Te] is empty} is Π1

1-complete.

Theorem 2.7. For every positive integer c,
(a) {e : Te is r.b. and Card([Te]) > c},
{e : Te is r.b. and Card([Te]) ≤ c}, and
{e : Te is r.b. and Card([Te]) = c} are all Σ0

3-complete.
(b) {e : Te is a.a.r.b. and Card([Te]) > c},
{e : Te is a.a.r.b. and Card([Te]) ≤ c}, and
{e : Te is a.a.r.b. and Card([Te]) = c} are all Σ0

3-complete.
(c) {e : Te is bounded and Card([Te]) ≤ c} and
{e : Te is bounded and Card([Te]) = 1} are both Π0

3-complete;
(d) {e : Te is bounded and Card([Te]) > c} and
{e : Te is bounded and Card([Te]) = c+ 1} are both D0

3-complete.
(e) {e : Te is a.a.b. and Card([Te]) > c},
{e : Te is a.a. bounded and Card([Te]) ≤ c}, and
{e : Te is a.a. bounded and Card([Te]) = c} are all Σ0

4-complete.
(f) {e : Te is r.b, dec. and Card([Te]) > c},
{e : Te is r.b., dec. and Card([Te]) ≤ c}, and
{e : Te is r.b., dec. and Card([Te]) = c} are all Σ0

3-complete.
(g) ({e : Card([Te]) > c}) is Σ1

1-complete, {e : Card([Te]) ≤ c} is Π1
1-complete

and {e : Card([Te]) = c} is Π1
1-complete.

Theorem 2.8. (a) {e : Te is r.b. and [Te] is infinite} is D0
3-complete and

{e : Te is r.b. and [Te] is finite} is Σ0
3-complete.
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(b) {e : Te is a.a.r.b. and [Te] is infinite} is D0
3-complete and

{e : Te is a.a.r.b. and [Te] is finite} is Σ0
3-complete.

(c) {e : Te is bounded and [Te] is infinite} is Π0
4-complete and

{e : Te is bounded and [Te] is finite} is Σ0
4-complete.

(d) {e : Te is a.a.bounded and [Te] is infinite} is D0
4-complete and

{e : Te is a.a. bounded and [Te] is finite} is Σ0
4-complete.

(e) {e : [Te] is infinite} is Σ1
1-complete and {e : [Te] is finite} is Π1

1-complete.
(f) {e : Te is r.b.and dec. and [Te] is infinite} is D0

3-complete and
{e : Te is r.b. and dec. and [Te] is finite} is Σ0

3-complete.

Theorem 2.9. {e : [Te] is uncountable} is Σ1
1-complete, {e : [Te] is countable}

is Π1
1-complete, and {e : [Te] is countably infinite} is Π1

1-complete. The same
result holds for r.b., a.a.r.b., bounded, a.a.b. primitive recursive trees.

Next we give some index set results concerning the number of recursive
elements in [T ] where T is a primitive recursive tree. Here we say that [T ] is
recursively empty if [T ] has no recursive elements and is recursively nonempty if
[T ] has at least one recursive element. Similarly, we say that [T ] has recursive
cardinality equal to c if [T ] has exactly c recursive members.

Theorem 2.10. (a) {e : Te is r.b. and [Te] is recursively nonempty} is Σ0
3-

complete, {e : Te is r.b. and [Te] is recursively empty} is D0
3-complete and

{e : Te is r.b. and [Te] is nonempty and recursively empty} is D0
3-complete.

(b) {e : Te is a.a.r.b. and [Te] is recursively nonempty} is Σ0
3-complete,

{e : Te is a.a.r.b. and [Te] is recursively empty} is D0
3-complete and

{e : Te is a.a.r.b. and [Te] is nonempty and recursively empty} is
D0

3-complete.
(c) {e : Te is bounded and [Te] is recursively nonempty} is D0

3-complete,
{e : Te is bounded and [Te] is recursively empty} is Π0

3-complete, and
{e : Te is bounded and [Te] is nonempty and recursively empty} is
Π0

3-complete.
(d) {e : Te is a.a.bounded and [Te] is recursively nonempty},
{e : Te is a.a.bounded and [Te] is recursively empty}, and
{e : Te is a.a.bounded and [Te] is nonempty and recursively empty} are
all Σ0

4-complete.
(e) {e : [Te] is recursively nonempty} is Σ0

3-complete,
{e : [Te] is recursively empty} is Π0

3-complete and
{e : [Te] is nonempty and recursively empty} is Σ1

1-complete.

Theorem 2.11. Let c be a positive integer.
(a) {e : Te is r.b. and [Te] has recursive cardinality > c} is Σ0

3-complete,
{e : Te is r.b. and [Te] has recursive cardinality ≤ c} is D0

3-complete, and
{e : Te is r.b. and [Te] has recursive cardinality = c} is D0

3-complete.
(b) {e : Te is a.a.r.b. and [Te] has recursive cardinality > c} is Σ0

3-complete,
{e : Te is a.a.r.b. and [Te] has recursive cardinality ≤ c} is D0

3-complete,
and {e : Te is a.a.r.b. and [Te] has recursive cardinality = c} is
D0

3-complete.
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(c) {e : Te is bounded and [Te] has recursive cardinality > c} is Π0
3-complete,

{e : Te is bounded and [Te] has recursive cardinality ≤ c} is D0
3-complete,

and {e : Te is bounded and [Te] has recursive cardinality = c} is
D0

3-complete.
(d) {e : Te is a.a.bounded and [Te] has recursive cardinality > c},
{e : Te is a.a.bounded and [Te] has recursive cardinality ≤ c}, and
{e : Te is a.a.bounded and [Te] has recursive cardinality = c} are all Σ0

4-
complete.

(e) {e : [Te] has recursive cardinality > c} is Σ0
3-complete,

{e : [Te] has recursive cardinality ≤ c} is Π0
3-complete, and

{e : [Te] has recursive cardinality = c} is D0
3-complete.

Theorem 2.12. {e : [Te] has finite recursive cardinality} is Σ0
4-complete and

{e : [Te] has infinite recursive cardinality} is Π0
4-complete. The same result is

true for r.b., a.a.r.b., bounded, and a.a.b. primitive recursive trees.

Given a primitive recursive tree [T ], we say that [T ] is perfect if it has no
isolated elements. Cenzer and Remmel also proved a number of index set results
for primitive recursive trees T such that [T ] is perfect. Here is one example.

Theorem 2.13. (a) {e : Te is r.b. and [Te] is perfect} and
{e : Te is r.b.and [Te] is nonempty and perfect} are D0

3-complete.
(b) {e : Te is a.a.r.b. and [Te] is perfect} and
{e : Te is a.a.r.b. and [Te] is nonempty and perfect} are D0

3-complete.
(c) {e : Te is bounded and [Te] is perfect} and
{e : Te is bounded and [Te] is nonempty and perfect} are Π0

4-complete.
(d) {e : Te is a.a.bounded and [Te] is perfect} and
{e : Te is a.a.bounded and [Te] is nonempty and perfect} are D0

4-complete.
(e) {e : [Te] is perfect} and {e : [Te] is nonempty and perfect} are Σ1

1-complete.

3 Proofs of Theorems 1.1 and 1.2

The main goal of this section is prove Theorems 1.1 and 1.2.
Recall that {e}B denotes the function computed by the e-th oracle machine

with oracle B. If A ⊆ ω, we write {e}B = A if {e}B is the characteristic func-
tion of A. If f is a function f : ω → ω, then we let gr(f) = {〈x, f(x)〉 : x ∈ ω}.
Given a finite normal predicate logic program P and a recursive tree T ⊆ ω<ω,
we say that there is an effective one-to-one degree preserving correspondence
between the set of stable models of P and the set of infinite paths through TP
if there are indices e1 and e2 of oracle Turing machines such that
(i) (∀M ∈ Stab(P ))({e1}M = fM ∈ [T ]), and
(ii) (∀f ∈ [T ])({e2}gr(f) =Mf ∈ Stab(P )), and
(iii) (∀M ∈ Stab(P ))(∀f ∈ [T ])({e1}

M = f ⇔ {e2}
gr(f) =M).

Condition (i) says that the stable models of P uniformly produce infinite paths
through the tree T via an algorithm with index e1 and condition (ii) says that
the infinite paths through the tree T uniformly produce stable models of P via
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an algorithm with index e2. Finally, condition (iii) asserts that our correspon-
dence is one-to-one and if {e1}M = f , then f is Turing equivalent to M . In
what follows, we will not explicitly construct the indices e1 and e2, but our
constructions will make it clear that such indices exist.

3.1 The proof of Theorem 1.1.

Suppose that T is a recursive tree contained in ω<ω. Note that by definition,
the empty sequence, whose code is 0, is in T .

A classical result, first explicit in [35] and [1], but known a long time earlier
in equational form, is that every r.e. relation can be computed by a suitably
chosen predicate over the least model of a finite predicate logic Horn program.
An elegant method of proof due to Shepherdson (see [34] for references) uses
the representation of recursive functions by means of finite register machines.
When such machines are represented by Horn programs in the natural way, we
get programs in which every atom can be proved in only finitely many ways; see
also [28]. Thus we have the following proposition.

Proposition 3.1. Let r(·, ·) be a recursive relation. Then there is a finite
predicate logic program Pr computing r(·, ·) such that every atom in the least
model Mr of Pr has only finitely many minimal proof schemes and there is a
recursive procedure such that given an atom a in Herbrand base of Pr produces
the code of the set of Pr-proof schemes for a. Moreover, the least model of Pr
is recursive. �

It follows that given a recursive tree T there exist the following three finite
normal predicate logic programs such that the ground terms in their underlying
language are all of the form 0 or sn(0) for n ≥ 1 where 0 is a constant symbol
and s is a unary function symbol. We shall use n as an abbreviation for the
term sn(0) for n ≥ 1. In particular:
(I) There exists a finite predicate logic Horn program PT,0 such that for a

predicate tree(·) of the language of PT,0, the atom tree(n) belongs to the
least Herbrand model of PT,0 if and only if n is a code for a finite sequence
σ and σ ∈ T .

(II) There is a finite predicate logic Horn program P1 such that for a predicate
seq(·) of the language of P1, the atom seq(n) belongs to the least Herbrand
model of P1 if and only if n is the code of a finite sequence α ∈ ω<ω.

(III) There is a finite predicate logic Horn program P2 which correctly computes
the following recursive predicates on codes of sequences.
(a) samelength(·, ·). This succeeds if and only if both arguments are the

codes of sequences of the same length.
(b) diff (·, ·). This succeeds if and only if the arguments are codes of

sequences which are different.
(c) shorter (·, ·). This succeeds if and only both arguments are codes of

sequences and the first sequence is shorter than the second sequence.
(d) length(·, ·). This succeeds when the first argument is a code of a

sequence and the second argument is the length of that sequence.
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(e) notincluded(·, ·). This succeeds if and only if both arguments are
codes of sequences and the first sequence is not an initial segment of
the second sequence.

(f) num(·). This succeeds if and only if the argument is either 0 or sn(0)
for some n ≥ 1.

Now let P−
T be the finite predicate logic program which is the union of programs

PT,0∪P1∪P2. We denote its language by L− and we letM− be the least model of
P−
T . By Proposition 3.1, this program P−

T is a Horn program, M− is recursive,
and for each ground atom a in the Herbrand base of P−, we can explicitly
construct the set of all P−

T -proof schemes of a. In particular, tree(n) ∈ M− if
and only if n is the code of node in T .

Our final program PT will consist of P−
T plus clauses (1)-(7) given below.

We assume no predicate that appears in the head of any of these clauses is in
the language L−. However, we do allow predicates from the language of P−

T to
appear in the body of clauses (1) to (7). It follows that for any stable model of
the extended program, its intersection with the set of ground atoms of L− will
be M−. In particular, the meaning of the predicates listed above will always be
the same.

We are ready now to write the additional clauses which, together with the
program P−

T , will form the desired program PT . First of all, we select the
following three new unary predicates.
(i) path(·), whose intended interpretation in any given stable model M of PT

is that it holds only on the set of codes of sequences that lie on infinite
path through T . This path will correspond to the path encoded by the
stable model of M ;

(ii) notpath(·), whose intended interpretation in any stable model M of PT is
the set of all codes of sequences which are in T but do not satisfy path(·).

(iii) control(·), which will be used to ensure that path(·) always encodes an
infinite path through T .

This given, the final 7 clauses of our program are the following.

(1) path(X)←− tree(X), ¬notpath(X)
(2) notpath(X)←− tree(X), ¬path(X)
(3) path(0)←− /* Recall 0 is the code of the empty sequence */
(4) notpath(X)←− tree(X), path(Y ), tree(Y ), samelength(X,Y ), diff (X,Y )
(5) notpath(X)←− tree(X), tree(Y ), path(Y ), shorter(Y,X), notincluded(Y,X)
(6) control(X)←− path(Y ), length(Y,X)
(7) control(X)←− ¬control(X), num(X)

Clearly, PT = P−
T ∪ {(1), . . . , (7)} is a finite program.

We should note that technically, we must insure that all the predicates that
we use in our finite normal predicate logic program PT come from our fixed
recursive language L. The predicates we have used in PT were picked mainly
for mnemonic purposes, but since we are assuming that F has infinitely many
constant symbols and infinitely many n-ary relation symbols and n-ary functions
symbols for each n, there is no problem to substitute our predicate names by
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corresponding predicate names that appear in L.
Our goal is to prove the following.

(A) T is a finitely branching recursive tree if and only if every element of
H(PT ) has only finitely many minimal proof schemes. Thus, T is finitely
branching if and only if PT has the FS property.

(B) T is highly recursive if and only if for every atom a in H(PT ), we can
effectively find the set of all minimal PT -proof schemes of a.

(C) There is a one-to-one degree preserving correspondence between [T ] and
Stab(PT ).

First we prove (A) and (B). When we add clauses (1)-(7), we note that no
atom of L− is in the head of any of these new clauses. This means that no
ground instance of such a clause can be present in a minimal PT -proof scheme
with conclusion being any atom of L−. This means that minimal PT -proof
schemes with conclusion an atom p of L− can involve only clauses from P−

T .
Thus, for any ground atom a of L−, a will have no minimal PT -proof scheme if
a /∈M− and we can effectively compute the finite set of PT -proof schemes for a
if a ∈ M−. Next consider the atoms appearing in the heads of clauses (1)-(7).
These are atoms of the following three forms:
(i) path(t),
(ii) notpath(t), and
(iii) control(t)

The ground terms of our language are of form n, where n ∈ ω, that is, of the
form 0 or sn(0) for n ≥ 1. Note that all clauses that have path(X) or notpath(X)
have in the body an occurrence of the atom tree(X). Thus for atoms of the form
path(t) and notpath(t), the only ground terms which possess a PT -proof scheme
must be those for which t is a code of a sequence of natural numbers belonging
to T . The reason for this is that predicates of the form tree(t) from L− fail if t
is not the code of sequence in T . The only exception is clause (3) whose head
is path(0) and 0 is the code of the empty sequence which is in every tree T by
definition. This eliminates from our consideration ground atoms of the form
path(t) and notpath(t) with t /∈ T . Similarly, the only ground atoms of the form
control(t) which possess a proof scheme are atoms of the form control(n) where
n is a natural number.

Thus we are left with these cases:
(a) path(c(σ)) where σ ∈ T ,
(b) control(n) where n ∈ ω, and
(c) notpath(c(σ)) where σ ∈ T .

Case (a). Atoms of the form path(c(σ)) where σ ∈ T .
There are only two type ground clauses C with path(·) in the head, namely,
those that are ground instances of clauses of type (1) and (3). Clause (3) is a
Horn clause. This implies that a minimal PT -proof scheme which derives path(0)
and uses (3) must be of the form 〈〈path(0), (3)〉, ∅〉. Next consider a minimal
PT -proof scheme S of path(c(σ)) which contains clause (1). In such a case, S
will consist of the sequence of pairs of a minimal P−

T -proof scheme of tree(c(σ))
which will have empty support followed by the pair 〈path(c(σ)), (1)∗〉 where (1)∗
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is the result of substituting c(σ) for X in clause (1). The support of S will be
{notpath(c(σ))}. Since we are assuming that tree(c(σ)) has only finitely many
P−
T -proof schemes and we can effectively find them, it follows that path(c(σ))

has only finitely many minimal PT -proof schemes and we can effectively find all
of them.
Case (b). Atoms of the form control(n) where n ∈ ω.
There are only two types of ground instances of clauses with the atom control(n)
in the head, namely, ground instances of clauses (6) and (7). The only minimal
PT -proof schemes of control(n) that use a ground instance of clause (7) must
consist of the sequence of pairs in a minimal P−

T -proof scheme of num(n) fol-
lowed by the pair 〈control(n), (7)∗〉 where (7)∗ is the result of substituting n for
X in (7). Thus the support of such a minimal PT -proof scheme is {control(n)}
Since we are assuming that num(n) has only finitely many minimal P−

T -proof
schemes and we can effectively find them, we can effectively find all minimal
PT -proof schemes of control(n) that uses a ground instance of (7). If we have
a minimal PT -proof scheme S with conclusion control(n) that uses a ground
instances of clause (6), then the last term of S must be of the form

〈control(n), control(n)← path(c(τ)), length(c(τ), n)〉

where c(τ) is the code of node in T of length n. Moreover, in S, this triple must
be preceded by some interweaving of the sequences of pairs in minimal PT -proof
schemes for path(c(τ)) and length(c(τ), n). Now we effectively find the finite set
of minimal P−

T -proof schemes for length(c(τ), n) and we can effectively find the
set of all PT -minimal proof schemes for path(c(τ)). Moreover, it must be the
case that support of S is A the support of the minimal PT -scheme of path(c(τ))
that was inter-weaved with one of the minimal proof schemes for length(c(τ)), n)
to create S. Since the support of any proof scheme for path(c(τ)) where |τ | ≥ 1
is just {notpath(c(τ))}, it follows that A = {notpath(c(τ))} if |τ | ≥ 1 and A = ∅
if |τ | = 0. Now, if T is finitely branching, there will only be finitely many choices
for τ since to derive path(c(τ)), τ must be in T . Hence there will be only finitely
many choices of S. On the other hand, if T is not finitely branching, then there
will be an n such that there are infinitely many nodes τ ∈ T of length n for
some n > 0 so that there will be infinitely many different supports of minimal
PT -proof schemes for control(n). If T is highly recursive, then we can effectively
find all τ ∈ T of length n so that we can effectively find all such proof schemes
S. Similarly, if PT has the rec. FS property, then for n > 0, we can read off all
the nodes in T of length n from the supports of the minimal PT -proof schemes
of control(n) so that T will be highly recursive. Thus T is finitely branching if
and only if there are finitely many minimal PT -proof schemes for control(n) for
each n ≥ 0. Similarly, if T is highly recursive, then we can effectively find all
the minimal PT -proof schemes for control(n) for each n ≥ 0 and if PT has the
rec. FS property, then T is highly recursive.

Case (c). Atoms of the form notpath(c(σ)).
Here we have to take into account clauses (2), (4), and (5). First, consider a
minimal PT -proof scheme S of notpath(c(σ)) which contains a ground instance
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of clause (2). In such a case, the sequence of pairs in S will consist of the se-
quence of pairs a minimal P−

T -proof scheme of tree(c(σ)) which will have empty
support followed by the pair

〈notpath(c(σ)), (2)∗〉

where (2)∗ is the result of substituting c(σ) for X in (2). The support of S
is {path(c(σ))}. Since we are assuming that tree(c(σ)) has only finitely many
minimal P−

T -proof schemes and we can effectively find them, it follows that
notpath(c(σ)) has only finitely many minimal PT -proof schemes that use a
ground instance of clause (2) and we can effectively find them.

Next, consider a PT -proof scheme S with conclusion notpath(c(σ)) which
contains a ground instance of clause (4). Then there must exists a τ ∈ T of
length |σ| such that the last pair in the proof scheme is of the form

〈c(σ), (4)∗〉 (4)

where (4)∗ is the result of substituting c(σ) for X and c(τ) for Y in (4). Then S

must consist of an interweaving of the sequences of pairs of the minimal P−
T -proof

schemes for tree(c(σ)), tree(c(τ)), samelength(c(σ), c(τ)), and diff (c(σ), c(τ))
and a minimal PT -proof scheme path(c(τ)) with support A. Then the support
of S will be A. In each case, there are only finitely many such minimal PT -
proofs schemes of these atoms and we can effectively find them. Thus for each
τ ∈ T of length |σ|, we can effectively find all the minimal PT -proof schemes
of notpath(c(σ)) that end in a triple of the form of (4). Now if T is finitely
branching, it follows that there will be only finitely many minimal PT -proof
schemes that use a ground instance of clause (4) and, if T is highly recursive,
then we can effectively find all τ ∈ T of length |σ| so that we can effectively find
all minimal PT -proof schemes that use a ground instance of clause (4).

Finally let us consider a PT -proof scheme S with conclusion notpath(c(σ))
which contains ground instance of clause (5). Then there must exists a τ ∈ T
whose length is less than the length of σ and which is not an initial segment of
σ such that the last pair in the proof scheme is of the form

〈c(σ), (5)∗〉 (5)

where (5)∗ is the result of substituting c(σ) for X and c(τ) for Y in (5). Then S

must consist of an interweaving of sequences of pairs in the minimal P−
T -proof

schemes for tree(c(σ)), tree(c(τ)), shorter(c(τ), c(σ)), and notincluded(c(τ), c(σ))
and a minimal PT -proof scheme of path(τ) with support A. Then the support
of S is A. In each case, there are only finitely many minimal PT -proofs schemes
of these atoms and we can effectively find them. Thus for each τ whose length
is less than the length of σ and which is not an initial segment of σ, we can
effectively find all the minimal PT -proof schemes of notpath(c(σ)) that end in a
pair of the form of (5). Now if T is finitely branching, it follows that there will
be only finitely many minimal PT -proof schemes that use a ground instance of
clause (5) and, if T is highly recursive, then we can effectively find all τ ∈ T of
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length |σ| so that we can effectively find all minimal PT -proof schemes that use
a ground instance of clause (5).

Thus, we have proved that if T is finitely branching, then every ground
atom possesses only finitely many minimal PT -proof schemes and if T is highly
recursive, then for every ground atom a ∈ H(PT ), we can effectively find the
set of all minimal PT -proof schemes of a. Thus if T is finitely branching, then
PT has the FS property and if T is highly recursive, then T has the rec. FS
property. On the other hand, we have shown by our analysis in (b) that if PT
has the FS property, then T must be finitely branching and if PT has the rec.
FS property, then T is highly recursive. This proves (A) and (B) and establishes
parts (2) and (3) of Theorem 1.1.

To prove (C), we shall establish a “normal form” for the stable models of PT .
Each such model must contain M−, the least model of P−

T . In fact, the restric-
tion of a stable model of PT to H(P−

T ) is M−. Given any β = (β(0), β(1), . . .) ∈
ωω, recall that β ↾ n = (β(0), β(1), . . . , β(n− 1)). Then we let

Mβ = M− ∪ {control(n) : n ∈ ω} ∪ {path(0)} ∪ {path(c(β ↾ n) : n ∈ ω} ∪

{notpath(c(σ)) : σ ∈ T and σ 6≺ β}. (6)

We claim that M is a stable model of PT if and only if M = Mβ for some
β ∈ [T ].

First, assume that M is a stable model of PT . Thus M is the least model
of the Gelfond-Lifschitz transform (ground(PT ))M . We know that the atoms
of L− in M constitute M−. Let us observe that since the clause (3) belongs
to our program, path(0) ∈ M . Thus we can not use clause (2) to derive that
notpath(0) is in M . Moreover, it is easy to see that we cannot use clauses of
the form (4) or (5) to derive that notpath(0) is in M so that it must be the
case that notpath(0) /∈M . Next, suppose that σ ∈ T and length of σ is greater
than or equal to 1. It is easy to see from clauses (1) and (2) that it cannot be
the case that neither path(c(σ)) and notpath(c(σ)) are in M . Since clauses of
the form of (1) are the only clauses that we can use to derive that the atom
path(c(σ)) is in the least model of (ground(PT ))M when |σ| ≥ 1, it follows
that it cannot be the case that both path(c(σ)) and notpath(c(σ)) are in M .
Thus exactly one of path(c(σ)) and notpath(c(σ)) must be in M for all σ ∈ T .
Next we claim that control(n) ∈ M for all n. That is, if control(n) /∈ M for
some n, then the Gelfond-Lifschitz transform of the ground clause control(n)←
¬control(n), num(n) from (7) would be control(n)← num(n) which would force
control(n) to be inM . Since control(n) ∈M , the only way that one could derive
that control(n) is in the least model of (ground(PT ))M is via a proof scheme
that uses a ground instance of clause (6). This means that for each n ≥ 0, there
must be a τ (n) ∈ T of length n such that path(c(τ (n))) ∈ M . But then we can
use clause (4) to show that if σ is a node in T of length n which is different
from τ (n), then notpath(c(σ)) ∈ M . But now the clauses of type (5) will force
that it must be the case that if m < n, then τ (m) must be an initial segment
of τ (n). Thus the path τ where τ (n) ⊑ τ for all n is an infinite path through T
and M =Mτ . Note that this shows that if [T ] is empty, then PT has no stable
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model.
To complete the argument for (C), we have to prove that β ∈ [T ] implies that

Mβ is a stable model of PT . Let lm(Mβ) be the least model of (ground(PT ))Mβ
.

The presence of clauses (1) and (2) in PT implies that {path(c(β ↾ (n)) : n ∈
ω} ∪ {notpath(c(σ)) : σ ∈ T \ {β ↾ (n) : n ∈ ω}} ⊆ lm(Mβ). Then clause (6)
can be used to show that for all n, control(n) also belongs to lm(Mβ). Since
M− ⊆ lm(Mβ), it follows that Mβ ⊆ lm(Mβ).

Next we must prove that lm(Mβ) ⊆ Mβ. We know that since none of
the heads of rules (1)-(7) involve predicates in H(P−

T ), it must be the case
that lm(Mβ) ∩ H(P−

T ) = M−. The only ground clauses from (1) that are in
(ground(PT ))Mβ

are clauses of the form

path(c(β ↾ n))← tree(c(β ↾ n)).

These are the only clauses of (ground(PT ))Mβ
which have path(c(σ)) in the head

for σ ∈ T so that {path(c(σ)) : σ ∈ T } ∩ lm(Mβ) ⊆ Mβ. Since Mβ contains all
ground clauses of the form control(n), the only clauses that we have to worry
about are clauses with the ground atom notpath(c(σ)) in the head for σ ∈ T .
The only ground clause from (2) that are in (ground(PT ))Mβ

are clauses of the
form

notpath(c(σ))← tree(c(σ))

where σ ∈ T − {β(n) : n ≥ 0}. Thus the conclusion of all such clauses are
in Mβ. Thus we are reduced to considering ground clauses of the form (4)
and (5). Since all such clauses must have an atom path(c(τ)) in the body, the
only way we can use these clauses is to derive notpath(c(σ)) in its head and
this happens if τ ∈ {β(n) : n ≥ 0}. But then it easy to see that this forces
σ /∈ {β(n) : n ≥ 0}. Thus the only atoms notpath(c(σ)) ∈ lm(Mβ) are those
with σ ∈ T − {β(n) : n ≥ 0}. Thus lm(Mβ) ⊆ Mβ . This proves part (1) of
Theorem 1.1.

Finally, consider part (4) of Theorem 1.1. By part (3), we know that T is
highly recursive if and only if PT has the rec. FS property. We must show that
if T is decidable and recursively bounded, then PT is decidable. So suppose we
are given a set of ground atoms {a1, . . . , an} and corresponding minimal PT -
proof schemes Si of ai. For these atoms to to belong to a stable modelM of PT ,
it must be the case that the ground atoms in the language of P−

T must all be in
M− and there corresponding proof schemes must be the least minimal proofs
schemes for P−

T . This we can check recursively. The remaining atoms are of the
form path(c(σ)), notpath(c(τ)), and control(n). It must be the case that atoms
of the form path(c(σ)) and notpath(c(τ)) among {a1, . . . , an} must be consistent
with being the initial segment of the path through T . If that is not the case,
then it is clear that {a1, . . . , an} is not contained in a stable model of PT . If it is
the case, let α be the longest string σ such that path(c(σ)) ∈ {a1, . . . , an}. Now
if α /∈ Ext(T ), then again {a1, . . . , an} is not contained in a stable model of PT .
If it is, then let m be the maximum of all n such that control(n) ∈ {a1, . . . , an}
and |τ | such that notpath(c(τ)) ∈ {a1, . . . , an}. Since T is recursively bounded,
then we can effectively find all strings of length m which extend α. Now if
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there is a string β of length m such that α ≺ β, β ∈ Ext(T ), and there is no
initial segment γ of β such that notpath(c(γ)) ∈ {a1, . . . , an}, then it will be
the case that {a1, . . . , an} is contained in a stable model. For each such β and
all δ ∈ T of length less than or equal to m, the only minimal proof schemes of
ground atoms of the form path(c(δ)), notpath(c(δ), and control(n) for n ≤ m
depend only on the ground atoms path(c(γ)) for γ contained in β. Thus by
our analysis of Cases (a)-(c) above, we can compute the appropriate minimal
proofs schemes and then check if the corresponding minimal PT -proof schemes
equals {S1, . . . , Sn}. Thus PT is decidable.

On the other hand, suppose that PT has the rec. FS property and PT is
decidable. Then given a node β = (β1, . . . , βn) ∈ T , it is easy to see that for
any path π ∈ ωω which extends β, the elements of Mπ which mention only β,
nodes of length ≤ |β|, and the elements 0, s1(0) . . . , s|β|(0) are the same. Thus
let

Mβ = M− ∪ {control(n) : n ≤ |β|} ∪ {path(0)} ∪ {path(c(α) : α ⊑ β} ∪

{notpath(c(σ)) : σ ∈ T, |σ| ≤ |β|, and σ 6≺ β}. (7)

Then Mβ is finite and our analysis shows that we can effectively find all the
minimal PT -proofs schemes S1, . . . , Sr which mention only β, nodes of length
≤ |β|, and the elements 0, s1(0) . . . , s|β|(0) which have conclusions in Mβ. By
the decidability of PT , we know whether there is a stable model which contains
Mβ and has S1, . . . , Sr has the corresponding minimal PT -proof schemes for
elements in Mβ . If there is such a stable model, then β must be an initial
segment of some π ∈ [T ] so that β ∈ Ext(T ). If there is no such stable model,
then there is no infinite path π ∈ [T ] such that β ⊑ π so that β 6∈ Ext(T ). Thus
if PT is decidable and has the rec. FS property, then T is decidable and highly
recursive. This completes the proof of Theorem 1.1.

3.2 Proof of Theorem 1.2

Suppose that we are given a finite normal predicate logic program P . Then by
our remarks in the previous section, the Herbrand base H(P ) will be primitive
recursive, ground(P ) will be a primitive recursive program and, for any atom
a ∈ H(P ), the set of minimal P -proof schemes with conclusion a is primitive re-
cursive. We should note, however, that it is not guaranteed that the Support(a)
which is the set of can(X) such that X is the support of a minimal P -proof
scheme of a is recursive. However, it is the case that Support(a) is an r.e. set.

Our basic strategy is to encode a stable model M of ground(P ) by a path
fM = (f0, f1, . . .) through the complete ω-branching tree ω<ω as follows.
(1) First, for all i ≥ 0, f2i = χM (i). That is, at the stage 2i, we encode the
information about whether or not the atom encoded by i belongs to M . Thus,
in particular, if i is not the code of ground atom in H(P ), then f2i = 0.
(2) If f2i = 0, then we set f2i+1 = 0. But if f2i = 1 so that i ∈ M and i is the
code of a ground atom in H(P ), then we let f2i+1 equal qM (i) where qM (i) is
the least code for a minimal P -proof scheme S for i such that the support of
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S is disjoint from M . That is, we select a minimal P -proof scheme S for i, or
to be precise for the atom encoded by i, such that S has the smallest possible
code of any minimal P -proof scheme T such that supp(T) ∩M = ∅. If M is
a stable model, then, by Proposition 1.1, at least one such minimal P -proof
scheme exists for i.

Clearly M ≤T fM since it is enough to look at the values of fM at even
places to read off M . Now, given an M -oracle, it should be clear that for each
i ∈ M , we can use an M -oracle to find qM (i) effectively. This means that
fM ≤T M . Thus the correspondence M 7→ fM is an effective degree-preserving
correspondence. It is trivially one-to-one.

Next we construct a primitive recursive tree TP ⊆ ωω such that [TP ] =
{fM : M ∈ stab(P )}. Let Nk be the set of all codes of minimal P -proof
schemes S such that all the atoms appearing in all the rules used in S are
smaller than k. Obviously Nk is finite. It follows from our remarks in the
previous section that since P is a finite normal predicate logic program, the
predicate “minimal P -proof scheme” which holds only for codes of minimal P -
proof schemes is a primitive recursive predicate. This means that there is a
primitive recursive function h such that h(k) equals to the canonical index for
Nk. Moreover, given the code of sequence σ = (σ(0), . . . , σ(k)) ∈ ω<ω, there is
a primitive recursive function which will produce canonical indexes of the sets
Iσ = {i : 2i ≤ k ∧ σ(2i) = 1} and Oσ = {i : 2i ≤ k ∧ σ(2i) = 0}.

For any given k ≥ 2, we let k = max({2j + 1 : 2j + 1 < k} and if σ =
(σ(0), . . . , σ(k)) is an element of ω<ω, then we let σ = (σ(0), . . . , σ(k)). If k = 1
and σ = (σ(0)), then we let k = 0 and σ = ∅. In what follows, we shall
identify each atom in H(P ) with its code. Then we define TP by putting a node
σ = (σ(0), . . . , σ(k)) into TP if and only if the following five conditions are met:
(a) If 2i+ 1 ≤ k̄ and σ(2i) = 0 then σ(2i+ 1) = 0;
(b) then σ(2i+1) = q, where q is a code for a minimal P -proof scheme S such

that concl(S) = i, supp(S)∩ Iσ = ∅, and there is no number j < σ(k) such
that j is a code for a minimal P -proof scheme T with conclusion i such
that supp(T) = supp(S);

(c) If 2i+ 1 ≤ k and σ(2i) = 1 then there is no code c ∈ N⌊k/2⌋ of a minimal
P -proof scheme S such that conc(S) = i, supp(S) ⊆ Oσ and c < σ(2i+ 1)
(Here ⌊·⌋ is the number-theoretic “floor” function);

(d) If 2i+ 1 ≤ k and σ(2i) = 0 then there is no code c ∈ N⌊k/2⌋ of a minimal
P -proof scheme T such that concl(T) = i and supp(T) ⊆ Oσ; and

(e) If k = 2i + 1 and σ(2i) = 1, then σ(2i + 1) = q where q is a code for a
minimal P -proof scheme S such that concl(S) = i and there is no number
j < σ(k) such that j is a code for a minimal P -proof scheme T with
conclusion i such that supp(S) = supp(T).

The first thing to observe is that each of the conditions (a)-(e) requires that
we check only a bounded number of facts about codes that have an explicit
bound in terms of the code of σ. This implies that TP has a primitive recursive
definition. It is immediate from our conditions defining TP that if σ ∈ TP and
τ ≺ σ, then τ ∈ TP . Thus TP is a primitive recursive tree. Conditions (a) and
(b) ensure that the set of all paths π through TP meet the minimal conditions
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to be of the form fM for some stable model. That is, condition (a) ensures that
if π(2i) = 0, then π(2i + 1) = 0. Condition (b) ensures that if π(2i) = 1, then
π(2i + 1) is the code of a minimal P -proof scheme with conclusion i and there
is no smaller code of a minimal P -proof scheme of i with the same support.
Conditions (c), (d) and (e) are carefully designed to ensure that TP has the
properties that we want. First, condition (c) limits the possible infinite paths
through TP . We claim that if π is an infinite path through TP and π(2i) = 1,
then π(2i + 1) = r where r is smallest code of minimal P -proof scheme with
conclusion i whose support does not intersect Mπ = {j : π(2j) = 1}. That
is, if π(2i + 1) is the code of minimal P -proof scheme with conclusion i whose
support is disjoint from Mπ which is greater than r, then there will be some
k > 2i + 1 such that c ∈ N⌊k/2⌋ in which case condition (d) would not allow
(π(0), . . . , π(k + 2)) to be put into TP . Similarly, if π(2i + 1) is the code of
minimal P -proof scheme S with conclusion i whose support is not disjoint from
Mπ, then there will be some k > 2i + 1 such that supp(S) ∩ I(π(0),...,π(k)) 6= ∅
in which case condition (b) would not allow (π(0), . . . , π(k + 2)) to be put into
TP . Likewise, condition (d) ensures that if π(2i) = 0, there can be no minimal
P -proof scheme S with conclusion i whose support is disjoint from Mπ since
otherwise for large enough k, condition (e) would not allow (π(0), . . . , π(k)) to
be put into TP . Finally, condition (e) is designed to ensure that TP is finitely
branching if and only if P has the FS property or has an explicit initial blocking
set. We note that for a node (σ(0), . . . , σ(2i), σ(2i+1)) where σ(2i) = 1, σ(2i+1)
can be the code of any minimal P -proof scheme S with conclusion i for which
there is no smaller number which codes a proof scheme with the same conclusion
and same support. For example, we do not require supp(S) ∩ Iσ = ∅. However,
if supp(S) ∩ Iσ 6= ∅, then condition (b) will ensure that there are no extensions
of σ in T .

Our next goal is to show that every f ∈ [TP ] is of the form fM for a suitably
chosen stable model M of P . It is clear that if M is stable model of P , then for
all k, (fM (0), . . . , fM (k)) satisfies conditions (a)-(e) so that fM ∈ [TP ]. Thus
{fM :M ∈ Stab(P )} ⊆ [TP ].

Next, let us assume that β = (β(0), β(1), . . .) is an infinite path through TP
and Mβ = {i : β(2i) = 1}. Then we must prove that
(I) Mβ is a stable model of P and
(II) f(Mβ) = β.

For (I), suppose that Mβ is not a stable model of P . Let lm(Mβ) be the
least model of Gelfond-Lifschitz transform ground(P )Mβ

of ground(P ) relative
to Mβ . Then by Proposition 1.1, it must be the case that either
(i) there is j ∈Mβ \ lm(Mβ), or
(ii) there is j ∈ lm(Mβ) \Mβ .

If (i) holds, then let i be the least j ∈Mβ \ lm(Mβ) and consider the string
β ↾ (2i+ 3) = (β(0), . . . , β(2i + 3)). For β ↾ (2i+ 3) to be in T , it must be the
case that β(2i+1) is a code of a minimal proof scheme S such that concl(S) = i
and supp(S) ∩ Iβ↾(2i+1) = ∅. But since i /∈ lm(Mβ), there must be some n
belonging to Mβ ∩ supp(S). Clearly, it must be the case that n > i. Choose
such an n. Then β ↾ 2n /∈ T because supp(S)∩ Iβ↾2n 6= ∅, which contradicts our
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assumption that β ∈ [T ]. Thus (i) cannot hold.
If (ii) holds, then let i be the least j ∈ lm(Mβ) \Mβ and consider again β ↾

(2i+ 3). Since i ∈ lm(Mβ), there must be a proof scheme T such concl(T) = j
and supp(T) ∩ Mβ = ∅. But then there is an n > 2i + 1 large enough so
that supp(T) ⊆ Oβ↾n. But then β ↾ n does not satisfy the condition (e) of our
definition to be in the tree which again contradicts our assumption that β ∈ [T ].
Thus (ii) also cannot hold so that Mβ must be a stable model of P .

Thus we need only to verify claim (II), namely, that β = f(Mβ). Now if
β 6= f(Mβ), then it must be that case that for some i ∈ Mβ, there is a code
c of a minimal proof scheme S such that concl(S) = i, supp(S) ∩ Mβ = ∅
and c < β(2i + 1). But then there is an n > 2i + 1 large enough so that
supp(S) ⊆ Oβ↾n and hence β ↾ n does not satisfy condition (d) of our definition
to be in T . Hence, if β 6= f(Mβ), then β ↾ n /∈ TP for some n and so β /∈ [TP ].
This completes the proof of (II) and hence part (1) of the theorem holds.

Next consider parts (2)-(10). Note that the tree TP has the property that if
β ∈ T where β has length n, then
(†) for every i such that 2i ≤ n, β(2i) ∈ {0, 1} and
(‡) for every i such that 2i + 1 ≤ n, β(2i + 1) is either 0 or it is a code of a
minimal P -proof scheme S such that concl(S) = i and no j < β(2i + 1) is the
code of a minimal P -proof scheme of i with the same conclusion and the same
support.

Thus if P has a finite number of supports of minimal P -proof schemes for
each i, then TP will automatically be finitely branching. Next suppose that P
has the additional property that there is a recursive function h whose value at
i encode all the supports of minimal P -proof schemes for i. Say, the possible
support of minimal P -proof schemes for i are Si1, . . . , S

i
ℓi
. Then for each 1 ≤ j ≤

ℓi, we can effectively find the smallest code cij of a minimal P -proof scheme for i

with support Si. Thus for each i, we can use h to compute ci1, . . . , c
i
ℓi
. But then

we know that the possible values of σ(2i + 1) for any σ ∈ TP must come from
0, ci1, . . . , c

i
ℓi

so that TP is recursively bounded. Next observe that if P has the
a.a. FS support property, then it will be the case that for all sufficiently large
i, there will be only a finite number of supports of minimal P -proof schemes
of i so that TP will be nearly bounded. Similarly, if P has the a.a. rec. FS
support property, then it will be the case that for all sufficiently large i, we
can effectively find the supports of all minimal P -proof schemes of i so that as
above, we can effectively find the possible values of σ(2i + 1) and, hence, TP
will be nearly recursively bounded.

Next, suppose that P does not have the FS property. Let i be the least
atom such that there exist infinitely many supports of P -proof schemes with
conclusion i. Now suppose that there is a node σ = (σ(0), . . . σ(2i + 1)) of
length 2i + 1 in TP . It is easy to check that it will also be the case that
σ∗ = (σ(0), . . . , σ(2i− 1), 1, r) is a node in TP where r is any code of a minimal
P -proof scheme S of i such that there is no smaller code q of a minimal P -proof
scheme T of i such that supp(S) = supp(T). Thus if TP has a node of length
2i + 1, then TP will not be infinitely branching. Let us note that if P has a
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stable model, then TP has a node of length 2i+1 so that TP is finitely branching
if and only if P has the FS property. If TP does not have any node of length
2i+ 1, then it is easy to check that our conditions ensure that {0, . . . , i − 1} is
an explicit initial blocking set for P . Thus TP is finitely branching if and only
P has the FS property or P has an explicit initial blocking set.

Let us now suppose that P does not have the a.a. FS property. Then
there will be infinitely many i which are codes of ground atoms of P such that
there exist infinitely many supports of P -proof schemes with conclusion i. Now
suppose that there is a node σ = (σ(0), . . . σ(2i + 1)) of length 2i + 1 in TP .
Then again, σ∗ = (σ(0), . . . , σ(2i− 1), 1, r) is a node in TP where r is any code
of a minimal P -proof scheme S of i such that there is no smaller code q of a
minimal P -proof scheme T of i such that supp(S) = supp(T). Thus if TP has a
node of length 2i+1, then TP will have a node of length 2i which has infinitely
many successors in TP . Note that if P has a stable model, then TP has a node
of length 2i + 1 for all i so that TP is nearly bounded if and only if P has the
a.a. FS property. If TP does not have any node of length 2i+1, then it is easy
to check that our conditions ensure that {0, . . . , i− 1} is an initial blocking set
for P . Thus TP is nearly bounded if and only P has the a.a. FS property or P
has an initial blocking set.

Next, assume that TP is finitely branching. By König’s lemma, either TP is
finite or TP has an infinite path. If TP has an infinite path, then there will be
nodes of length 2i + 1 in TP for all i. Hence for each i, there will be nodes of
the form σ∗ = (σ(0), . . . , σ(2i− 1), 1, r) in TP where r is any code of a minimal
P -proof scheme S of i such that there is no smaller code q of a minimal P -proof
scheme T of i such that supp(S) = supp(T). Thus if TP is highly recursive, then
for all i, we can find all the codes r of minimal P -proof schemes S of i such
that there is no smaller code q of a minimal P -proof scheme T of i such that
supp(S) = supp(T) because we can compute the set of nodes of length 2i + 1
as a function of i. Thus TP is highly recursive if and only if P has the rec. FS
property or P has an explicit initial blocking set. Similarly, if P has a stable
model, then TP must have an infinite path so that TP is highly recursive if and
only if P has the rec. FS property.

Next, assume that TP is nearly bounded. Thus there is an m ≥ 0 such that
each node of length greater than or equal to m has only finitely many successors
in TP . If TP has nodes of length 2i for all i ≥ 0, there will be nodes of the form
σ∗ = (σ(0), . . . , σ(2i − 1), 1, r) in TP where r is a code of a minimal P -proof
scheme S of i such that there is no smaller code q of a minimal P -proof scheme
T of i such that supp(S) = supp(T). Hence if 2i ≥ m, then it must be the case
that there are only finitely many supports of minimal P -proof schemes of the
atom a coded by i. Clearly, if TP has an infinite path, then there will be nodes
of length 2i for all i, so that P must have the a.a. FS property. Similarly, if TP
is nearly recursively bounded and TP has nodes of length 2i for all i, then P will
have the a.a. rec. FS property. Thus if TP is nearly bounded, then either there
will be some fixed n such that TP has no nodes of length 2n in which case TP
has an initial blocking set or TP has nodes of length 2n for all n ≥ 0 in which
case P has the a.a. FS property. Similarly, if TP is nearly recursively bounded,
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then either there will be some fixed n such that TP has no nodes of length 2n
in which case TP has an initial blocking set or TP has nodes of length 2n for
all n ≥ 0 in which case P has the a.a. rec. FS property. Thus TP is nearly
bounded (nearly recursively bounded) if and only if P has an initial blocking
set or P has the a.a. FS property (a.a. rec. FS property). In particular, if P
has a stable model, then TP is nearly bounded (nearly recursively bounded) if
and only if P has the a.a. FS property (a.a. rec. FS property). Thus parts
(2)-(9) of the theorem hold.

For (10), note that if P is decidable, then for any finite set of ground atoms
{a1, . . . , an} ⊆ H(P ) and any finite set of minimal P -proof schemes {S1, . . . , Sn}
such that concl(Si) = ai, we can effectively decide whether there is a stable
model of M of P such that
(A1) ai ∈M and Si is the smallest minimal P -proof scheme S for ai such that

supp(S) ∩M = ∅; and
(A2) for any ground atom b /∈ {a1, . . . , an} such that the code of b is strictly

less than the maximum of the codes of a1, . . . , an, b /∈M .
But this is precisely what we need to decide to determine whether a given
node in TP can be extended to an infinite path through TP . Thus if P is
decidable, then TP is decidable. On the other hand, suppose TP is decidable
and we are given a set of atoms {a1 < . . . < an} ⊆ H(P ) and any finite set
of minimal P -proof schemes {S1, . . . , Sn} such that concl(Si) = ai. Then let
σ = (σ(0), . . . , σ(2an + 3)) be such that σ(2an + 2) = σ(2an + 3) = 0 and for
i ≤ an, σ(2i) = σ(2i + 1) = 0 if i 6∈ {a1 < . . . < an} and σ(2i) = 1 and
σ(2i+ 1) = c(Si). Then there is an infinite path of TP that passes through σ if
and only if there is a a stable model of M of P such that the conditions (A1)
and (A2) hold. Thus P is decidable if and only if TP is decidable.

4 Complexity of index sets for finite normal

predicate logic programs.

In this section, we shall prove our results on the complexity of index sets asso-
ciated with various properties of finite normal predicate logic programs, finite
normal predicate logic programs which have the FS property, and finite nor-
mal predicate logic programs which have the recursive FS property. We will
sometimes call them FSP programs and rec. FSP programs, respectively.

Theorem 4.1. (a) {e : Qe has an initial blocking set} and
{e : Qe has an explicit initial blocking set} are Σ0

2 complete.
(b) {e : Qe has the rec. FS property} is Σ0

3-complete.
(c) {e : Qe has the FS property} is Π0

3-complete.
(d) {e : Qe has the rec. FS property and is decidable} is Σ0

3-complete.

Proof. In each case, it easy to see that the index set is of the required complexity
by simply writing out the definition.

Let A = {e : Qe has an explicit initial blocking set} and Fin is the set
{e :We is finite}. We know that Fin is is Σ0

2-complete, [36]. Thus to show that
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A is Σ0
2-complete, we need only to show that Fin is many-one reducible to A.

Recall thatWe,s is the set of all elements x less than or equal to s such that φe(x)
converges s or fewer steps. It follows that for any e, Ne = {s :We,s−We,s−1 6= ∅}
and the set Se of all codes of pairs (x, y) such that x, y ∈ Ne, x < y, and there
is no z ∈ Ne such that x < z < y, are recursive sets. Then by Proposition 3.1,
we can uniformly construct a finite normal predicate logic Horn program P−

e

whose set of atoms is {sn(0) : n ≥ 0} and which contains two predicates N(x)
and S(x, y) such that N(sx(0)) holds if and only if x ∈ Ne and S(sx(0), sy(0))
holds if and only if [x, y] ∈ Se. Let E be a unary predicate symbol that does
not appear in P−

e . Then we let Pe be the finite normal predicate logic program
that consists of P−

e and the following two predicate logic clauses:
(a) E(x)← N(x),¬E(x) and
(b) E(x)← N(y), S(x, y).
The clauses in (a) and (b) generate, when grounded, the following clauses in
ground(Pe):
(A) E(sn(0))← N(sn(0)),¬E(sn(0)) for all n ≥ 0; and
(B) E(sm(0))← N(sn(0)), S(sm(0), sn(0)) for all m,n ≥ 0.
Now suppose that We is infinite and Ne = {n0 < n1 < . . .}. Then we claim
that Pe has a stable model Me which consists of the least model of P−

e plus
{E(sni(0)) : i ≥ 0}. That is, the presence of N(sn(0)) in the body of the
clauses in (A) and the presence of N(sn(0)) and S(sm(0), sn(0)) in the body of
the clauses in (B) ensures that the only atoms of the form E(a) that can possibly
be in any stable model of Pe are of the form E(sn(0)) where n ∈ Ne. But if We

is infinite, then the Horn clauses of type (B) ensure that {sni(0) : i ≥ 0} will
be in every stable model of Pe. This, in turn, means that none of the clauses of
type (A) for n ∈ Ne will contribute to the Gelfond-Lifschitz reduct (Pe)Me

. It
follows that (Pe)Me

consists of P−
e plus all the clauses in (B) plus all the clauses

of the form sn(0)← N(sn(0)) such that n /∈ Ne. It is then easy to see that Me

is the least model of (Pe)Me
so that Me is a stable model of Pe. Thus if We is

infinite, then Pe does not have an explicit initial blocking set.
Next, suppose thatWe is finite. Then Ne is finite, say Ne = {n0 < . . . < nr}.

Then we will not be able to use a clause of type (B) to derive E(snr (0)). Thus
the only clause that could possibly derive E(snr (0)) would be the clause

C = E(snr (0))← N(snr(0)),¬E(snr (0)).

But then there can be no stable model M of Pe. That is, if snr(0) ∈ M , then
clause C will not be in (Pe)M so that there will be no way to derive E(snr (0))
from (Pe)M . On the other hand, if E(snr (0)) /∈M , then clause C will contribute
the clause E(snr (0)) ← N(snr (0)) to (Pe)M so that E(snr (0)) will be in the
least model of (Pe)M . It follows that {E(0), E(s(0)), . . . , E(snr (0))} together
with all that atoms of P−

e whose code is less than the code of E(snr (0)) will be
an explicit initial blocking set for Pe.

Thus we have shown that Pe has an explicit initial blocking set if and only
if We is finite. Hence, the recursive function f such that Qf(e) = Pe shows that
Fin is many-one reducible to A and, hence, A is Σ0

2-complete. The same proof
will show that B = {e : Qe has an initial blocking set} is Σ0

2-complete.
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We claim that the completeness of the remaining parts of the theorem are all
consequences of Theorem 1.1. That is, recall that T0, T1, . . . is an effective list
of all primitive recursive trees. Then let g be the recursive function such that
Qg(e) = PTe

where PTe
is the finite normal predicate logic program constructed

from Te as in the proof of Theorem 1.1. Then g shows that
1. {e : Te is r.b.} is many-one reducible to {e : Qe has the rec. FS property};
2. {e : Te is bounded} is many-one reducible to {e : Qe has the FS property};
3. {e : Te is r.b. and decidable} is many-one reducible to {e : Qe has the rec.

FS property and is decidable}.
Hence the completeness results for parts (b), (c), and (d) immediately follow

from our completeness results for {e : Te is r.b.}, {e : Te is bounded}, and
{e : Te is r.b. and decidable} given in Section 2.

It is not always the case that the complexity results for finite normal predi-
cate logic programs match the corresponding complexity for trees. For example,
König’s Lemma tells us that an infinite finitely branching tree must have an in-
finite path through it. It follows that [T ] = ∅ holds for a primitive recursive
finitely branching tree T if and only if T is finite. This means the properties
that T is bounded and empty and T is recursively bounded and empty are Σ0

2

properties since T being finite is a Σ0
2 predicate for primitive recursive trees.

König’s Lemma is a form of the Compactness Theorem for propositional logic
which, we have observed, fails for normal propositional logic programs. Indeed,
given any finite normal predicate logic program Qe, we can simply take an atom
a which does not occur in ground(Qe) and add the clause C = a ← ¬a. Then
the program Qe ∪ {C} does not have a stable model but will have the FS prop-
erty if and only if Qe has the FS property and will have the rec. FS property
if and only if Qe has the rec. FS property. Thus there is a recursive function h
such that

1. Qh(e) does not have stable model,
2. Qe has the FS property if and only if Qh(e) has the FS property, and
3. Qe has the rec. FS property if and only if Qh(e) has the rec. FS property.
It follows that {e : Qe has the FS property} is many-one reducible to {e :

Qe has the FS property and Stab(Qe) = ∅} and {e : Qe has the rec. FS pro-
perty} is many-one reducible to {e : Qe has the rec. FS property and Stab(Qe) =
∅}. Thus it follows from Theorem 2.5 that

1. {e : Qe has the FS property and Stab(Qe) = ∅} is Π0
3-complete and

2. {e : Qe has the rec. FS property and Stab(Qe) = ∅} is Σ0
3-complete.

To see that {e : Qe has the rec. FS property and Stab(Qe) = ∅} is Π0
3, we

can appeal to Theorem 1.2 which constructs a finitely branching tree TQe
such

that there is a one-to-one effective degree preserving correspondence between
the stable models of Qe and [TQe

]. It follows that Qe has the FS property and
no stable models if and only if Qe has the FS property and TQe

is finite. This
latter predicate is a Π0

3 predicate because Qe having the FS property is Π0
3

predicate and TQe
being finite is a Σ0

2 predicate. Similarly, Qe has the rec. FS
property and has no stable models if and only if Qe has the rec. FS property
and TQe

is finite which is a Σ0
3 predicate because Qe having the rec. FS property
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is Σ0
3 predicate and TQe

being finite is a Σ0
2 predicate. Thus we have proved the

following theorem.

Theorem 4.2. (a) {e : Qe has the rec. FS property and Stab(Qe) = ∅} is
Σ0

3-complete; and
(b) {e : Qe has the FS property and Stab(Qe) = ∅} is Π0

3-complete.

The method of proof for parts (b), (c), and (d) in Theorem 4.1 can be used to
prove many results about properties of stable models of finite normal predicate
logic programs Qe where Stab(Qe) is not empty. That is, one can prove that
the desired index set is in the proper complexity class by simply writing out
the definition or by using Theorem 1.2. For example, Theorem 2.6 (b) says
that {e : Te is r.b. and [Te] 6= ∅} is Σ0

3-complete. We claim that this theorem
immediately implies that {e : Qe has the rec. FS property and Stab(Qe) 6= ∅}
is also Σ0

3-complete. First we claim that the fact that {e : Qe has the rec.
FS property and Stab(Qe) 6= ∅} is Σ0

3 follows from Theorem 1.2. That is, by
Theorem 1.2 Qe has the rec. FS property and Stab(Qe) 6= ∅ if and only if TQe

is
r.b. and [TQe

] is nonempty. But this latter question is Σ0
3 question so the former

question is a Σ0
3 question. Thus Theorem 1.2 allows us to reduce complexity

bounds about finite normal predicate logic programs P which have stable models
to complexity bounds of their corresponding trees TP where [TP ] is nonempty.
Then we can then use Theorem 1.1 and the theorems on index sets for trees given
in Section 2 to establish the necessary completeness results. For example, to
show that {e : Qe has the rec. FS property and Stab(Qe) 6= ∅} is Σ

0
3-complete,

we use Theorem 1.1 and the fact that {e : Te is r.b. and [Te] is nonempty} is
Σ0

3-complete. That is, it follows from the proof of Theorem 1.1 that there is a
recursive function f such that Qf(e) = PTe

. Hence

e ∈ {h : Th is r.b. and [Th] is nonempty} ⇐⇒

f(e) ∈ {g : Qg has the rec. FS property and Stab(Qg) 6= ∅}.

Thus {e : Qe has the rec. FS property and Stab(Qe) 6= ∅} is Σ0
3-complete.

One can use the same techniques to prove that the following theorem follows
from the corresponding index sets results on trees given in Section 2.

Theorem 4.3. (a) {e : Qe has the rec. FS property and Stab(Qe) 6= ∅} is
Σ0

3-complete.
(b) {e : Qe has the FS property and Stab(Qe) 6= ∅} is Π0

3-complete.
(c) {e : Stab(Qe) 6= ∅} is Σ1

1-complete.

Since {e : Qe Stab(Qe) is empty} is the complement of the Σ1
1-complete set

{e : Stab(Qe) 6= ∅}, we have the following corollary.

Corollary 4.1. {e : Stab(Qe) = ∅} is Π1
1-complete.

Next we want to consider the properties of Stab(Qe) being infinite or finite.

Theorem 4.4. (a) {e : Qe has the rec. FS property and Stab(Qe) is infinite}
is D0

3-complete and {e : Qe has the rec. FS property and Stab(Qe) is fini-
te} is Σ0

3-complete.
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(b) {e : Qe has the FS property and Stab(Qe) is infinite} is Π0
4-complete and

{e : Qe has the FS property and Stab(Qe) finite}) is Σ0
4-complete.

(c) {e : Stab(Qe) is infinite} is Σ1
1-complete. {e : Stab(Qe) is finite}) is Π1

1-
complete.

Proof. To prove the upper bounds in each case, we do the following. Given a
finite normal predicate logic program Qe, let a and ā be two atoms which do not
occur in ground(P ). Then let Re be the finite normal predicate logic program
which arises from Qe by adding a to body of every clause in Qe and adding the
following two clauses:
C1 = a← ¬ā and
C2 = ā← ¬a.
Then we claim that exactly one of a or ā must be in every stable model M of
Re. That is, if neither a or ā are in M , then C1 and C2 will contribute a ←
and ā ← to (Re)M so that both a and ā will be in the least model of (Re)M .
If both a and ā are in M , then C1 and C2 will contribute nothing to (Re)M
so that neither a nor ā will be in the least model of (Re)M since then there
will be no clauses of (Re)M with either a or ā in the head of the clause. It
follows that Re will have two types of stable models M , namely M = {ā} or
M = M∗ ∪ {a} where M∗ is stable model of Qe. The modified program Re
is guaranteed to have a finite stable model, and in particular Stab(Re) 6= ∅.
Because of the form of stable models of Re, Stab(Qe) is finite if and only if
Stab(Re) is finite. Clearly Qe has the FS (rec. FS ) property if and only if Re
has the FS (rec. FS ) property. By Theorem 1.2, there is a recursive function
g such that Tg(e) = TRe

as constructed in the proof of Theorem 1.2. Then we
know Stab(Re) is finite if and only if [Tg(e)] is finite and Re has the FS (rec.
FS ) property if and only if Tg(e) is recursively bounded. Then for example,
it follows that {e : Qe has the FS property and Stab(Qe) is finite} is many-
one reducible to {e : Te is r.b and [Te] is finite} which is Σ0

3. In this way, the
complexity bounds follows from the complexity bounds in Theorem 2.8.

To establish the completeness results in each case, we can proceed as fol-
lows. We can use the construction of Theorem 1.1 to construct a finite normal
predicate logic program PTe

such that [Te] is finite if and only if Stab(PTe
)

is finite and Te is bounded (r.b.) if and only if PTe
has the FS (rec. FS )

property. Thus there is a recursive function f such that Qf(e) = PTe
. Then,

for example, it follows that f shows that {e : Te is r.b and [Te] is finite} is
many-one reducible to {e : Qe has the FS property and Stab(Qe) is finite}.
Thus {e : Qe has the FS property and Stab(Qe) is finite} is Σ0

3-complete since
{e : Te is r.b and [Te] is finite} is Σ0

3-complete. In this way, we can use com-
pleteness results of Theorem 2.8 to establish the completeness of each part of
the theorem.

By combining the completeness results of Theorem 2.9 with Theorems 1.1,
and 1.2, we can use the same method of proof to prove the following theorem.

Theorem 4.5. {e : Stab(Qe) is uncountable} is Σ1
1-complete and

{e : Stab(Qe) is countable} and {e : Qe is countable infinite} are Π1
1-complete.
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The same results hold for rec. FSP and FSP programs.

Theorem 4.6. For every positive integer c,
(a) {e : Qe has the rec. FS property and Card(Stab(Qe)) > c},
{e : Qe has the rec. FS property, and Card(Stab(Qe)) ≤ c}, and
{e : Qe has the rec. FS property and Card(Stab(Qe)) = c} are all
Σ0

3-complete.
(b) {e : Qe has the FS property and Card(Stab(Qe)) ≤ c} and
{e : Qe has the FS property and Card(Stab(Qe)) = 1} are both
Π0

3-complete.
(c) {e : Qe has the FS property and Card(Stab(Qe)) > c} and
{e : Qe has the FS property and Card(Stab(Qe)) = c+ 1} are both
D0

3-complete.
(d) {e : Qe has the rec. FS property, is decidable, and Card(Stab(Qe)) > c},
{e : Qe has the rec. FS property, is decidable, and Card(Stab(Qe)) ≤ c},
and {e : Qe has the rec. FS property, is decidable, and Card(Stab(Qe))
= c} are all Σ0

3-complete.
(e) {e : Card(Stab(Qe)) > c} is Σ1

1-complete, while {e : Card(Stab(Qe)) ≤ c}
and {e : Card(Stab(Qe)) = c} are both Π1

1-complete.

Proof. The proofs for this theorem are divided into two cases. For the cases
where we are trying to establish the complexity results for properties where
Card(Stab(Qe)) = c or Card(Stab(Qe)) ≥ c, we can directly use Theorems 1.2
and 1.1. For example, Theorem 1.2 says that Qe has c (> c) stable models if and
only if the tree TQe

constructed in the proof of Theorem 1.2 has c (> c) infinite
paths. Moreover, Qe has the FS (rec. FS ) property if and only if TQe

has the
FS (rec. FS) property. Let f1 be recursive function such that Tf1(e) = TQe

.
Then, for example, f1 shows that

A = {e : Qe has the rec. FS property and is decidable and

Card(Stab(Qe)) = c}

is many-one reducible to

B = {h : Th is r.b. and is decidable and Card(Stab(Qh)) = c}.

By Theorem 2.7, we know thatB is is Σ0
3 so that A is Σ0

3. Thus we can reduce the
problem of the complexity bounds for the properties involving Stab(Qe) = c,
and Stab(Qe) > c to the corresponding properties of trees that [Te] = c and
[Te] > c that appear in Theorem 2.7.

To establish completeness in each case, we can use Theorem 1.1. That is,
there is a recursive function f2 such thatQf2(e) = PTe

as constructed in Theorem
1.1. Then, for example, f2 shows that

C = {e : Pe is r.b. and is decidable and Card([Te]) = c}

is many-one reducible to

D = {e : Qe has the rec. FS property and is decidable

and Card(Stab(Qe)) = c}.
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We know by Theorem 2.7 that C is Σ0
3-complete so that D is complete for Σ0

3

sets. Thus it follows that {e : Qe has the rec. FS property and is decidable and
Card(Stab(Qe)) = c} is Σ0

3-complete.
One has to be a bit more careful for the properties that involve the condition

that Stab(Qe) ≤ c. In this case, we can use the techniques of the proof of
Theorem 4.4 so we shall use the same notation and definitions as in the proof
of Theorem 4.4. That is, it is easy to see that Stab(Qe) ≤ c if and only if
Stab(Re) ≤ c + 1 and that Stab(Re) ≤ c + 1 if and only if [TRe

] ≤ c + 1.
But since Stab(Re) 6= ∅ by construction, we see that Qe has the FS (rec. FS )
property if and only if Re has the FS (rec. FS ) property if and only if Tre is
bounded (r.b.). Let g be the recursive function such that Tg(e) = TRe

. Then,
for example, g shows that

E = {e : Qe has the FS property and Card(Stab(Qe)) ≤ c}

is many-one reducible to

F = {e : Te is bounded and [Te] ≤ c+ 1}

which is Π0
3 by Theorem 2.7. Thus, E is Π0

3. All the other complexity bounds
that involve the property Stab(Qe) ≤ c can be proved in a similar manner.

To establish the corresponding completeness results, we observe that [Te] ≤ c
if and only if Card(Stab(PTe

)) ≤ c and Te is bounded (r.b.) if and only if PTe

has the FS (rec. FS) property. Let h be the recursive function such that
Qh(e) = PTe

. Then h shows that {e : Te is bounded and [Te] ≤ c} is many-
one reducible to {e : Qe has the FS property and Card(Stab(Qe)) ≤ c}. Thus
{e : Qe has the FS property and Card(Stab(Qe)) ≤ c} is Π0

3-complete. All the
other completeness results that involve the property Stab(Qe) ≤ c can be proved
in a similar manner.

Next, we give some index set results concerning the number of recursive
stable models of a finite normal predicate logic program Qe. Here we say that
Stab(Qe) is recursively empty if Stab(Qe) has no recursive elements and is re-
cursively nonempty if Stab(Qe) has at least one recursive element. Similarly, we
say that a Stab(Qe) has recursive cardinality equal to c if Stab(Qe) has exactly
c recursive members.

Theorem 4.7. (a) {e : Qe has the rec. FS property and Stab(Qe) is re-
cursively nonempty} is Σ0

3-complete, {e : Qe has the rec. FS property
and Stab(Qe) is recursively empty} is D0

3-complete, and {e : Qe has the
rec. FS property and Stab(Qe) is nonempty and recursively empty} is
D0

3-complete.
(b) {e : Qe has the FS property and Stab(Qe) is recursively nonempty} is D0

3-
complete, {e : Qe has the FS property and Stab(Qe) is recursively empty}
is Π0

3-complete, and {e : Qe has the FS property and Stab(Qe) 6= ∅ and
recursively empty} is Π0

3-complete.
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(c) {e : Stab(Qe) is recursively nonempty} is Σ0
3-complete, {e : Stab(Qe) is

recursively empty} is Π0
3-complete and {e : Stab(Qe) 6= ∅ and recursively

empty} is Σ1
1-complete.

Proof. We say that a finite normal predicate logic program Qe has an isolated
stable modelM , if there is a finite set of ground atoms a1, . . . , an, b1, . . . , bm such
that ai ∈ M for all i and bj /∈ M for all j and there is no other stable model
M ′ such ai ∈ M ′ for all i and bj /∈ M ′ for all j. Thus isolated stable models
are determined by a finite amount of positive and negative information. We say
that a finite predicate logic program Qe is perfect if Stab(Qe) is nonempty and
it has no isolated elements.

To prove the upper bounds in each case, we do the following. Jockusch and
Soare [18] constructed a recursively bounded primitive recursive tree such that
[T ] 6= ∅ and [Te] has no recursive elements. It then follows from Theorem 2.2
that [T ] can have no isolated elements so that [T ] is perfect. By Theorem 1.1,
there is a finite normal predicate logic program U such that U has the rec. FS
property and there is a one-to-one degree preserving correspondence between
[T ] and Stab(U). Thus Stab(U) has no recursive or isolated elements. Now
suppose that we are given a finite normal predicate logic program Qe. Then
make a copy V of the finite normal predicate logic program U such that V has
no predicates which are in common with Qe. Let a and ā be two atoms which
do not appear in either V or Qe and let Se be the finite normal predicate logic
program which arises from U and Qe by adding a to the body of every clause
in Qe, adding ā to the body of every clause in V , and adding the following two
clauses:
C1 = a← ¬ā and
C2 = ā← ¬a.
Then, as before, we claim that exactly one of a or ā must be in every stable
model M of Se. That is, if neither a or ā are in M , then C1 and C2 will
contribute a ← and ā ← to (Se)M so that both a and ā will be in the least
model of (Se)M . If both a and ā are in M , then C1 and C2 will contribute
nothing to (Se)M so that neither a nor ā will be in the least model of (Se)M
since then there will be no clauses of (Se)M with either a or ā in the head of
the clause. It follows that Se will have two types of stable models M , namely
M = M1 ∪ {ā} or M = M2 ∪ {a} where M1 is stable model of V and M2 is
stable model of Qe. Since V has the rec. FS property, is perfect, and has no
recursive stable models, it follows that

1. Qe has the rec. FS (FS ) property if and only if Se has the rec. FS (FS )
property,

2. Qe is perfect if and only if Se is perfect, and
3. the only recursive stable models of Se are of the form M ∪ {a} where M

is a recursive stable model of Qe.
By Theorem 1.2, there is a recursive function k such that Tk(e) = TSe

as
constructed in the proof of Theorem 1.2 such that Tk(e) is bounded (r.b.) if and
only if Se has the FS (rec. FS ) property and there is an effective one-to-one
degree preserving correspondence between Stab(Se) and [Tk(e)]. It follows that
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Tk(e) is bounded (r.b.) if and only if Qe has the FS (rec. FS ) property and
there is an effective one-to-one degree preserving correspondence between the
recursive elements of Stab(Se) and the recursive elements of [Tk(e)].

Then for example, it follows that {e : Qe has the rec. FS property and is
recursively empty} is many-one reducible to {e : Te is r.b and [Te] is recursively
empty} which is D0

3. Thus

{e : Qe has the rec. FS property and is recursively empty}

is D0
3. In this way, the upper bounds on the complexity of each index set in the

theorem follow from the corresponding complexity bound of the corresponding
property of trees in Theorem 2.10.

The completeness results for each part of the theorem follow from Theorem
1.1 and the corresponding completeness results in Theorem 2.10 as before.

The same method of proof can be used to prove the following theorems.

Theorem 4.8. Let c be a positive integer.
(a) {e : Qe has the rec. FS property and Stab(Qe) has recursive cardinality

> c} is Σ0
3-complete, {e : Qe has the rec. FS property and Stab(Qe) has

recursive cardinality ≤ c} is D0
3-complete, and {e : Qe has the rec. FS

property and Stab(Qe) has recursive cardinality = c} is D0
3-complete.

(b) {e : Qe has the FS property and Stab(Qe) has recursive cardinality > c}
is Π0

3-complete, {e : Qe has the FS property and Stab(Qe) has recursive
cardinality ≤ c} is D0

3-complete, and {e : Qe has the FS property and
Stab(Qe) has recursive cardinality = c} is D0

3-complete.
(c) {e : Stab(Qe) has recursive cardinality > c} is Σ0

3-complete, {e : Stab(Qe)
has recursive cardinality ≤ c} is Π0

3-complete, and {e : Stab(Qe) has re-
cursive cardinality = c} is D0

3-complete.
(d) {e : Qe is decidable and has the rec. FS property and Stab(Qe) has recur-

sive cardinality > c} is Σ0
3-complete, {e : Qe is decidable and has the rec.

FS property and Stab(Qe) has recursive cardinality ≤ c} is D0
3-complete,

and {e : Qe is decidable and has the rec. FS property and Stab(Qe) has
recursive cardinality = c} is D0

3-complete.

Theorem 4.9. {e : Stab(Qe) has finite recursive cardinality} is Σ0
4-complete

and {e : Stab(Qe) has infinite recursive cardinality} is Π0
4-complete. The same

results are true for programs which have the rec. FS property and the FS prop-
erty.

Theorem 4.10. (a) {e : Qe has the rec. FS property and Stab(Qe) is perf-
ect} is D0

3-complete.
(b) {e : Qe has the FS property and Stab(Qe) is perfect} is Π0

4-complete.
(c) {e : Stab(Qe) is perfect} is Σ1

1-complete.
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5 Index set results for a.a. FSP and a.a. rec. FSP

programs.

In this section, we shall use our results from the previous section to prove
results about index sets of a.a. FSP and a.a rec. FSP programs. Recall Section
1, discussion after Proposition 1.3) that a finite predicate logic program P has
the almost always finite support (a.a.FS) property if for all but finitely many
atoms a ∈ H(P ), there are only finitely many inclusion-minimal supports of
minimal P -proof schemes for a.

First we shall prove index set results for finite normal predicate logic pro-
grams which have the a.a. rec. FS property.

Theorem 5.1. (a) {e : Qe has the a.a. rec. FS property} is Σ0
3-complete.

(b) {e : Qe has the a.a. rec. FS property and Stab(Qe) is nonempty} and
{e : Qe has the a.a. rec. FS property and Stab(Qe) is empty} are Σ0

3-
complete.

(c) {e : Qe has the a.a. rec. FS property and Card(Stab(Qe)) > c}, {e : Qe
has the a.a. rec. FS property and Card(Stab(Qe)) ≤ c}, and {e : Qe has
the a.a. rec. FS property and Card(Stab(Qe)) = c} are all Σ0

3-complete.
(d) {e : Qe has the a.a. rec. FS property and Stab(Qe) is infinite} is D0

3-
complete and {e : Qe has the a.a. rec. FS property and Stab(Qe) is finite}
is Σ0

3-complete.
(e) {e : Qe has the a.a. rec. FS property and Stab(Qe) is uncountable} is

Σ1
1-complete and {e : Qe has the a.a. rec. FS property and Stab(Qe) is

countable} and {e : Qe has the a.a. rec. FS property and Stab(Qe) is
countably infinite} are Π1

1-complete.
(f) {e : Qe has the a.a. rec. FS property and Stab(Qe) is recursively nonempty}

is Σ0
3-complete, {e : Qe has the a.a. rec. FS property and Stab(Qe) is re-

cursively empty} is D0
3-complete, and {e : Qe has the a.a. rec. FS property

and Stab(Qe) is nonempty and recursively empty} is D0
3-complete.

(g) {e : Qe has the a.a. rec. FPS and Stab(Qe) has recursive cardinality > c}
is Σ0

3-complete, {e : Qe has the a.a. rec. FS property and Stab(Qe) has
recursive cardinality ≤ c} is D0

3-complete, and {e : Qe has the a.a. rec.
FS property and Stab(Qe) has cardinality = c} is D0

3-complete.
(h) {Qe : has the a.a. rec. FS property and Stab(Qe) has {e : has the a.a.

rec. FS property and Stab(Qe) has infinite recursive cardinality} is Π0
4-

complete.
(i) {e : Qe has the a.a. rec. FS property and Stab(Qe) is perfect} are D0

3-
complete.

Proof. Let f be the recursive function such that TQe
= Tf(e) where TQe

is
as constructed in the proof of Theorem 1.2. Then f shows that {e : Qe
has the a.a. rec. FS property and Stab(Qe) is nonempty} is many-one re-
ducible to {e : [Te] is nearly r.b. and is nonempty} which is Σ0

3. Thus {e :
Qe has the a.a. rec. FS property and Stab(Qe) is nonempty} is Σ0

3. In this way,
we can establish the upper bound on the complexity of the index set for any
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property of finite normal predicate a.a. FSP logic programs Qe where the prop-
erty is restricted to cases where Stab(Qe) 6= ∅ from the corresponding complexity
of the corresponding property for nearly recursively bounded trees.

For the other upper bounds, first, it is easy to see that A = {e : Qe has the
a.a. rec. FS property} is Σ0

3 by simply writing out the definition. To see that
B = {e : Qe has the a.a. rec. FS property and Stab(Qe) is empty} is Σ0

3, note
that e ∈ B if and only if e ∈ A and either (i) Qe has an initial blocking set
or (ii) Qe does not have an initial blocking set and TQe

as constructed in the
proof of Theorem 1.2 is nearly recursively bounded and [TQe

] = ∅. Since the
predicate ‘Qe has an initial blocking set’ is Σ0

2 and the predicate ‘Te is nearly
recursively bounded and [Te] = ∅’ is a Σ0

3 predicate, it follows that B is Σ0
3. To

see that C = {e : Qe has the a.a. rec. FS property and Card(Stab(Qe)) ≤ c}
is Σ0

3 for any c ≥ 1, we can use the program Re constructed in the proof of
Theorem 4.6. That is, e ∈ C if and only if Re has the a.a. rec. FS property
and Card(Se) ≤ c + 1. Now by Theorem 1.2, Re has the a.a. FS property
and Card(Se) ≤ c + 1 if and only if TRe

is nearly recursively bounded and
Card([TRe

]) ≤ c+1. But {e : T is nearly r.b. and Card([TRe
]) ≤ c+1} is Σ0

3 so
that C is Σ0

3. A similar proof will show that D = {e : Qe has the a.a. rec. FS
property and is finite} is Σ0

3 and E = {e : Qe has the a.a. rec. FS property and
is countable} is Σ1

1.
Finally, for the upper bounds on the complexity for the index sets in parts

(g), (h), and (i), we can use the program Se constructed from Qe as in the proof
of the Theorem 4.7. That is, it is easy to see that Qe has the a.a. rec. FS
property if and only if Se has the a.a. rec. FS property and that the cardinality
of the set of recursive stable models of Qe equals the cardinality of the set
of recursive stable models of Se. Moreover, Stab(Qe) is perfect if and only if
Stab(Se) is perfect. But Se has the a.a. FS property if and only if the tree TSe

as
constructed in the proof of Theorem 1.2 is nearly recursively bounded. Let g be
the recursive function such that Tg(e) = TSe

. Then the question whether e lies in
the desired index set in parts (g), (h), and (i), can be reduced to the problem of
whether g(e) lies in the corresponding index set for nearly recursively bounded
trees. Thus the upper bounds the complexity of these index sets follow from
the complexity of the corresponding index sets for nearly recursively bounded
trees in Section 2.

The completeness for each of the index sets in our theorem can be proved as
follows. Given a finite normal predicate logic program Qe, we construct a finite
normal predicate logic program Ye as follows. Let Le denote the underlying
language of of Qe and L∗

e be the language which contains 0, s, and a predicate
R∗(z, x1, . . . , xn) for every predicate R(x1, . . . , xn) and a predicate A∗(x) for
every propositional atom A in L where none of R∗, and A∗ occur in Le. To ease
notation, we shall let 0̄ = 0 and n̄ = sn(0) for each n ≥ 1. Then by Proposition
3.1, there is a finite normal predicate logic Horn program Q− with a recursive
least modelM− whose language contains the constant symbol 0 as well as all the
constant symbols of Le and the function symbol s and all the function symbols
from Le and whose set of predicate symbols are disjoint from the language L∗

e

which includes the predicates num(·), noteq(·, ·), and term(·) such that for any
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ground terms t1 and t2:
1. num(t1) holds in M

− if and only if t1 = n̄ for some n ≥ 0,
2. noteq(t1, t2) holds in M

− if and only if there exist natural numbers n and
m such that n 6= m and t1 = n̄ and t2 = m̄, and

3. term(t1) holds in model M− if and only if t1 is a ground term in Le.
Moreover, we can assume that Q− has the rec. FS property. Then let Ye be the
program Q− plus all clauses C∗(x) that arise from clauses C ∈ Qe by adding
the predicate num(x) to the body where x the first variable of the language that
does not occur in C, adding the predicate term(t) to the body for each term
that occurs in C, and by replacing each predicate R(t1, . . . , tn) that occurs in C
by R∗(x, t1, . . . , tn) and each propositional atom A that occurs in C by A∗(x).
The idea is that as x varies over {n̄ : n ≥ 0}, these clauses will produce infinitely
many copies of the program Qe. More precisely, we let Qne denote the set of all
clauses of the form C∗(n̄). Qne is essentially an exact copy of Qe except that
we have extended all predicates and propositional atoms to have an extra term
corresponding to n̄ and each clause contains the predicate num(n̄) and term(t)
in the body for each term in the original clause. Since none of the clauses C∗(x)
have any predicates from Q− in their heads, it will be the case that in every
stable modelM of Ye, M restricted to the ground atoms of Q− will just beM−.
Thus, in particular,

1. num(t1) holds in M if and only if t1 = n̄ for some n ≥ 0,
2. noteq(t1, t2) holds in M if and only if there exist natural numbers n and
m such that n 6= m and t1 = n̄ and t2 = m̄, and

3. term(t1) holds in M if and only if t1 is a ground term in Le.
Now, if S is any ground(Qe)-proof scheme, then we let S

n be the result of
adding num(n̄) to each clause in S and term(t) to each clause if t occurs in S and
replacing each predicate R(t1, . . . , tn) that occurs in S by R∗(n̄, t1, . . . , tn) and
each propositional atom A that occurs in S by A∗(n̄). It is easy to see that the
all minimal ground(Ye)-proof schemes that derive atoms outside of ground(Q−)
must consist of an interweaving of the pairs from minimal ground(Q−)-proof
schemes of num(n̄) and term(t) for each term t in Le that occurs in the proof
scheme of the form S

n̄ with the pairs for some ground(Qe)-proof scheme S
n̄.

It follows that if Qe has the rec. FS (FS ) property, then Ye has the rec. FS
(FS ) property. However, if Qe does not have the rec. FS property, then it
cannot be that Ye has the a.a rec. FS property since if we could effectively
find all the inclusion-minimal supports of minimal Ye-proof schemes for all but
finitely many atoms, then there would be some n in which we could find all the
inclusion-minimal supports of minimal Qn̄-proof schemes for any atom which
contains n̄, which would allow us to effectively find all the inclusion-minimal
supports of minimal Qe-proof schemes for any ground atom of L. Similarly,
if Qe does not have the FS property, then the Ye does not have the a.a. FS
property. Thus Qe has the rec. FS (FS ) property if and only if Ye has the a.a.
rec. FS (FS ) property.

Next we want to add a finite number of predicate clauses to Ye to produce
a finite normal predicate logic program Ze which restricts the stable models to
be essentially the same relative to the atoms of ground(Qn̄) for all n ≥ 0. To
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this end, we let a be an atom that does not appear in Ye and for each predicate
R∗(z, x1, . . . , xn) of Ye, we add a clause

CR∗ = a← R∗(y, x1, . . . , xn),¬R
∗(z, x1, . . . , xn), noteq(y, z),

term(x1), . . . , term(xn),¬a

and for each propositional atom A of Le, we add a clause

CA∗ = a← A∗(y),¬A∗(z), noteq(x, y),¬a.

First, we observe that a cannot belong to any stable model of M of Ze. That
is, if a ∈ M , that none of the clauses CR∗ and CA∗ will contribute anything to
ground(Ze)M . Thus no clauses with a in the head will be ground(Ze)M so that
a will not be in the least model of M and M 6= ground(Ze)M .

Now suppose that M is a stable model of Ze and a /∈M . Then it is easy to
see from the form of our rules that for any predicate R(x1, . . . , xn) of Le, M can
only contain ground atoms of the form R∗(t0, t1, . . . , tn) where t0 = n̄ for some
n ≥ 0 and t1, . . . , tn are ground terms of Le. Similarly, for each propositional
atom A of Le and ground term t, A(t) in M implies t = n̄ for some n ≥ 0. We
claim that for any predicate R(x1, . . . , xn) and any ground terms t1, . . . , tn in Le,
either DR,t1,...,tn = {R∗(n̄, t1, . . . , tn) : n ≥ 0} is contained in M or is entirely
disjoint from M . That is, if there is an n 6= m such that R∗(n̄, t1, . . . , tn) ∈ M
but R∗(m̄, t1, . . . , tn) /∈M , then the clause CR∗ will contribute the clause

C̄R∗ = a← R∗(n̄, t1, . . . , tn), noteq(n̄, m̄)

to ground(Ze)M so that a would be in M since M is a model of ground(Ze)M
and, hence,M is not a stable model of Ze. Similarly, for each propositional atom
A in Le either DA = {A∗(n̄) : n ≥ 0} is contained in M or is entirely disjoint
from M . That is, if there is an n 6= m such that A∗(n̄) ∈ M but A∗(m̄) /∈ M ,
then the clause CA∗ will contribute the clause

C̄A∗ = a← A∗(n̄), noteq(n̄, m̄)

to ground(Ze)M so that a would be in M and M is not a stable model of Ze. It
follows that the stable models of Ze are in one-to-one correspondence with the
stable models of Qe. That is, if U is a stable model of Qe, then there is a stable
model V (U) of Ze such that

1. M− ⊆ V (U);
2. for all predicate symbolsR(x1, . . . , xn) in Le, and ground terms t, t1, . . . , tn

in L∗
e, R

∗(t, t1, . . . , tn) ∈ V (U) if and only if t = m̄ for some m ≥ 0,
t1, . . . , tn ∈ Le, and R(t1, . . . , tn) ∈ U ; and

3. for all propositional atoms A in Le and ground terms t in L∗
e, A

∗(t) ∈ V (U)
if and only t = m̄ for some m ≥ 0 and A ∈ U .

In addition, it is easy to prove by induction on the length of proof schemes that
every stable model of V of Ze is of the form V (U) where

1. for all predicate symbols R(x1, . . . , xn) and ground terms t1, . . . , tn in Le,
R(t1, . . . , tn) ∈ U if and only if R(0̄, t1 . . . , tn) ∈ V ; and
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2. for all propositional atoms A in Le, A ∈ U if and only if A∗(0̄) ∈ V .
It follows that there is an effective one-to-one degree preserving correspondence
between the Stab(Qe) and Stab(Ze). Now let ℓ be a recursive function such that
Qℓ(e) = Ze. We observe that our theorem states that the complexity of every
property of finite normal predicate logic programs which have a.a. rec. FS prop-
erty is the same as the corresponding complexity of the same property of finite
normal predicate logic programs with just the rec. FS property. For example,
in Section 3, we proved that for every positive integer c, X = {e : Qe has the
rec. FS property and Card(Stab(Qe)) = c} is Σ0

3-complete while we want to
prove that Y = {e : Qe has the a.a. rec. FS property and Card(Stab(Qe)) = c}
is Σ0

3-complete. Now ℓ shows that X is many-one reducible to Y so that, since
we have already shown that Y is Σ0

3, it must be the case that Y is Σ0
3-complete.

All the other completeness results follows from the corresponding completeness
results in the same manner.

Theorem 5.2. a. {e : Qe has the a.a. FS property} is Σ0
4-complete.

b. {e : Qe has the a.a. FS property and Stab(Qe) is empty} and {e : Qe has
the a.a. FS property and Stab(Qe) is nonempty} are Σ0

4-complete.
c. For any positive integer c, {e : Qe has the a.a. FS property and Card(Stab

(Qe)) > c}, {e : Qe has the a.a. FS property and Card(Stab(Qe)) ≤ c},
and {e : Qe has the a.a. FS property and Card(Stab(Qe)) = c} are Σ0

4-
complete.

d. {e : Qe has the a.a. FS property and Stab(Qe) is finite} and {e : Qe has
the a.a. FS property and Stab(Qe) is infinite} are Σ0

4-complete.
e. {e : Qe has the a.a. FS property and Stab(Qe) is countable} and {e : Qe

has the a.a. FS property and Stab(Qe) is countably infinite} are Π1
1-

complete and {e : Qe has the a.a. FS property and Stab(Qe) is uncountable}
are Σ1

1-complete.
f. {e : Qe has the a.a. FS property and Stab(Qe) is recursively empty},
{e : Qe has the a.a. FS property and Stab(Qe) recursively nonempty},
and {e : Qe has the a.a. FS property and Stab(Qe) is nonempty and
recursively empty} are Σ0

4-complete.
g. For every positive integer c, {e : Qe has the a.a. FS property and Stab(Qe)

has recursive cardinality c}, {e : Qe has the a.a. FS property and Stab(Qe)
has recursive cardinality ≤ c}, and {e : Qe has the a.a. FS property and
Stab(Qe) has recursive cardinality = c} are Σ0

4-complete.

Proof. To establish the upper bounds for each of the index sets described in the
theorem, we can use the same strategy as we did in Theorem 5.1. That is, by
Theorem 1.2, Qe has the a.a. FS property and has a stable model if and only if
TQe

is nearly bounded and [TQe
] 6= ∅. Let f be the recursive function such that

TQe
= Tf(e). Then f shows that

A = {e : Qe has the a.a. FS property and Stab(Qe) is nonempty}

is many-one reducible to

B = {h : Th is nearly bounded and [Th] is nonempty}
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which is Σ0
4. Thus A is Σ0

4. In this way, we can establish the upper bounded
on the complexity of the index set for any property of finite normal predicate
logic programs Qe which have the a.a. rec. FS property where the property is
restricted to cases such that Stab(Qe) 6= ∅ from the complexity of the corre-
sponding property for nearly recursively bounded trees.

For the other upper bounds, first, it is easy to see that Ā = {e : Qe has
the a.a. FS property} is Σ0

4 by simply writing out the definition. To see that
B̄ = {e : Qe has the a.a. rec. FS property and [TQe

] is empty} is Σ0
4, note that

e ∈ B̄ if and only if e ∈ Ā and either (i) Qe has an initial blocking set or (ii)
Qe does not have an initial blocking set and TQe

as constructed in Theorem
1.2 is nearly bounded and [TQe

] = ∅. Since the predicate ‘Qe has an initial
blocking set’ is Σ0

2 and the predicate ‘Te is nearly bounded and [Te] = ∅’ is a
Σ0

4 predicate, it follows that B̄ is Σ0
4. To see that C̄ = {e : Qe has the a.a. FS

property and Card(Stab(Qe)) ≤ c} is Σ0
4 for any c ≥ 1, we can use the program

Re constructed in the proof of Theorem 4.6. That is, e ∈ C̄ if and only if Re
has the a.a. FS property and Card(Stab(Re)) ≤ c + 1. Now by Theorem 1.2,
Re has the a.a. FS property and Card(Stab(Re)) ≤ c + 1 if and only if TRe

is
nearly bounded and Card([TRe

]) ≤ c + 1. But {e : T is nearly bounded and
Card([TRe

]) ≤ c + 1} is Σ0
4 so that C̄ is Σ0

4. A similar proof will show that
D̄ = {e : Qe has the a.a. FS property and is finite} is Σ0

4 and Ē = {e : Qe has
the a.a. FS property and is countable} is Σ1

1.
Finally, for the upper bounds on the complexity for the index sets in parts

(f) and (g), we can use the program Se constructed from Qe in the proof of
Theorem 4.7. That is, it is easy to see that Qe has the a.a. FS property if
and only if Se has the a.a. FS property and that the cardinality of the set of
recursive stable models of Qe equals the cardinality of the set of recursive stable
models of Se. Moreover, the set of stable models of Qe is perfect if and only
if the set of stable models of Se is perfect. But Se has the a.a. FS property
if and only if the tree TSe

as constructed in Theorem 1.2 is nearly recursively
bounded. Let g be the recursive function such that Tg(e) = TSe

. Then the
question whether e lies in the desired index set in parts (f), (g), and (h) can
be reduced to the problem of whether g(e) lies in the corresponding index set
for nearly bounded trees. Thus the upper bounds for the complexity of these
index sets follow from the complexity of the corresponding index sets for nearly
bounded trees in Section 2.

For the completeness results in part (e) of the theorem, we can follow the
same strategy as in the proof of Theorem 5.1. By Theorem 4.5, we know
that X = {e : Qe has the FS property and Stab(Qe) is uncountable} is Π1

1-
complete while we want to prove that Y = {e : Qe has the a.a. FS property and
Card(Stab(Qe) is uncountable} is Π1

1-complete. Now the recursive function ℓ
such that Ze = Qℓ(e) constructed in the proof of Theorem 5.1 shows that X is
many-one reducible to Y so that Y is Π1

1-complete. All the other completeness
results in part (e) of our theorem follow from the corresponding completeness
results in Theorem 4.5 in the same manner.

Unfortunately, we cannot follow that same strategy as in Theorem 5.1 in the
remaining parts of theorem because the completeness results for finite normal
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predicate logic programs with the FS property do not match the completeness
results for finite normal predicate logic programs with a.a. FS property. In-
stead we shall outline the modifications that are needed to prove an analogue of
Theorem 1.1 that can be used to prove the completeness result for finite normal
predicate logic programs which have the a.a. FS property from the correspond-
ing completeness results for nearly bounded trees.

First, let us recall the construction of the trees that we used to prove part
(d) of Theorem 2.5. We defined a primitive recursive function φ(e,m, s) =
(least n > m)(n /∈ We,s \ {0}). For any given e, we let Ve be the tree such
that (m), (m, 0), (m, 1) ∈ Ue for all m ≥ 0 and (m, s+ 2) ∈ Ve if and only if m
is the least element such that φ(e,m, s + 1) > φ(e,m, s). This is only a slight
modification of the tree Ue defined in that the proof of part (d) of Theorem
2.5 in that we have ensured that (m, 0), (m, 1) ∈ Ve are always in Ue and so
that we are forced to shift the remaining nodes to right by one. It will still be
that case that if We \ {0} is cofinite, then there is exactly one node in Ve that
has infinitely many successors and Ve is bounded otherwise. Clearly there is a
recursive function f such that Tf(e) = Ve. But then

e ∈ ω \ Cof ⇐⇒ Tf(e) is bounded.

where Cof = {e : ω \We is finite}.
Next let S be an arbitrary complete Σ0

4 set and suppose that a ∈ S ⇐⇒
(∃k)(R(a, k)) where R is Π0

3. By the usual quantifier methods, we may assume
that R(a, k) implies that R(a, j) for all j > k. By the Π0

3-completeness of the
set {e : Te is bounded}, there is a recursive function h such that R(a, k) holds
if and only if Vh(a,k) is bounded and such that Vh(a,k) is a.a. bounded for every
a and k. Now we can define a recursive function ψ so that

Tψ(a,e) = {(0)} ∪ {(k + 1)aσ : σ ∈ Vh(a,k)} ∪ {0
aσ : σ ∈ Te}.

Thus we have two parts of the tree Tψ(a,e). That is, above the node (0), we
have a copy of Te and we shall call this part of the tree First0(Tψ(a,e)). We
shall refer to the remaining part of Tψ(a,e) as NotF irst0(Tψ(a,e)). Now if a ∈ S,
then Vh(a,k) is bounded for all but finitely many k and is nearly bounded for the
remainder. Thus NotF irst0(Tψ(a,e)) is nearly bounded. If a /∈ S, then, for every
k, Vh(a,k) is not bounded, so that NotF irst0(Tψ(a,e)) is not nearly bounded.
Thus a ∈ S if and only if NotF irst0(Tψ(a,e)) is nearly bounded. Hence if Te is
r.b. or bounded, then a ∈ S if and only if Tψ(a,e) is nearly bounded.

Next we describe a finite normal predicate logic programQa,e such that there
is a one-to-one effective correspondence between Stab(Qa,e) and [Tψ(a,e)]. Our
construction will just be a slight modification of the construction in Theorem
1.1. First we shall need some additional predicates on sequences. That is, we
let the predicate first0 (c(σ)) be true if and only if σ is a sequence which starts
with 0 and the predicate notfirst0(c(σ)) be true if and only if σ is a nonempty
sequence which does not starts with 0. We let the predicate third0 (c(σ)) be
true if and only if σ is a sequence of length ≥ 3 whose third element is 0 and we
let the predicate notthird0 (c(σ)) be true if and only if σ is a sequence of length
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≥ 3 whose third element is not 0. We shall also require a predicate length12 (·)
which holds only on codes of sequences of length 1 or 2 and length3(·) which
holds only on codes of sequences of length 3. Finally, we shall need a predicate
agree12 (·, ·) which holds only on pairs of codes (c(σ), c(τ)) where σ and τ are
of length 3 and σ and τ agree on there first two entries.

As in the proof of Theorem 1.1, there exists the following three finite normal
predicate logic programs such that the set of ground terms in their underlying
language are all of the form sn(0) where 0 is a constant symbol and s is a unary
function symbol. We shall use n has an abbreviation for the term sn(0).
(I) A finite predicate logic Horn program P0 such that for a predicate tree(·) of

the language of P0, the atom tree(n) belongs to the least Herbrand model
of P0 if and only if n is a code for a finite sequence σ and σ ∈ Tψ(a,e).

(II) A finite predicate logic Horn program P1 such that for a predicate seq(·) of
the language of P1, the atom seq(n) belongs to the least Herbrand model
of P1 if and only if n is the code of a finite sequence α ∈ ω<ω.

(III) A finite predicate logic Horn program P2 which correctly computes the
following recursive predicates on codes of sequences.
(a) samelength(·, ·). This succeeds if and only if both arguments are the

codes of sequences of the same length.
(b) diff (·, ·). This succeeds if and only if the arguments are codes of

sequences which are different.
(c) shorter (·, ·). This succeeds if and only both arguments are codes of

sequences and the first sequence is shorter than the second sequence.
(d) length(·, ·). This succeeds when the first argument is a code of a

sequence and the second argument is the length of that sequence.
(e) notincluded(·, ·). This succeeds if and only if both arguments are

codes of sequences and the first sequence is not the initial segment
of the second sequence.

(f) first0 (·). This succeeds if and only if the argument is the code of a
sequence which starts with 0.

(g) notfirst0(·). This succeeds if and only if the argument is the code of
a nonempty sequence which does not start with 0.

(h) third0 (·). This succeeds if and only if the argument is the code of a
sequence of length ≥ 3 whose third element is 0.

(i) notthird0 (·). This succeeds if and only if the argument is the code of
a sequence of length ≥ 3 whose third element is not 0.

(j) agree12 (·, ·). This succeeds if and only if the arguments are codes of
a sequences of length 3 which agree on the first two elements.

(k) length12 (·). This succeeds if and only if the argument is a code of a
sequence of length 1 or 2.

(l) length3 (·). This succeeds if and only if the argument is a code of a
sequence of length 3.

(m) num(·). This succeeds if and only if the argument is either 0 or sn(0)
for some n ≥ 1.

(n) greater0 (·). This succeeds if and only if the argument is sn(0) for
some n ≥ 1.
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Now let P− be the finite normal predicate logic program which is the union of
programs P0 ∪ P1 ∪ P2. We denote its language by L− and we let M− be the
least model of P−. By Proposition 3.1, we can assume that this program P−

is a Horn program and for each ground atom b in the Herbrand base of P−,
we can explicitly construct the set of all P−-proof schemes of b. In particular,
tree(n) ∈M− if and only if n is the code of node in Tψ(a,e).

Our final program PT will consist of P− plus clauses (1)-(12) given below.
We assume that these additional clauses do not contain any of predicates of
the language L− in the head. However, predicates from L− do appear in the
bodies of clauses (1) to (12). Therefore, whatever stable model of the extended
program we consider, its trace on the set of ground atoms of L− will be M−. In
particular, the meaning of the predicates of the language L− listed above will
always be the same.

We are now ready to write the additional clauses which, together with the
program P−, will form the desired program Qa,e. First of all, we select three
new unary predicates:
(i) path(·), whose intended interpretation in any given stable model M of

Qa,e is that it holds only on the set of codes of sequences that lie on an
infinite path through Tψ(a,e) that starts with 0. This path will correspond
to the path encoded by the stable model of M ,

(ii) notpath(·), whose intended interpretation in any stable model M of Qa,e
is the set of all codes of sequences which are in Tψ(a,e) but do not satisfy
path(·), and

(iii) control(·), which will be used to ensure that path(·) always encodes an
infinite path through Tψ(a,e).

Next we include the same seven sets of clauses as we did in Theorem 1.1 to make
sure that stable models Qa,e code paths through the tree Te which sit above the
node 0. This requires that we modify those clauses so that we restrict ourselves
to the sequences that satisfy first0 (X).

This given, the first seven clauses of our program are the following.

(1) path(X)←− first0 (X), tree(X), ¬notpath(X)
(2) notpath(X)←− first0 (X), tree(X), ¬path(X)
(3) path(c(0))←−
(4) notpath(X)←− first0 (X), tree(X), path(Y ),

first0 (Y ), tree(Y ), samelength(X,Y ), diff (X,Y )
(5) notpath(X)←− first0 (X), tree(X), first0 (Y ), tree(Y ), path(Y ),
shorter(Y,X), notincluded(Y,X)
(6) control(X)←− first0 (Y ), path(Y ), length(Y,X)
(7) control(X)←− greater0 (X), num(X),¬control(X)

Next we add the clauses involving an additional predicate in(X) which is used
to ensure that the final program Qa,e has the a.a. FS property if and only if
the tree Tψ(a,e) is nearly bounded.

(8) path(0)←−
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(9) notpath(X)←− notfirst0 (X), tree(X)
(10) in(X)←− notfirst0 (X), tree(X), length12 (X)
(11) in(X)←− notfirst0 (X), tree(X), length3(X), third0 (X),

notfirst0 (Y ), tree(Y ), length3(Y ), notthird0 (Y ),¬in(Y ),
(12) control(0)←−

Clearly, Qa,e = P− ∪ {(1), . . . , (12)} is a finite predicate logic program.
As in the proof of Theorem 1.1, we can establish establish a “normal form”

for the stable models of Qa,e. Each such model must contain M−, the least
model of P−. In fact, the restriction of a stable model of PT to H(P−) is M−.
Given any β = (0, β(1), β(2), . . .) ∈ ωω, we let

Mβ = M− ∪{control(n) : n ∈ ω} ∪ {path(0)}

∪{path(c((0, β(1), . . . , β(n))) : n ≥ 1}

∪{notpath(c(σ)) : σ ∈ Tψ(a,e) and σ 6≺ β}

∪{in(c((m,n))) : m > 0 and n ≥ 0}

∪{in(c((m,n, 0))) : m > 0 and n ≥ 0}.

We claim that M is a stable model of Qa,e if and only if M = Mβ for some
β ∈ [Tψ(a,e)].

First, let us consider the effect of the clauses (8)-(12). Clearly, clause (8)
forces that path(0) must be in every stable model of Qa,e and the clauses in (9)
force that notpath(c(σ)) is in every stable model of Qa,e for all σ ∈ Tψ(a,e) which
do not start with 0. Since all the clauses (1)-(6) require first0(c(σ)) to be true,
the only minimal Qa,e-proof schemes for notpath(c(σ)) for σ ∈ Tψ(a,e) which
do not start with 0 must use the Horn clause of type (9). Thus the minimal
Qa,e-proof schemes with conclusion notpath(c(σ)) where σ does not start with 0
consist of the set of pairs of a minimal P−-proof schemes of tree(c(σ)) followed
by the tuple 〈c(σ), (9)∗〉 where (9)∗ is the ground instance of (9) where X is
replaced by c(σ). Thus support of such a proof-scheme is ∅. Thus all the
minimal Qa,e- proof schemes of notpath(c(σ)), where σ does not start with 0,
have empty support. Similarly, in(c(σ)) can be derived only using clause (10)
if σ has length 1 or 2 so that all minimal Qa,e-proof schemes of in(c(σ)), where
σ has length 1 or 2, have empty support. Clause (12) is the only way to derive
control(0) so that the only minimal Qa,e-proof scheme of control(0) uses clause
(12) and has empty support.

The only way to derive in(σ) for σ of length 3 is via an instance of clause
(11). Such clauses will allow us to derive in(c((m,n, 0))) for any m > 0 and
n ≥ 0 with a proof scheme whose support is of the form {in(c((m,n, p)))} for
some p > 0 where (m,n, p) ∈ Tψ(a,e). Since we always put (m,n, 1) ∈ Tψ(a,e),
there is at least one such proof scheme but there could be infinitely many of
such proof schemes if (m,n, p) ∈ Tψ(a,e) for infinitely many p > 0. It then
follows from our definition of Tψ(a,e) that there will be finitely many m > 0
and n ≥ 0 such that in(c((m,n, 0))) has infinitely many proof schemes if and
only if the tree NotFirst0 (Tψ(a,e)) is nearly bounded, which occurs if and only if
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a ∈ S. Now, if Te is bounded, then we can use the same argument that we used
in Theorem 1.1 to show that there are only finitely many minimal Qa,e-proofs
schemes for the ground instances of predicates in the heads of such clauses for
σ ∈ Ta,e that start with 0. It follows that if Te is bounded, then a ∈ S if and
only if Qa,e has the a.a. FS property.

We can use the same arguments that we used in Theorem 1.1 to show that
the clauses (1)-(7) force that the only stable models of Qa,e are Mβ where β =
(0, β(1), β(2), . . .) ∈ ωω and (β(1), β(2), . . .) ∈ [Te]. The only difference is that
the clause (12) allows us to derive control(0) directly. Thus if Te is bounded, then
there will be an effective one-to-one degree preserving correspondence between
Stab(Qa,e) and [Tψ)a,e)] and Qa,e has the a.a. FS property if and only if a ∈ S.

The Σ0
4-completeness results for the remaining parts of theorem can all be

proved by the following type argument. Suppose, for example, that we want to
prove that

A = {e : Qe has the a.a. FS property and Stab(Qe)

is nonempty and recursively empty}

is Σ0
4-complete. Then we know that there exists a recursively bounded tree T

which is nonempty but which has no recursive paths (Jockusch and Soare [18].)
Thus let us fix e such that Te is recursively bounded and [Te] is nonempty and
has no recursive elements. Then for our Σ0

4 predicate S, we have the property
that a ∈ S if and only if Tψ(a,e) is nearly bounded and [Tψ(a,e)] is nonempty and
has no recursive elements. But then Tψ(a,e) is nearly bounded and [Tψ(a,e)] is
nonempty and has no recursive elements if and only Qa,e is a.a. bounded and
Stab(Qa,e) is nonempty and has no recursive elements. Now if g is the recursive
function such that Qg(a) = Qa,e, then a ∈ S if and only if g(a) ∈ A. Thus A is
complete for Σ0

4 sets.

6 Conclusions

In this paper, we have determined the complexity of various index sets associated
with properties of the set of stable models of finite normal logic programs.
In particular, we determined the complexity of the index sets associated with
various properties on the cardinality or recursive cardinality of the set of stable
models of a program relative to all finite normal predicate logic programs as
well as to all finite predicate logic programs that have the FS (rec. FS , a.a
FS , a.a. rec. FS) property. The results of this paper refine and extend earlier
results on index sets for finite predicate logic programs that appeared in [25].

In most cases, we showed that the problem of finding the complexity of such
index sets can be reduced to problem of finding the corresponding complexity
of an index set associated with the cardinality or recursive cardinality of the set
of infinite paths through primitive recursive trees, bounded primitive recursive
trees, and recursively bounded primitive recursive trees. However, due to the
fact that there is no analogue of the compactness theorem for the stable model
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semantics of logic programs, there are a few cases where there is is difference
between the complexity of an index set associated with the property of logic pro-
grams which have no stable models and the corresponding index set associated
with the property of primitive recursive trees which have no infinite paths.

Nevertheless, we have shown that there is a close connection with the prob-
lem of finding stable models of finite predicate logic programs and the problem
of finding infinite paths through primitive recursive trees. In fact, our original
definitions of the finite support property and recursive finite support property
were motivated by trying to find the analogue in logic programs of bounded and
recursively bounded trees. Moreover, in this paper, we defined the new concept
of decidable logic programs based on finding an analogue of decidable trees.
Thus while the computation of the stable model semantics of logic programs
may, at the first glance, look different from the classical Turing-machine based
computations, our results show once more the unity of underlying concepts and
abstractions so beneficial to both Computer Science and Computability Theory.
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