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Abstract

We discuss a number of possible extensions of Answer Set Programming. The
four formalisms we investigate are:

1. logic programs where the negative parts of the bodies in clauses can be re-
placed by arbitrary constraints which we call Arbitrary Constraint Logic Pro-
gramming (ACLP),

2. logic programs where we are allowed arbitrary set constraint atoms,

3. logic programs where atoms represent sets from some fixed set X and the
one-step provability operator is composed with a monotone idempotent op-
erator on2X which we call Set-based Logic Programming (SBLP), and

4. logic programming where the clauses (rules) have embedded algorithms
which we call Hybrid Answer Set Programming (H-ASP).

1 Introduction

Past research has demonstrated that logic programming withthe answer-set seman-
tics, known asanswer-set programmingor ASP, for short, is an expressive knowledge-
representation formalism [MT99, Nie99, Lif99, GL02, Bar03, MR04]. The availability
of the non-classical negation operatornot allows the user to model incomplete infor-
mation, frame axioms, and default assumptions such as normality assumptions and the
closed-world assumption (CWA). Modeling these concepts inclassical propositional
logic is less direct [GL02] and typically requires much larger representations. In addi-
tion, current implementations of ASP support aggregate operations over finite sets or,
more generally, constraints over finite sets.
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A fundamental methodological principle behind ASP, which was identified in [MT99,
Nie99], is that to model a problem, one designs a program so that its answer setsencode
or representproblem solutions. This is in contrast with the traditionalway automated
reasoning is used in knowledge representation, which relies on proof-theoretic meth-
ods of resolution with unification. Niemelä [Nie99] has argued that logic programming
with the stable-model semantics should be thought of as a language for representing
constraint satisfaction problems. Thought of from this point of view, ASP systems are
ideal logic-based systems to reason about a variety of typesof data and integrate quan-
titative and qualitative reasoning. ASP systems allow the users to describe solutions by
giving a series of constraints and letting an ASP solver search for solutions. In [MR03]
it is shown that such systems can, in principle, solve any NP-search problem [MR03],
i.e. any FNP problem as described in [BG94].

In this paper, we shall consider several ways to extend answer set programming.
One of our main motivations for considering extension of answer set programming is
that currentsolverssuch ascmodels[BL02], smodels[SNS02],assat[LZ02], clasp
[GKNS07], dlv [LPF06], pbmodels[LT05b] andaspps[ET06, EIMT06] have no sys-
tematic way to reason about infinite sets. Of course, there isone obvious way that one
can use to reason about infinite sets in logic programming, namely, we can add func-
tion symbols to the language. However, adding function symbols to the language has
significant drawbacks, especially with regard to complexity. For example, finding the
least model of a finite Horn program with no function symbols can be done in linear
time [DG84] while the least model of a finite predicate logic Horn program with func-
tion symbols can be an arbitrary recursively enumerable set[Smu68]. If we consider
logic programs with negation, Marek and Truszczyński [MT89] showed that the ques-
tion of whether a finite propositional logic program has a stable model is NP-complete.
However Marek, Nerode, and Remmel [MNR92] showed that the question of whether
a finite predicate logic program with function symbols possesses a stable model isΣ1

1

complete. Similarly, the stable models of logic programs that contain function sym-
bols can be quite complex. Starting with [AB90] and continuing with [BMS95] and
[MNR92], a number of results showed that the stable models oflogic programs that
allow function symbols can be exceedingly complex, even in the case where the pro-
gram has a unique stable model. For example, Marek, Nerode and Remmel [MNR92]
showed that there exist finite predicate logic programs which have stable models but
which have no hyperarithmetic stable models. Thus there is no hope to have general
processing engines that will handle normal logic programs with function symbols.

These complexity results for logic programs with function symbols may seem quite
negative, but they had a positive effect in the long run in that they forced researchers
and designers to limit themselves to cases where programs can be actually processed.
The effect was that processing programs calledsolverssuch ascmodels[BL02], smod-
els [SNS02],assat[LZ02], lasp [GKNS07], anddlv [LPF06], pbmodels[LT05b] and
aspps[ET06, EIMT06], had to focus on finite programs that do not admit function
symbols. Thedlv system does allow for some limited use of functions symbols,with
the idea which is common in Computer Science that it is programmer’s responsibility
to write programs that the system can process. But at this point, none of the existing
solvers have good ways to deal with infinite sets.

Why do we need to reason about infinite sets? Clearly, if one wants to reason about
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regions in Euclidean space or time intervals,then one is implicitly reasoning about in-
finite sets although one often can get by with finite descriptions or approximations.
However, we believe that another source of need for reasoning about infinite sets comes
from the many interactions with the Internet that are required for modern applications
which gives rise to the need to reason about sets and databases which are extremely
large and/or are constantly changing and evolving. We claimthat infinite sets offer an
effective way to address problems involving large finite sets that do not have a clear
structure and may change rapidly. Such finite sets often do not have concise represen-
tations, and manipulating them based on their explicit enumerations is impractical. On
the other hand, infinite approximations to these large finitesets, if chosen appropriately,
may have structure that makes concise finite representations possible and possibly al-
low for effective reasoning and processing. For instance, alarge database of documents
and the set of WWW pages are examples of very large sets, interesting subsets of which
can be thought of conceptually as infinite sets, e.g., “all documents containing a given
string”. Often such sets can be described as regular languages and hence have a finite
description. In addition, a set of localities that might be affected by a tornado or the
scope of a battlefield provide examples of finite sets that change rapidly. Thus it may
be more convenient to find approximations such as polygons covering the affected ar-
eas that lend themselves to easy manipulation. In each case,while the finite sets of
interest may have no small representations, the infinite sets used as approximations do
- a feature that can be exploited in automated reasoning.

For yet another example, consider the problem of controlling an unmanned under-
water vehicleV . Given parameters such as position, velocity and directionof motion,
as well as the model of the environment in which the vehicle moves, we can describe
constraints on various subsets of the set of possible trajectories of the vehicle that main-
tain the vehicleV in stable condition. Here, not only is each trajectory infinite, but the
set of trajectories that keepV stable may also be infinite. The many-dimensional space
describing the vehicle status, and other features of the vehicle is a regionX ⊆ Rn, and
the desired regions, where the vehicle needs to be can be treated as subsets of the same
Rn. There are, potentially many such regions. One reasonable way to describing them
is by means of constraints on subsets ofRn.

The designers of the solvers have also focused on the issues of both improving
the processing of the logic programs, i.e. finding more efficient ways to search for a
stable models, and improving the use of logic programs as a programming language.
The latter task consists of extending the constructs available to the programmer to make
programming easier and more readable. The extensions of ASPthat we shall talk about
in this paper can be viewed as part of this latter task.

The basic idea behind all the extensions that we shall discuss in this paper is to
carefully consider the definition of the stable model or answer set semantics via the
Gelfond-Lifschitz transform and to consider ways in which that general mechanism
can be extended. To make our ideas more precise, we shall briefly review the definition
of stable models for propositional and predicate logic programs.

A (propositional)logic programming clauseis an expression of the form

C = p← q1, . . . , qm, notr1, . . . , notrn (1)

wherep, q1, . . . , qm, r1, . . . , rn are atoms from a fixed set of atomsAt . The atomp in
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the clause above is called theheadof C (head(C)), and the expression

q1, . . . , qm, notr1, . . . , notrn,

with ‘,’ interpreted as the conjunction, is called thebodyof C (body(C)). The set
{q1, . . . , qn} is called thepositive part of the bodyof C (posBody(C)) and the set
{r1, . . . , rm} is called thenegative part of the bodyof C (negBody(C)). Given any set
M ⊆ At and atoma, we say thatM satisfiesa (nota), writtenM |= a (M |= nota), if
a ∈M (a 6∈M ). We say thatM satisfiesC, writtenM |= C, if wheneverM satisfies
the body ofC, thenM satisfies the head ofC. A normal logic programP is set of
clauses of the form of (1). We say thatM ⊆ At is a model ofP , writtenM |= P , if
M satisfies every clause inC.

A (propositional) Horn clause is a logic programming clauseof the form

H = p← q1, . . . , qm (2)

wherep, q1, . . . , qm ∈ At . Thus in a Horn clause, the negative part of its body is
empty. A Horn programP is a set of Horn clauses. Each Horn programP has a least
model under inclusion relation,LMP , which can defined using the one-step provability
operatorTP . For any setA, let 2A denote the set of all subsets ofA. The one-step
provability operatorTP : 2A → 2A associated with the Horn programP [vEK76] is
defined by setting:

TP (M) = {p : ∃C ∈ P (p = head(C) ∧M |= body(C))} (3)

for anyM ∈ 2A. We defineT n
P (M) by induction by settingT 1

P (M) = TP (M) and
T n+1
P (M) = TP (T

n
P (M)). Then the least modelLMP can be computed as

LMP = TP (∅)
N =

⋃

n≥1

T n
P (∅).

If P is a normal logic program andM ⊆ A, then the Gelfond-Lifschitz transform
of P with respect toM [GL88] is the Horn programGLP (M) which results by elimi-
nating those clausesC of the form (1) such thatri ∈M for somei and replacingC by
p ← q1, . . . , qn otherwise. We then say thatM is astable modelor ananswer setfor
P if M equals the least model ofGLP (M).

We should note that the operatorTP makes perfectly good sense for any normal
logic program [AvE82]. The fixpoints of the operatorTP are calledsupported models
of P . One can prove that every answer set ofP is a supported model. Supported
models ofP can be shown to coincide with models of the completion ofP , comp(P )
[Cla78]. Ascomp(P ) is a propositional theory, one can use SAT solvers to compute
its models and so, the supported models ofP . By pruning those supported models that
are not answer sets, one can also compute answer sets by meansof SAT solvers. This
possibility was successfully used in systems such asassat[LZ02] andcmodels[BL02].
Moreoverassatandcmodelsimplement pruning by expanding the input program with
the so-calledloop formulas[LZ02]. The process can be viewed as a version of clause
learning used in SAT solvers. Recent solvers which are improvements onassatand
cmodelssuch asclaspare very efficient.

4



One can extend the notion of stable models to predicate logicprograms as follows.
A (predicate)logic programming clauseis an expression of the form

C = p← q1, . . . , qm, notr1, . . . , notrn (4)

wherep, q1, . . . , qm, r1, . . . , rn are atoms from some fixed first order languageL. As
in the case of propositional logic clauses, the atomp in the clause above is called
the headof C (head(C)), and the expressionq1, . . . , qm, notr1, . . . , notrn, with ‘,’
interpreted as the conjunction, is called thebodyof C (body(C)). The set{q1, . . . , qn}
is called thepositive bodyof C (posBody(C)) and the set{r1, . . . , rm} is called the
negative body ofC (negBody(C)). A ground instance of the clauseC is a substitution
instance ofC where we have uniformly replaced the free variables inC with ground
terms, i.e. terms with no free variables, so that resulting substitution instance has no
free variables. A predicate logic programP is a collection of clauses of the form
(4). We then letground(P ) denote the set of all ground instances of clauses inP .
Thusground(P ) can be thought of as propositional logic program. We then saythat a
collection of ground atomsM , i.e. a subset of atoms ofL with no free variables, is a
stable modelor ananswer setof P if and only if M is a stable model ofground(P ).

In this paper, we shall consider four different extensions of the basic stable model
paradigm described above.

Extension 1. Arbitrary Constraint Logic Programming.
Our first extension is to follow the paper of Marek, Nerode, and Remmel [MNR95] and
consider logic programs with arbitrary constraints. Notice that in the definition of sta-
ble model ofP , the negative bodies of the clauses ofP only play a role in determining
which Horn clauses end up inGLP (M). Thus the idea of [MNR95] is to replace these
negative bodies by arbitrary constraints so that we end up with clauses of the form

p←− q1, . . . , qn : Ψ. (5)

HereΨ is any type of constraint such that givenM ⊆ At , we can decide whetherM
satisfiesΨ. ThusΨ does not even have to be in the original language of the program
and it could express an infinite constraint such as the ones studied by Marek, Nerode,
and Remmel in [MNR97]. Thus replacing negative bodies by arbitrary constraints pro-
vides a rich way to reason about all sorts of infinite constraints in ASP which we call
Arbitrary Constraint Logic Programming (ACLP).

Extension 2. Adding set constraint atoms to logic programming.
A powerful extension of Answer Set Programming stems out of the work of Niemelä
et.al. [SNS02]. The idea was to use as building blocks of programs not only atoms and
negated atoms, but expressions of the formkXl whereX is a finite set of atoms, and
k, l are nonnegative integers, smaller or equal than the size ofX . The interpretation of
such constraint is “at leastk but not more thanl of atoms fromX are true in a putative
modelM ”.

Later Marek and Remmel [MR03] introduced set constraint atoms of the form
〈X,F〉 whereX is a set andF is a finite set of subsets ofX . Subsequent research
of many authors [MR03, GL02, MNT08, LT05a] led to significantprogress in under-
standing such constraints. On the concrete level, arbitrary set constraints atoms include
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weight constraints, SQL constraints, parity constraints,and other kinds of common
constraints, and, on the abstract level, include monotone,antimonotone, and convex
constraints. Adding arbitrary set constraint atoms to logic programming is a natural
mechanism that allows the user to reason about large varietyof constraints in ASP
solvers and SAT solvers.

Set constraint atoms〈X,F〉whereX is an infinite set andF is a finite set of2X can
also be used to reason about infinite sets. For example, Cenzer, Marek, and Remmel
[CRM05] studied constraints of the form〈X,F〉 whereX is an infinite recursive set
andF is a finite set of indices for certain recursive or recursively enumerable subsets
of X .

We shall also briefly outline the work of Brik and Remmel [BR11a] that shows
how one can use arbitrary set constraint atoms to reason about preferences in ASP.
The ability to express preferences and to reason about them effectively has many im-
portant applications to problems in planning and negotiations. Recent work by Brik
and Remmel [BR11a] has shown that set constraint atoms can bea very convenient
and compact way to express a wide variety of such preferences. That is, suppose that
we are given a set constraint atom〈X,F〉 and weight functionwt : 2X → Q where
Q is the set of rational numbers. Then our idea is that the weight functionwt is de-
fined in such a way so that we prefer thoseF ∈ F which have the smallest weight.
For example, suppose that Dr. X is buying a car and the dealer offers several option
packages such as you can have a red car with an automatic transmission with a high
end CD player or you can have a blue car with standard transmission and a standard
CD player. Suppose that the blue car costs $25,000 and the redcar costs $35,000.
Let B stand for blue,R stand for red,A stand for automatic transmission,S stand for
standard transmission,HCD stand for high end CD player, andSCD stand for stan-
dard CD player. Suppose that the prices of the cars can be $20,000, $25,000, $30,000,
$35,000. Then we letX = {B,R,A, S,HCD,SCD, 20000, 25000, 30000, 35000}
We can then view the setF1 = {B,S, SCD, 20000},F2 = {R,A,HCD, 35000}, and
F3 = {B,S,HCD, 25000} as option packages available from the car dealer. While
an individual may prefer red cars to blue cars, standard transmissions to automatic
transmission, and high end CD players to standard CD playersand to get the car at the
lowest possible price, there may be no such package as{R,S,HCD, 20000}. Thus
the buyer has to choose from one the three packagesF1, F2, orF3 so that we may have
a set constraint atom〈X, {F1, F2, F3}〉. Now we can insist that a modelM satisfies
the set constraint〈X,F〉 by adding a clause of the form

〈X,F〉 ← . (6)

One can use an auxiliary weighting function to expresses preference in this case. For
example, we might definewt(F1) = 2, wt(F2) = 1.5 andwt(F3) = 1. Of course,
the buyer’s spouse may have a different set of preferences sothat we might want to
create two copies of the〈X, {F1, F2, F3}〉, one for the husband and one for the wife.
Thus we might want to consider programs which have several clauses of the form (6).
This leads to a natural weighting on modelsM of the program defined to be the sum of
wt(M ∩X) for all such clauses. The idea is that lower weighted models satisfy more
of the preferences incorporated by clauses of the form (6).
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Often times in such situations, it is impossible to meet all individual preferences.
This can lead to programs that do not have stable models. One way to handle this
problem is to specify hard preferences, those that have to besatisfied, and soft prefer-
ences, those that do not necessarily have to be satisfied. Another approach is to look
for looks for subsets of preferences which can be satisfied and this naturally leads one
to search for maximal subprograms of a programP which do have stable models. To
date, none of the ASP solvers have the ability to find such maximal subprograms. How-
ever, there is an algorithm called the forward chaining algorithm developed by Marek,
Nerode, and Remmel [MNR94b] which does allow one to find such maximal subpro-
grams when the original program does not have a stable model.Recently, Brik and
Remmel [BR10] have combined the forward chaining algorithmwith the Metropolis
algorithm [Met53] to produce a novel Monte Carlo type algorithm to find such maxi-
mal subprograms.

Extension 3.Set-based logic programming.
Blair, Marek, and Remmel [BMR01] observed that the ASP formalism can be signif-
icantly extended by allowing atoms to represent sets in somefixed universeX . That
is, instead having the intended underlying universe be the Herbrand base of the pro-
gram, one replaces the underlying Herbrand universe by somefixed spaceX and has
the atoms of the program specify subsets ofX , i.e. elements of the set2X , the set of
all subsets ofX .

If we reflect for a moment on the basic aspects of logic programming with an Her-
brand model interpretation, a slight change in our point of view shows that interpreting
atoms as subsets of the Herbrand base is quite natural. In normal logic programming,
we determine the truth value of an atomp in an Herbrand interpretationI by declaring
I |= p if and only if p ∈ I. However, this is equivalent to defining the sense,[[p]], of a
ground atomp to be the set{p} and declaring thatI |= p if and only if [[p]] ⊆ I. By
this simple move, we have permitted ourselves to interpret the sense of an atom as a
subset, rather than the literal atom itself.

This given, Blair, Marek, and Remmel developed a system thatthey calledspatial
logic programmingin [BMR01] in which they showed that it is a natural step to take
thesense[[p]] of a ground atomp to be a fixed assigned subset of some nonempty set
X and to define aI ⊆ X to be a model ofp, written I |= P , if and only if [[p]] ⊆ I.
This type of model theoretic semantics makes available, in anatural way, multiple
truth values, intensional constructs, and interpreted relationships among the elements
and subsets ofX . Observe that the assignment[[·]] of a senseto ground atoms is in-
trinsically intensional. Interpreted relationships among the elements and subsets ofX
allow the programs that use this approach, which was calledspatial logic program-
ing in [BMR01], to serve as front-ends for existing systems and still have a seamless
model-theoretic semantics for the system as a whole.

In [BMR08], Blair, Marek, and Remmel showed that if the underlying spaceX
has structure such as a topology or an algebraic structure such as a group, ring, field,
or vector space, then a number of natural options present themselves. For example, if
we are dealing with a topological space, one can compose the one step consequence
operatorTP with an operator that produces topological closures of setsor interiors of
sets. In such a situation, one ensures that the the extendedTP operator always pro-
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duces closed sets or always produces open sets. Similarly, if the underlying spaceX is
a vector space, one might insist that the extendedTP operator always produces a sub-
space ofX or a subset ofX which is convex closed. Notice that each of the operators:
closure, interior, spanandconvex-closureis amonotone idempotent operator. That is,
an operatorop : 2X → 2X is an monotone operator ifI ⊆ J ⇒ op(I) ⊆ op(J) for
all I ⊆ J ⊆ X and is an idempotent operator ifop(op(I)) = op(I) for all I ⊆ X . We
call such an operator amiop(pronounced “my op”).

Unlike the situation in Extensions 1 and 2, there is a varietyof options for how to
interpret negation in spatial logic programming. In normallogic programming, a model
M satisfiesnotp if p /∈M . From the set-based point of view whenp is interpreted as a
singleton{p}, this would be equivalent to saying thatM satisfiesnotp if (i) {p}∩M =
∅, or (equivalently) (ii){p} 6⊆ M . When the sense ofp is a set with more than one
element it is easy to see that saying thatM satisfiesnotp if [[p]]∩M = ∅ which we call
strong negation is different from saying thatM satisfiesnotp if [[p]] 6⊆ M which we
call weak negation. There are thus two natural interpretations of the negation symbol.
Again, when the underlying space has structure, one can get even more subsidiary types
of negation by takingM to satisfynotp if cl([[p]]) ∩M = cl(∅), or by takingM to
satisfynotp if cl([[p]]) 6⊆ M wherecl is some natural miop. By composing the one-
step provability operator with a miop, one naturally produced only those stable models
which have desired properties such a being closed or being a subspace of a vector
space. The familiarTP operator corresponds to the case where the underlying miop
operator is the simplest possible monotone idempotent operator, namely, the identity.

Blair, Marek, and Remmel [BMR08] called the extension of spatial logic program-
ming with miopsset-based logic programming(SBLP). Set-based logic programming
provides yet another powerful way to reason about infinite sets as one is allowed to
have the sense[[a]] of an atoma be an infinite subset ofX . Indeed, Marek and Remmel
[MR09] showed that one can effectively reason about infinitesets in SBLP provided
that infinite sets have an indexing scheme with certain decision properties. For exam-
ple, if the sense of all atoms are regular languages over somefixed finite alphabetΣ
andX = Σ∗, then Marek and Remmel [MR09] proved that the stable models of a fi-
nite SBLP programP are always regular languages overΣ and that one can effectively
decide whether a given regular languageL ⊆ Σ∗ is a stable model ofP .

Extension 4.Hybrid Answer Set Programming.
In [BR11b], Brik and Remmel introduced an extension of the ASP formalism in

which one can reason about continuous trajectories which they called Hybrid Answer
Set Programming (H-ASP). This extension is different than the other three in that the
notion of a clause is greatly extended. To motivate this extension, consider the fol-
lowing situation where James Bond wants to take his Aston-Martin from pointA to
point B where the underlying trajectory his divided up into three regions: RegionI
which consists of ice and snow on a mountain, RegionII which consists of lake, and
RegionIII which consists of desert. With a push of button, Bond’s Aston-Martin can
change its configuration so that it can run on snow and ice, runas a boat, or run as
a high performance car. This situation is pictured in Figure1 where the rectangle in
Region I is some building which must be avoided, the circles in Region II are some
islands that must be avoided, and the hexagon is region III issome fort which must be
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avoided. We imagine that Bond makes certain decisions at regular intervals of length∆
as to what to do depending on his positionx(k∆), his velocityv(k∆), his acceleration
a(k∆) and other requirements such as surface conditions, wind velocity and other logi-
cal conditions such as “I am being chased” or “I am at a minimumsafe distance from an
obstacle.” In Figure 1, we have indicated Bond’s position’sat times0,∆, 2∆, . . . , 11∆
by placing thek∆ at the position he has reached at timek∆.

A
B0

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

2

3

4

5

6
7∆

8

9

10 

11

Region I Region II Region III

Figure 1: Picture of Bond’s trajectory.

In [BR11b], Brik and Remmel discuss two systems of hybrid ASP. We shall briefly
describe their simplified system of hybrid ASP in this introduction which they called
basic hybrid ASP(BH-ASP) and discuss a more extended version of hybrid ASP in
Section 4. In basic hybrid ASP, one specifies a parameter spaceS and a set of atoms
At. The intended universe of an BH-ASP program isAt × S. That is, one thinks of
the position and situation at timek∆ as being specified by a sequence of parameters
~x(k∆) = (x1(k∆), x2(k∆), . . . , xn(k∆)) ∈ S that specify such things as time, posi-
tion, velocity, acceleration, etc. which are needed to compute the next position and the
data baseM(k∆)~x(k∆) of atomsa in At such that(a, ~x(k∆)) are true at timek∆.

There are two types of clauses in a BH-ASP program.

1. Stationary clauseswhich are of the form

a← a1, ..., an, notb1, ..., notbm : O

wherea, a1, ..., an, b1, ..., bm ∈ At , O ⊆ S. The idea is that if~x(k∆) ∈ O,
ai ∈ M(k∆)~x(k∆) for i = 1, ..., n, andbj 6∈ M(k∆)~x(k∆) for j = 1, ...,m,
thena ∈M(k∆)~x(k∆).

2. Advancing clauseswhich are of the form

a← a1, ..., an, notb1, ..., notbm : A,O

wherea, a1, ..., an, b1, ..., bm ∈ A, O ⊆ S, andA is an algorithm. The idea is
that if ~x(k∆) ∈ O, ai ∈ M(k∆)~x(k∆) for i = 1, ..., n, andbj 6∈ M(k∆)~x(k∆)
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for j = 1, ...,m, then we can apply the algorithmA to the set of parameters
~x(k∆) to compute the set of parameters~x((k + 1)∆) at the next time step and
the clause specifies that(a, ~x((k + 1)∆)) holds.

Here for advancing clauses, we envision that algorithmA could require that one
solve a differential or integral equation to get the next setof parameters or it could
require solving some system of linear equations or some linear programming problem
to get the next set of parameters, etc.. From this point of view, we can think of an
advancing clause as input-output device. Of course, classical logic rules also can be
thought of as input-output devices, but one rarely thinks inthis sort of terms.

The outline of this paper is as follows. In Section 2 we shall discuss ACLP of
Extension 1. In Section 3, we shall discuss various extensions of ASP that use set
constraint atoms. In Section 4, we shall discuss set-based logic programming and how
it can be used to reason about certain classes of infinite set effectively. In Section 5, we
shall briefly introduce basic hybrid ASP and its more generalextension called Hybrid
ASP (H-ASP) as described by Brik and Remmel [BR11a]. Finally, in Section 6 we
discuss conclusions and further research.

2 Arbitrary Constraint Logic Programming

In this section we discuss the variation of programs obtained by treating the negative
part of the body of a clause as a constraint on applicability of a clause. That is, we
shall give a detailed description of Arbitrary Constraint Logic Programming (ACLP)
as described in Extension 1 of the introduction.

The basic Gelfond-Lifschitz transform mechanism of AnswerSet Programming
can be expressed as follows. The negative literals in the body of a clause serve as
a “semaphore”. Namely, when we guess a set of atomsM (a putative answer set),
the negative part of the clauseC tells us if the Horn part ofC can be used in the
computation or not. To make this intuition a bit more precise, given a clause

C = p← q1, . . . , qn, notr1, . . . , notrn, (7)

leth(C) be the Horn clausep← q1, . . . , qn. ThenPM = {h(C) : M |= ¬negBody(C)}.
Thus¬negBody(C) is a constraint on usability ofh(C). There is no reason why such
constraints should be restricted to be only conjunctions ofnegative literals. Motivated
by this observation, we introduce the concept of ACLP clauseand of ACLP program.
An ACLP clause is a stringC:

p← q1, . . . , qm : ΦC

wherep, q1, . . . , qm are atoms, andΦC is a formula of some languageL for which we
have a satisfaction relation|= which allows us to test ifM |= ΦC . An ACLP program
is a set of ACLP clauses. Now, the idea is to generalize the “semaphore” as defined
above. Namely, we first guess a setM of atoms and then we test if the constraint
ΦC is satisfied byM or not. If it is satisfied,h(C) is placed inPM , otherwise it is
eliminated. Then we compute the least model ofPM and check if it coincides withM .
In such situation, we callM aconstraint answer setfor P .

10



The simplest case is whenΦC consists of conjunctions of negative literals only. In
that case, we get nothing new. Indeed, let us assign to a clause C of the form (7), a
constraint clause:

C′ = p← q1, . . . , qn : ¬r1, . . . ,¬rn

andP ′ = {C′ : C ∈ P}. Then we have

Proposition 2.1. A set of atomsM is an answer set forP if and only ifM is a con-
straint answer set forP ′.

We note that the notion of answer set for constraint programsincludes the notion
of a supported model via the following construction. Given aclauseC we assign toC
a constraint clauseC′′ as follows

C′′ = p←: q1, . . . , qn,¬r1, . . . ,¬rn

and setP ′ = {C′′ : C ∈ P}. Then we have

Proposition 2.2. A set of atomsM is a supported model forP if and only ifM is a
constraint answer set forP ′′.

As long as the constraintsΦ are taken from the propositional language generated
by the set of atoms of the programP , the expressive power of the concept of constraint
answer set does not increase. We have the following fact.

Proposition 2.3. Let PC be class of constraint programs where all the constraints
are propositional formulas. Then the existence problem forconstraint answer sets of
programs inPC is an NP-complete problem.

In [PR96], Pollett and Remmel looked at a class of constraintprograms where the
constraints were quantified Boolean formulas over the set ofatoms occurring in the
program. That is, Pollett and Remmel consider programs whose clauses are of the
form

p← a1, . . . , an : B1(~b1), . . . , Bn(~bm) (∗)

wherep, a1, . . . , an are propositional variables andB is a quantified Boolean formula
and~bi’s represents the free propositional variables in eachBi.

Let Σq
k denote the set of quantified Boolean formulas with at mostk-alternations

of quantifier type and whose outermost quantifier is an∃. Similarly, letΠq
k denote the

set of quantified Boolean formulas with at mostk-alternations of quantifier type and
whose outermost quantifier is an∀. In both cases, unless we say we are dealing with
only sentences, we assume our formulas have free variables.Lastly, we writeQBFk

to denote Boolean combinations of these two classes. In thek = 0 case, all of the
above classes are the same. They each define the class of propositional formulas. We
recall that the problem of determining whether aΣq

k-sentence is true isΣP
k -complete

and the problem of determining whether aΠq
k-sentence is true isΠp

k-complete. Given
an assignment to the free variables of aQBFk formula, we can determine whether or
not it is true in∆P

k+1.

11



We now defineLPk is the class offinitearbitrary constraint logic programs whose
constraints are all inQBFk and
LP∞ =

⋃
k≥0 LPk.

It turns out that Proposition 2.3 generalizes in a straightforward way. That is, Pollett
and Remmel proved the following theorem.

Theorem 2.1. 1. The problem of determining whether anLPk program has an an-
swer set isΣP

k+1-complete.

2. The problem of determining whether a finiteLP∞ program has an answer set is
PSPACE -complete.

3. The problem of deciding whether a given variablea is in an answer set of an
LPk program isΣP

k+1-complete.

4. The problem of deciding whether a given variablea is in an answer set of an
LP∞ program isPSPACE -complete.

Pollett and Remmel pointed out that there are several ways togeneralize the no-
tion of logic programming with quantified Boolean constraints that fits the paradigm
of ACLP programs. For example, rather than take our atoms of quantified Boolean for-
mulas to be just propositional variables, we could let them be propositional variables
and expressions of the forma1a2 . . . an ∈ A. That is, checking if the concatenation of
some string propositional variables is in an oracleA. Given a variable assignmentν,
we sayν̄(a1a2 . . . an ∈ A) = 1 if and only if the stringν(a1)ν(a2) . . . ν(an) is in the
setA. Thus, there is a well defined semantics for such formulas. Wecan thus define
the classesΣq

k(A), Π
q
k(A), andQBFk(A) and use them in our logic programming the-

ories. Hence, we can defineLPk(A) to be those finite logic programs withQBFk(A)
constraints.SATk(A)(y) is ΣP

k+1-complete [GJ79]. Then Pollett and Remmel proved
the following generalization of Theorem 2.1

Theorem 2.2. 1. The problem of deciding whether anLPk(A) program has an
answer set isΣP

k+1(A)-complete.

2. The problem of deciding whether anLP∞(A) program has an answer set is
PSPACE (A)-complete.

3. The problem of deciding whether a given variablea is in an answer set of an
LPk(A) program isΣP

k+1(A)-complete.

4. The problem of deciding whether a given variablea is in an answer set of an
LP∞(A) program isPSPACE (A)-complete.

Going beyond propositional logic and quantified Boolean formulas leads to inter-
esting but not investigated class of constraint programs. Specifically, for integersj ≥ 2
and0 ≤ i < j, we define a new formulaimodj and stipulate, for a finite set of atoms
M ,M |= imodj if |M | ≡ imod j. It should be clear that due to the localization prop-
erties of propositional logic and quantified Boolean formulas, the formulasi mod j
are not definable in the languages defined above. But once we defined satisfaction
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for expressions of the formimodj, we have immediately satisfaction relation for the
language of propositional formulas with atoms of the formimodj. Let us call such
constraintsmod-constraints. We can then consider programs that use mod-constraints.
Parity constraints as considered in [MNR95] are from this language. Complexity is-
sues for the constraint programs in this language have not been studied. We illustrate
the programs with mod-constraints with a simple example.

Example 2.1. LetP be a mod-constraint program consisting of the following clauses.

1. p← q, u, w
2. r ← s, v
3. u← r
4. v ← r
5. s←: 2mod3
6. t←: 2mod3
7. q ←: 1mod3
8. w ←: 1mod3
9. u←: 1mod3

We then check thatM1 = {p, s, t, u} is a mod-constraint answer set forP . Indeed, the
reduct ofP byM1 yields the program:
p← q, u, w
r ← s, v
u← r
v ← r
q ←
w←
u←
with M1 as the least model.
Likewise, we leave to the reader the task of testing thatM2 = {s, t} is another mod-
constraint answer set forP .

The family of answer sets for a constraint program does not need to form an an-
tichain. Minimal answer set of constraint programs have notbeen studied.

3 Logic Programming with Set Constraint Atoms

In this section we define a number of generalizations of cardinality and weight con-
straints.

One can think about propositional atoms as very simple constraints on assignments.
Specifically, an atomp is just a requirement that the intended modelM satisfiesp.
Likewise, a clause

C = p← q1, . . . , qm, notr1, . . . notrn

propagates constraints and can be informally interpreted as a constraint on the intended
modelM . That is, onceM satisfies the body ofC, it has to satisfy the head ofC as
well. This point of view has been proposed in [Nie99, MT99] with the idea that the

13



program specifies constraints of the problem at hand, while the answer sets encode
intended solutions of the problem.

Once such point of view is adopted, it is natural to ask whether the ASP mechanism
could be adopted to propagation of more complex constraints. In [SNS02] Niemelä
and his collaborators have shown that, indeed one can adopt ASP formalism to a sit-
uation where the constraints are more complex. Specifically, in [SNS02] its authors
show a construction dealing with two specific types of constraints: cardinality con-
straints and its generalization, weight constraints. These constraints, under the name
of pseudo-Boolean constraints are used in logic design and also in combinatorial op-
timization. Next, we describe the case of cardinality constraints which are the simple
case of pseudo-Boolean constraints where all the weights onthe atoms are equal to
1. A cardinality constraint is a stringC of the formkXl whereX is a finite set of
atoms andk ≤ l ≤ |X |. Whenk = 0 we drop it from the description ofC, and
similarly we dropl when it is|X |. WhenM is a set of atoms, we writeM |= kXl if
k ≤ |X ∩M | ≤ l. We observe thatM |= p if and only ifM |= 1{p}, andM |= notp
if and only if M |= {p}0. Thus cardinality constraints generalize atoms. The satisfac-
tion relation|= can be extended to the language treating cardinality constraints as new
atoms. We can also write program clauses where the heads of clauses and elements of
bodies are cardinality constraints. The notion of a model ofsuch clause generalizes the
usual notion of a model of a program. Specifically, a set of atomsM satisfies a clause

kXl← k1Y1l1, . . . kmYmlm (8)

if for somej ≤ m, M 6|= kjYj lj , or if M |= kXl. A setM is a model of a program
if it is a model of each clause of the program. The cardinalityconstraints considered
here concern the sets of atoms; the original definition in [SNS02] used literals, not only
atoms.

The notion of an answer set of a cardinality constraint programP involves a signif-
icant modification of the usual Gelfond-Lifschitz transform (GL-transform). We will
call it the NSS-transform. A number of steps are performed. As we shall see, some of
these step are different from the steps used to define the GL-transform. Let us guess
M , a putative answer set. First, we require thatM is a model ofP . Next, one elim-
inates all clausesC in P of the form of (8) such thatM 6|= body(C). The final step
transforms each remaining clauseC of form (8) of the programP in two ways.

(a) First one eliminates the upper bounds of all constraintsin the body ofC. Let us
call the resulting clauseC′

(b) Second, one replaces the clauseC′ by all clauses of the formp ← body(C′)
such thatp ∈M ∩X .

The NSS-transform ofP is the set of clauses produced fromP by this process.
The programP ′′ has two key properties. First, the heads of clauses ofP ′′ are atoms.
Second, for every clauseC′′ of the programP ′′, the collection of setsN that satisfy
the body of the clauseC′′ is upper-closed. That is, ifN |= body(C′′) andN ⊆ N ′,
thenN ′ |= body(C′′). This implies that the one-step provability operator associated
with P ′′ andM is monotone. It is also continuous, but, since in this section we shall
limit ourselves to finite cardinality constraints programs, we shall not discuss this issue
further. Thus by Knaster-Tarski theorem, this operatorTP,M possesses a least fixpoint.
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If that fixpoint coincides withM , we callM an answer set ofP . Notice that by the
construction, an answer set must be a model ofP .

We observe that for normal logic programs, the SMS-transform of a program elim-
inates more clauses than the GL-transform. That is, the GL-transform tests only the
negative part of the clauses, not the entire body. Yet, for normal programs, the fix-
points obtained via GL-transform and via SMS-transform arethe same. The reason
is that if a clauseC has the property thatposBody(C) \M 6= ∅ andC survives the
GL-test, thenC will fire only if an atomqi ∈ posBody(C) \M is computed. This
guarantees, however, thatM is different from the fixpoint and, hence, is not an answer
set [MT98].

A very similar construction can be done for weight constraints where atoms are
weighted and the boundsk andl are on cumulative weight ofM ∩X . We should note
that if one allows weight functions which admit negative values, then the results are
not always intuitive and alternative approaches have been proposed [LPST07, FPL11].

Recall that we defined a set constraint to be a pair〈X,F〉 whereX is a finite set
andF ⊆ 2X . A set constraint(SC)clauseis a string of the form

〈X,F〉 ← 〈Y1,G1〉, . . . , 〈Yn,Gn〉.

A set constraint program is a finite set of SC clauses.
We note that there are interesting constraints that are not cardinality constraints

nor weight constraints. An example of one such constraint isa constraint analogous
to 1mod3 discussed above, specifically,M |= 〈X, 1mod3〉 if |M ∩ X | ≡ 1mod3.
Many other natural constraints can be defined as set-constraints. In fact generalized
quantifiers over finite sets of atoms [Lib04] can be expressedthis way.

To see how the NSS-transform can be utilized for SC programs,we first need to
define the satisfaction relation like we did in case of cardinality constraints. LetM
be a set of atoms andK = 〈X,F〉 be a set constraint atom. We say thatM |= K if
X∩M ∈ F . This is an abstract version of the satisfaction relation defined above. Let us
notice that going to the abstract version of the constraint may significantly increase the
size of the representation. For example, the cardinality constraint1{p, q, r}2 becomes
〈{p, q, r}, {{p}, {q}, {r}, {p, q}, {p, r}, {q, r}}〉.

We now show how the NSS-transform can be adopted for SC programs. The fol-
lowing observation is easy.

Proposition 3.1. For every setX and a familyF of subsets ofX there exists a⊆-least
familyG of subsets ofX such that

1. F ⊆ G
2. G is upper-closed that is, wheneverA ∈ G andA ⊆ B ⊆ X thenB ∈ G.

Since the familyG is⊆-least, it is unique. Hence we call the unique familyG whose
existence is established by Proposition 3.1, the closure ofF and denote itF . It is easy
to see that when〈X,F〉 is equivalent to the cardinality constraintkXl, then〈X,F〉 is
equivalent to the cardinality constraintkX .

At a cost of a possible large representation, we can describeanswer sets for pro-
grams that include arbitrary set-constraints. Again the process of defining a stable
model for SC programs is based on some form of “Horn” programs, GL-reduction, and
least fixpoints of the one-step provability operators for Horn programs.
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We will call an SC-clauseHorn if

1. the head of that clause is a single atom (recall that atoms are represented as set
constraints) and

2. whenever〈Xi,Fi〉 appears in the body, thenFi is an upper closed family of
subsets ofXi.

A set-constraint Horn programP is an SC-program which consists entirely of Horn
clauses. There is a natural one-step provability operator associated to an SC-Horn
programP , TP : 2X → 2X whereX is the underlying set of atoms of the program.
Specifically,TP (S) consists of allp such that there is clause

C = p← 〈X1,F1〉, . . . , 〈Xm,Fm〉 ∈ P

such thatS satisfies the body ofC. Our definitions ensure thatTP is a monotone
operator and hence each SC-Horn programP has a least modelMP . MP can be
computed in a manner analogous to the computation of the least model of a definite
Horn program asTω

P (∅). The NSS transformNSSM (P ) of the set-constraint program
P for a given set of atomsM which is a model ofP is defined as follows. First
eliminate all clauses with bodies not satisfied byM . Next, for each remaining clause

〈X,F〉 ← 〈X1,F1〉, . . . , 〈Xm,Fm〉

and eachp ∈M ∩X , put the clause

p← 〈X1,F1〉, . . . , 〈Xm,Fm〉

into NSSM (P ). Clearly the resulting programNSSM (P ) is an SC-Horn program and

hence has a least modelMNSSM (P ). M is a stable model ofP if M is a model ofP
andM = MNSSM (P ). It can be shown that this construction corresponds to the same
notion of Gelfond-Lifschitz stable models when we restrictourselves to ordinary logic
programs.

We should note that there are other semantics available for SC programs. For exam-
ple, Son, Pontelli, and Tu [SPT07], observed that the stablemodels for an SC programs
may be included one in another. That is, consider the following SC programP .

a←
b←
c← q
q ← 〈{a, b, c}, {{a, b, c}}〉

One can easily checked that there are two stable modelsM1 = {a, b, c, q} andM2 =
{a, b}. An alternative semantics that does not allow for nested stable models was de-
fined by Son, Pontelli, and Tu [SPT07].

We end this section with a few remarks on how set constraint atoms can allows us
to reason about infinite sets and preferences.
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3.1 Using set constraint atoms to reason about infinite sets.

Cenzer, Marek, and Remmel [CRM05] suggested a way to use set constraint atoms
to reason about infinite sets. The basic idea is as follows. First we allowX to be an
infinite recursive set and assume that we have a particular coding scheme for some
family of subsets of a setX . LetF be a finite family of such codes. We will writeCe

for the set with the codee. Then we can write two types of constraints. One constraint
〈X,F〉⊆ has the meaning that the putative set of integersM satisfies〈X,F〉⊆ if and
only if M ∩X ⊇ Ce for somee ∈ F . Similarly, we shall also consider constraints of
the form〈X,F〉= where we say thatM satisfies〈X,F〉= if and only if M ∩X = Ce

for somee ∈ F . Observe that constraints of the form〈X,F〉⊆ behave like atomsp
in that they are preserved when the set grows while constraints of the form〈X,F〉=

behave like constraintsnotp in that they are not always preserved as the set grows.
Now, it is clear that once we introduce these types of constraint schemes, we can

consider various coding schemes for the set of indices. For example, Cenzer, Marek
and Remmel [CRM05] used three such schemes: explicit indices of finite sets, recur-
sive indices of recursive sets and recursively enumerable (r.e.) indices of recursively
enumerable (r.e.) sets. They then defined extended set constraint clauseC to be a
clause of the form

〈X,A〉∗ ← 〈Y1,B1〉
⊆, . . . , 〈Yk,Bk〉

⊆, 〈Z1, C1〉
=, . . . , 〈Zl, Cl〉

=,

where∗ is either= or⊆.
Formally, Cenzer, Marek, and Remmel defined three types of indices three types of

indices (i.e. codes) for certain subsets of the natural numbersN.

(1) Explicit indices of finite sets. For each finite setF ⊆ N, we define the explicit
index ofF as follows. The explicit index of the empty set is 0 and the explicit index of
{x1 < · · · < xn} is 2x1 + · · ·+ 2xn . We shall letFn denote the finite set whose index
is n.

(2) Recursive indices of recursive sets. Let φ0, φ1, . . . , be an effective list of all
partial recursive functions. By a recursive index of a recursive setR, we mean ane
such thatφe is the characteristic function ofR. If φe is a total{0, 1}-valued function,
thenRe will denote the set{x ∈ N : φe(x) = 1}.

(3) R.e. indices of r.e. sets. By a r.e. index of a r.e. setW , we mean ane such
thatW equals the domain ofφe, that is,We = {x ∈ N : φe(x) converges}.

Then for any subsetM ⊆ N, we shall say thatM is a model of〈X,F〉=, written
M |= 〈X,F〉=, if there exists ane ∈ F such thatM ∩X equals that set with indexe.
Similarly, we shall say thatM is a model of〈X,F〉⊆, writtenM |= 〈X,F〉⊆, if there
exists ane ∈ F such thatM ∩X contains the set with indexe.

Based on these three different types of indices, Cenzer, Marek, and Remmel [CRM05]
considered three different types of constraints.

(A) Finite constraints. Here we assume that we are given an explicit indexx of a
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finite setX and a finite familyF of explicit indices of finite subsets ofX . We iden-
tify the finite constraints〈X,F〉= and〈X,F〉⊆ with their codes,ind(0, 0, x, n) and
ind(0, 1, x, n) respectively whereF = Fn, that is, the finite set with explicit indexn.
Here the first coordinate 0 tells us that the constraint is finite, the second coordinate is
0 or 1 depending on whether the constraint is〈X,F〉= or 〈X,F〉⊆, and the third and
fourth coordinates are the codes ofX andF respectively.

(B) Recursive constraints. Here we assume that we are given a recursive indexx
of a recursive setX and a finite familyR of recursive indices of recursive subsets of
X . Again we shall identify the recursive constraints〈X,R〉= and〈X,R〉⊆ with their
codes,ind(1, 0, x, n) andind(1, 1, x, n) respectively, whereR = Fn. Here the first
coordinate 1 tells us that the constraint is recursive, the second coordinate is 0 or 1
depending on whether the constraint is〈X,R〉= or 〈X,R〉⊆, and the third and fourth
coordinates are the codes ofX andR respectively.

(C) R.e. constraints. Here we are given a r.e. indexx of a r.e. setX and afinite family
W of r.e. indices of r.e. subsets ofX . Again we identify the finite constraints〈X,W〉=

and〈X,W〉⊆ with their codes,ind(2, 0, x, n) andind(2, 1, x, n) respectively, where
W = Fn. The first coordinate 2 tells us that the constraint is r.e., the second coordinate
is 0 or 1 depending on whether the constraint is〈X,W〉= or 〈X,W〉⊆, and the third
and fourth coordinates are the codes ofX andW .

An extended set constraint(ESC)clauseis defined to be a clause of the form

〈X,A〉∗ ← 〈Y1,B1〉
⊆, . . . , 〈Yk,Bk〉

⊆, 〈Z1, C1〉
=, . . . , 〈Zl, Cl〉

= (9)

where∗ is either= or⊆. We shall refer to〈X,A〉∗ as the head ofC, writtenhead(C),
and 〈Y1,B1〉

⊆, . . . , 〈Yk,Bk〉
⊆, 〈Z1, C1〉

=, . . . , 〈Zl, Cl〉
= as the body ofC, written

body(C). Here eitherk or l may be 0. M is said to be a model ofC if either M
does not model every constraint inbody(C) or M |= head(C). An extended set con-
straint (ESC) programP is a set of clauses of the form of (1).

A (ESC)Horn programP is a set of clauses of the form

〈X,A〉⊆ ← 〈Y1,B1〉
⊆, . . . , 〈Yk,Bk〉

⊆. (10)

whereA is a singleton, that isA consists of a single index. We define theone-step
provability operator, TP : 2N → 2N, so that for anyS ⊆ N, TP (S) is the union
of the set of allDe such that there exists a clauseC ∈ P such thatS |= body(C),
head(C) = 〈X,A〉⊆ andA = {e} whereDe = Fe if head(C) is a finite constraint,
De = Re if head(C) is a recursive constraint, andDe is We if head(C) is an r.e.
constraint. It is easy to see thatTP is a monotone operator and hence there is a least
fixpoint of TP which we denote byNP . Moreover it is easy to check thatNP is a
model ofP .

If P is an ESC Horn program in which the body of every clause consists of finite
constraints, then one can easily prove that the least fixpoint of TP is reached inω-
steps, that is,NP = Tω

P (∅). However, if we allow clauses whose bodies contain either
recursive or r.e. constraints, then we can no longer guarantee that we reach the least
fixpoint of TP in ω steps. Here is an example.
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Example 3.1. Let en be the explicit index of the set{n} for all n ≥ 0, let w be a
recursive index ofN andf be a recursive index of the set of even numbersE. Consider
the following program.

〈{0}, {e0}〉
⊆ ←

〈{2x+ 2}, {e2x+2}〉
⊆ ← 〈{2x}, {e2x}〉

⊆ (for every numberx)

〈N, {w}〉⊆ ← 〈E, {f}〉⊆

ClearlyN is the least model ofP but it takesω + 1 steps to reach the fixpoint. That is,
it is easy to check thatTω

P = E and thatTω+1
P = N.

Once we have a notion of ESC Horn program, we are in a position to define the
analogue of stable models for ESC programs.

Definition 3.1. Suppose thatM is a model of an ESB programP .

1. We define the analogue of the NSS-transform by saying thatNSSM (C), where
C ∈ P is a clause of the form (1), isnil if M does not satisfy the body ofC.
If M does satisfy the body ofC, then sinceM is model ofP , it must also be a
model of the head ofC, 〈X,A〉∗ where∗ is either= or ⊆. If ∗ =⊆, there must
be an explicit (recursive, r.e.) index inA, of such that eitherM ∩X contains the
set with indexe and for each suche, we add the clause

〈X, {e}〉⊆ ← 〈Y1,B1〉
⊆, . . . , 〈Yk,Bk〉

⊆, 〈Z1, C1〉
⊆, . . . , 〈Zl, Cl〉

⊆. (11)

Similarly, if∗ is=, there must be an indexe such thatM ∩X is the set coded by
e and again for each suche, we add the clause

〈X, {e}〉⊆ ← 〈Y1,B1〉
⊆, . . . , 〈Yk,Bk〉

⊆, 〈Z1, C1〉
⊆, . . . , 〈Zl, Cl〉

⊆. (12)

ThenNSSM (P ) = {NSSM (C) : C ∈ P} will be an ESB Horn program.

2. We then say thatM is a stable model ofP if M is a model ofP andM equals
the least model ofNSSM (P ).

Cenzer, Marek, and Remmel explored the complexity of the least models of recur-
sive ESC Horn programs and recursive ESC programs in [CRM05].

3.2 Using set constraint atoms to reason about preferences.

In this subsection, we briefly describe how we can use set constraint atoms to describe
preferences based on ideas in a forthcoming paper by Brik andRemmel [BR11b]. The
basic idea is to consider triples of the from〈X,F , wt〉 or 〈X,F ,4〉 where

1. X is a finite set of atoms,

2. F ⊆ 2X ,

3. wt : F → [0,∞) ⊆ R,
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4. 4 is a partial order inF .

We call triples of the form〈X,F , wt〉 weight preference set constraint atomsand
triples of the form〈X,F ,4〉 partially ordered preference set constraint atoms. We
say that a set of atomsM is satisfies〈X,F , wt〉 or 〈X,F ,4〉 if and only ifM satisfies
〈X,F〉.

Now suppose that we have an SC programP which in addition has a finite set of
clausesT of the form

〈Xi,Fi, wti〉 ←

i ∈ {1, . . . , n}. Now suppose thatM is a stable model ofP ∪ T . Then we can define
the weight of the modelM as

W (M) =
n∑

i=1

wti(Xi ∩M).

As described in the introduction, we can use the weight functions to describe our pref-
erences for what we wantM ∩Xi to be by saying that forF1, F2 ∈ Fi, F1 is preferred
overF2 if wti(F1) < wti(F2). Then we say that a stable modelM1 of P ∪ T is
preferred over the stable modelM2 of P ∪T if W (M1) < W (M2). Thus the introduc-
tion of weight preference set constraint atoms can lead to a natural weighting of stable
models which can be used to model preferences.

Similarly, suppose that we have an SC programP which in addition has a finite set
of clausesT of the form

〈Xi,Fi,4i〉 ←

for i ∈ {1, . . . , n}. Now suppose that we are given two stable modelsM1 andM2

of P ∪ T . Then we say thatM1 4 M2 if and only if M1 ∩ Xi 4i M2 ∩ Xi for
i = 1, . . . , n. Thus the introduction of partial order preference set constraint atoms can
lead to a natural partial order on stable models which can be used to model preferences.

4 Set-Based Logic Programming

We start this section with a review the basic definitions of set-based logic programming
as introduced by Blair, Marek, and Remmel [BMR08]. The syntax of set-based logic
programs will essentially be the syntax of DATALOG programswith negation. We will
then briefly discuss some results of Marek and Remmel [MR09] on conditions which
ensure that we can effectively process set-based logic programs

Following [BMR08], we define aset-based augmented first-order language(set-
based language, for short)L as a triple(L,X, [[·]]), where
(1)L is a language for first-order predicate logic (without function symbols other than
constants),
(2)X is a nonempty (possibly infinite) set, called theinterpretation space, and
(3) [[·]] is a mapping from the ground atoms ofL to the power set ofX , called thesense
assignment. If p is an atom, then[[p]] is called thesenseof p.

Intuitively, one can treat the set of atomsA of L as a set of descriptions or codes of
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subsets ofX . For example, ifX = Σ∗ whereΣ is a finite alphabet, then a description
might be a regular expression for a languageA ⊆ X or a deterministic finite automaton
(DFA) that acceptsL. If X = Rn, then a convex polygon ofX can be described by
the finite set of extreme points ofX . We shall see later that the properties we need
to effectively process set-based logic programs is that ourset of atoms or descriptions
come with algorithms which allow us to decide things like whether for any given atoms
A andB, [[A]] ⊆ [[B]] or [[A]] ∩ [[B]] = ∅ holds and how to find an atom or codeC such
that[[C]] = [[A]] ∪ [[B]].

For the rest of this section, we shall fix a setX and a first order languageL with
no function symbols except constants. We let HBL denote the Herbrand base ofL, i.e.
the set of atoms ofL. We omit the subscriptL when the context is clear. We let2X

be the power set ofX . Given[[·]] : HBL −→ 2X , an interpretationI of the set-based
languageL = (L,X, [[·]]) is a subset ofX .

A set-based logic programming clause is a clause of the form

C = A← B1, . . . , Bn, notC1, . . . , notCm. (13)

whereA, Bi, andCj are atoms fori = 1, . . . , n andj = 1, . . . ,m. We lethead(C) =
A, Body(C) = B1, . . . , Bn, notC1, . . . , notCm, andposBody(C) = {B1, . . . , Bm},
andnegBody(C) = {C1, . . . , Cm}. A set-based program is a set of clauses of the form
(13) and a set-based Horn program is a set of clauses of the form (13) which contain
no occurrences ofnot .

A second component of a set-based logic program is one or moremonotonic idem-
potent operatorsO : 2X → 2X that are associated with the program. Recall that an
operatorO : 2X → 2X is monotonicif for all Y ⊆ Z ⊆ X , we haveO(Y ) ⊆ O(Z)
and isidempotentif for all Y ⊆ X , O(O(Y )) = O(Y ). We call a monotonic idempo-
tent operator amiop(pronounced “my op”). We say that a setY is closedwith respect
to miopO if and only if Y = O(Y ).

For example, suppose that the interpretation spaceX is eitherRn orQn whereR
is the reals andQ is the rationals. Then,X is a topological vector space under the usual
topology so that we have a number of natural miop operators:

1. opid(A) = A, i.e. the identity map is simplest miop operator,

2. opc(A) = Ā whereĀ is the smallest closed set containingA,

3. opint(A) = int(A) whereint(A) is the interior ofA,

4. opconvex(A) = K(A) whereK(A) is the convex closure ofA, i.e. the smallest
setK ⊆ X such thatA ⊆ K and wheneverx1, . . . , xn ∈ K andα1, . . . , αn

are elements of the underlying field (R or Q) such that
∑n

i=1 αi = 1, then∑n
i=1 αixi is in K, and

5. opsubsp(A) = (A)∗ where(A)∗ is the subspace ofX generated byA.

We should note that (5) is a prototypical example if we start with analgebraicstructure.
That is, in such cases, we can letopsubstr(A) = (A)∗ where(A)∗ is the substructure
of X generated byA. Examples of such miops include the following:
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(a) if X is a group, we can letopsubgrp(A) = (A)∗ where(A)∗ is the subgroup ofX
generated byA,

(b) if X is a ring, we can letopsubrg(A) = (A)∗ where(A)∗ is the subring ofX
generated byA,

(c) if X is a field, we can letopsubfld(A) = (A)∗ where(A)∗ is the subfield ofX
generated byA,

(d) if X is a Boolean algebra, we can letopsubalg(A) = (A)∗ where(A)∗ is the
subalgebra ofX generated byA or we can letopideal(A) = Id(A) whereId(A)
is the ideal ofX generated byA, and

(e) if (X,≤X) is a partially ordered set, we can letopuideal(A) = Uid(A) where
Uid(A) is the upper order ideal ofX , that is, the least subsetS of X containing
A such that wheneverx ∈ S andx ≤X y, theny ∈ S.

For simplicity, for the rest of this section, we shall assumethat all our miopsO have
the additional property thatY ⊆ O(Y ) for all Y ∈ 2X . Now suppose that we are given
a miopop+ : 2X → 2X and Horn set-based logic programP overX . Blair, Marek,
and Remmel [BMR08] generalized the one-step provability operator to set-based logic
programs relative to a miop operatorop+ as follows. First, for any atomA andI ⊆ X ,
we say thatI |=[[·]],op+ A if and only if op+([[A]]) ⊆ I. Then, given a set-based logic
programP , letP ′ be the set of ground instances of a clauses inP and let

TP,op+(I) = op+(I1)

whereI1 =
⋃
{[[A]] : A ← A1, . . . , An ∈ P ′ & I |=[[·]],op+ Ai, i = 1, . . . , n}. We

then say that asupported model relative toop+ of P is a fixpoint ofTP,op+ .
We iterateTP,op+ according to the following.

T0
P,op+(I) = I

Tα+1
P,op+(I) = TP,op+(Tα

P,op+(I))

Tλ
P,op+(I) = op+(

⋃

α<λ

{Tα
P,op+(I)}), λ limit

It is easy to see that ifP is a set-based Horn program andop+ is a miop, then
TP,op+ is monotonic. Blair, Marek, and Remmel [BMR08] proved the following.

Theorem 4.1. Given a miopop+, the least model of a Horn set-based logic program
P exists and is closed underop+ , is supported relativeop+, and is given byTα

P,op+(∅)
for the least ordinalα at which a fixpoint is obtained.

We note, however, that if the underlying universeX universe of a set-based logic
program is infinite, then, unlike the situation with ordinary Horn programs,TP,op+

will not in general be upward continuous even in the case where op+(A) = A for all
A ⊆ X . That is, consider the following example which was given in [BMR08].
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Example 4.1. Assume thatop+ is the identity operator on2X . Let L = (L,X, [[·]])
whereL has four unary predicate symbols:p, q, r ands, and countably many con-
stantse0, e1, . . . , . X is the setN

⋃
{N}. [[·]] is specified by[[q(en)]] = {0, . . . , n},

[[p(en)]] = {0, . . . , n+ 1}, [[r(en)]] = N, and[[s(en)]] = {N}.

The set-based programP consists of the following three clauses:

q(e0)←
p(X)← q(X) and
s(e0)← r(e0).

It is then easy to see that afterω iterations of theTP operator starting from the empty
set,r(e0) becomes satisfied. One more iteration is required to reach aninterpretation
that satisfiess(e0) which is the least fixpoint ofTP .

Next, we consider how we should deal with negation in the setting of miop oper-
ators. Suppose that we have a miop operatorop− on the spaceX . We do not require
thatop− is the same as the miopop+, but it may be. Our goal is to define two different
satisfaction relations for negative literals relative to the miop operatorop− which are
called strong and weak negation in [BMR08]1.

Definition 4.1. Suppose thatP is a set-based logic program overX andop+ andop−

are miops onX anda ∈ {s, w}.

(I) Given any atomA and setJ ⊆ X , we say
J |=a

[[·]],op+,op− A if and only if op+([[A]]) ⊆ J .

(II)s (Strong negation) Given any atomA and setJ ⊆ X , we say
J |=s

[[·]],op+,op− notA if and only if op−([[A]]) ∩ J ⊆ op−(∅).

(II)w (Weak negation) Given any atomA and setJ ⊆ X , we say
J |=w

[[·]],op+,op− notA if and only if op−([[A]]) * J .

This given, we can naturally define two analogues of the Gelfond-Lifschitz trans-
form and two analogues of stable models depending on whetherwe want to use strong
or weak negation to definition the satisfaction ofnotA.

Definition 4.2. Given a setJ ⊆ X , we define thestrong Gelfond-Lifschitz transform,
GLs

J,[[·]],op+,op−(P ), of a programP with respect to miopsop+ andop− on2X , in two
steps. First, we consider all clauses inP ,

C = A← B1, . . . , Bn, notC1, . . . , notCm (14)

whereA,B1, . . . , Bn, C1, . . . , Cm are atoms. If for somei, it is not the case that
J |=s

[[·]],op+,op− notCi, then we eliminate clauseC. Otherwise we replaceC by the
Horn clause

A← B1, . . . , Bn. (15)

1Lifschitz [Lif94] observed that different modalities, thus different operators, can be used to evaluate
positive and negative part of bodies of clauses of normal programs.
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Then,GLs
J,[[·]],op+,R

(P ) consists of the set of all Horn clauses produced by this two
step process.

We define theweak Gelfond-Lifschitz transform,GLw
J,[[·]],op+,op−(P ), of a program

P with respect to miopsop+ andop− on 2X in a similar manner except that we use
|=w

[[·]],op+,op− in place of|=s
[[·]],op+,op− in the definition.

Notice that sinceGLa
J,[[·]],op+,op−(P ) is a Horn set-based logic program for either

a = s or a = w, the least model ofGLa
J,[[·]],op+,op−(P ) relative toop+ is defined.

We then define thea-stable model semantics for a set-based logic programP overX
relative to the miopsop+ andop− onX for a ∈ {s, w} as follows.

Definition 4.3. J is ana-stablemodel ofP relative to op+ andop− if and only if J
is the least fixpoint ofTGLa

J,[[·]],op+,op−
(P ),op+ .

Next we give a simple example to show that there is a difference betweens-stable
andw-stable models.

Example 4.2. Suppose that the spaceX = R2 is the real plane. Our program will have
two atoms{a, b}, {c, d} wherea, b, c andd are reals. We let[a, b] and[c, d] denote the
line segments connectinga to b andc to d respectively. We let the sense of the these
atoms be the corresponding subsets, i.e. we let[[{a, b}]] = {a, b} and[[{c, d}]] = {c, d}.
We letop+ = op− = opconvex. The consider the following programP .

(1) {a, b} ← not{c, d}

(2) {c, d} ← not{a, b}

There are four possible candidates for stable models in thiscase, namely (i)∅, (ii) [a, b],
(iii) [c, d], and (iv)opconvex{a, b, c, d}. Let us recall thatopconvex(X) is the convex
closure ofX which, depending ona, b, c, andd may be either a quadrilateral, triangle,
or a line segment.

If we are considerings-stable models whereJ |=s
[[·]],op+,op− notC if and only if

op−(C)∩J = op−(∅) = ∅, then the only case where there ares-stable models if[a, b]
and[c, d] are disjoint in which (ii) case and (iii) ares-stable models.

If we are consideringw-stable models whereJ |=w
[[·]],op+,op− notC if and only if

op−(C) * J , then there are now-stable models if[a, b] = [c, d], (ii) is a w-stable
model if [a, b] * [c, d], (iii) is w-stable model if[c, d] * [a, b] and (ii) and (iii) are
w-stable models if neither[a, b] ⊆ [c, d] nor [c, d] ⊆ [a, b]. 2

It is still the case that thea-stable models of a set-based logic programP form an
antichain fora ∈ {s, w}. That is, Blair, Marek, and Remmel [BMR08] proved the
following result.

Theorem 4.2. Suppose thatP is a set-based logic program overX , op+ andop− are
miops onX , anda ∈ {s, w}. If M andN area-stable models ofP andM ⊆ N , then
M = N .
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We end this section by considering the question of what conditions are required
if one is to effectively process a finite set-based logic program where the sense of
the underlying atoms are allowed be infinite sets. This question was considered by
Marek and Remmel [MR09, MR11]. The idea of Marek and Remmel was to start with
a finite set-based logic programP and letSP denote set of fixpoints over all finite
unions of sets represented by the atoms of a finite set-based logic programP of the
miops associated withP . Here the elements ofSP may be finite or infinite. Marek
and Remmel [MR11] showed that if there is a way of associatingcodesc(A) to the
elements ofA ∈ SP such that there are effective procedures which, given codesc(A)
andc(B) for elements ofA,B ∈ SP , will

(i) decide ifA ⊆ B,

(ii) decide ifA ∩B = ∅, and

(iii) produce of the codes of closures ofA ∪ B andA ∩ B under miop operators
associated withP ,

then we can effectively decide whether a codec(A) is the code of a stable model ofP .
There are several examples where conditions (i), (ii), and (iii) can be realized.

(1) LetX = N and assume that the atoms are codes for finite sets. For instance, we
can let the code of the finite set{x1, . . . , xn} be

∑
i 2

xi and the code of the empty set
be 0. If the miops are just the identity operators, then clearly conditions (i)-(iii) are sat-
isfied. Thus the scheme proposed above can be realized for programs using such codes.

(2) Another example consists of the finite dimensional subspaces of the spaceQn.
Such subspace can be coded by any of its bases. The miop in thiscase is the subspace
generated by a given set of vectors. Clearly, given two basesB1 andB2 for subspaces
S1 andS2 of Qn, respectively, we can generate effectively fromB1 andB2 a basis for
the least space containing the union ofS1 andS2. We can test if one space is included
in another, and see if there is any vector different from the 0-vector in their intersec-
tion. Thus again, we can reason about such spaces with normallogic programs and
form weak and strong answer sets.

(3) The third example is one where one naturally wants to use non-trivial miops.
Namely, the space isQ2 and the collectionX consists of convex polygons inQ2 de-
termined by lines with rational slopes. The codes are sets ofthe extreme points of
polygons. The miop isclconvex . There are effective procedures for computation of the
code of the closure of the union of two polygons, as well as fortesting inclusion and
disjointness. Thus, we can reason about such polygons, and compute weak and strong
answer sets for programs with atoms being codes for convex polygons.

(4) The fourth example of a situation where we can reason about infinite sets that are
regular languages. Here, the codes are the regular expressions for the language or a
DFA which accepts the language. The sense function assigns to the code the regular
set it describes.

We shall expand on example 4 to illustrate how conditions (i), (ii), and (iii) can
naturally be satisfied. It is well known that given two deterministic finite automata
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(DFA) A1 andA2 one can effectively decide whether the languagesL(A1) andL(A2)
accepted byA1 andA2, respectively, satisfyA1 ⊆ A2, A1 = A2, or A1 ∩ A2 = ∅.
Similarly, one can effectively construct DFA’s which accept L(A1) ∪ L(A2), L(A1) ∩
L(A2), andΣ∗ − L(A1).

We say that a miopop : 2Σ
∗

→ 2Σ
∗

is effectively automata-preservingif for any
DFA M whose underlying alphabet of symbols isΣ, we can effectively construct a
DFA N whose underlying alphabet of symbols isΣ such thatL(N) = op(L(M)).
For example, suppose thatΣ = {0, 1, . . . ,m}. Then, the following are effectively
automata-preserving operators.

1. If N is a DFA whose underlying set of symbols isΣ, then we can defineop :
2Σ

∗

→ 2Σ
∗

by settingop(S) = S∪L(N) for anyS ⊆ Σ∗. Clearly ifS = L(M)
for some DFAM whose underlying set of symbols isΣ, thenop(L(M)) =
L(M ∪N) soop is effectively automata-preserving.

2. If N is a DFA whose underlying set of symbols isΣ, then we can defineop :
2Σ

∗

→ 2Σ
∗

by settingop(S) = S∩L(N) for anyS ⊆ Σ∗. Clearly ifS = L(M)
for some DFAM whose underlying set of symbols isΣ, thenop(L(M)) =
L(M ∩N) soop is effectively automata-preserving.

3. If T is any subset ofΣ, we can letop(S) = S(T ∗). Again op will be an ef-
fectively automata-preserving miop since ifM is DFA whose underlying set of
symbols isΣ, then letN be NFA constructed fromM by adding loops on all
the accepting states labeled with letters fromT . It is easy to see thatN accepts
L(M)T ∗ and then one can use the standard construction to find a DFAN ′ such
thatL(N ′) = L(N). Notice that in the special case whereT equalsΣ, we can
think of op as constructing the upper ideal ofS in Σ∗ relative to the partial order
⊑ where for any wordsu, v ∈ Σ∗, u ⊑ v if and only ifu is prefix ofv, i.e. v is of
the formuw for somew ∈ Σ∗. For any poset(P,≤P ), we say that a setU ⊆ P
is anupper idealin P , if wheneverx ≤P y andx ∈ P , theny ∈ P . Clearly, for
the poset(Σ∗,⊑), op(S) is the upper ideal of(Σ∗,⊑) generated byS.

4. LetP = (Σ,≤) be a partially-ordered set. For anyw,w′ ∈ Σ∗, we say that
w′ is a factor ofw if there are wordsu, v ∈ Σ∗ with w = uw′v. Define the
generalized factor orderon P ∗ by letting u ≤ w if there is a factorw′ of w
having the same length asu such thatu ≤ w′, where the comparison ofu and
w′ is done componentwise using the partial order inP . Again we can show that
if op(S) is the upper ideal generated byS the generalized factor order relative
to P ∗, thenop is an effectively automata-preserving miop. That is, if we start
with a DFAM = (Q,Σ, δ, s, F ), then we can modifyM to an NFA that accepts
op(L(M)) as follows. Think ofM as a digraph with edges labeled by elements
of Σ in the usual manner. First, we add a new start states0. There are loops from
s0 labeled with all letters inΣ. There is also aλ-transition froms0 to the old
start states. We then modify the transitions inM so that if there is an edge from
stateq to q′ labeled with symbolr, then we add an edge fromq to q′ with any
symbols such thatr ≤ s. Finally we add loops to all accepting states such that
labeled with all letters in inΣ.

26



Then Marek and Remmel [MR11] proved the following theorem.

Theorem 4.3. Suppose thatP is a finite set-based logic program overL = (L,X, [[·]])
whereX = Σ∗ for some finite alphabetΣ andop+ : 2Σ

∗

→ 2Σ
∗

andop− : 2Σ
∗

→ 2Σ
∗

are effectively automata-preserving miops. Moreover, assume that for any atomA
which appears inQ, [[A]] is a language accepted by a DFA whose underlying set of
symbols isΣ. Then:

1. Every weak (strong) stable model ofP is a language accepted by a DFA.

2. For any DFAM whose underlying set of symbols isΣ, we can effectively decide
whetherL(M) is a weak or strong stable model ofP .

5 Hybrid ASP

In this section, we shall give the definition of Hybrid ASP programs and stable models
as defined by Brik and Remmel [BR11b].

The goal of Hybrid ASP is to allow the user to reason about dynamical systems
that exhibit both discrete and continuous aspects. The unique feature of Hybrid ASP is
that Hybrid ASP rules can be thought of as general input-output devices. In particular,
Hybrid ASP programs allow the user to include ASP type rules that act as controls for
when to apply a given algorithm to advance the system to the next position.

Modern computational models and simulations such as the model of dog’s heart de-
scribed in [KNGBOM07] rely on existing PDE solvers and ODE solvers to determine
the values of parameters. Such simulations proceed by invoking appropriate algorithms
to advance a system to the next state, which is often distanced by a short time inter-
val into the future from the current state. In this way, a simulation of continuously
changing parameters is achieved, although the simulation itself is a discrete system.
The parameter passing mechanisms and the logic for making decisions regarding what
algorithms to invoke and when are part of the ad-hoc control algorithm. Thus the laws
of a system are implicit in the ad-hoc control software.

On the other hand, action languages [GL98] which are also used to model dynami-
cal systems allow the users to describe the laws of a system explicitly. Initially action
languages did not allow simulation of the continuously changing parameters, which
severely limited applicability of such languages. Recently, Chintabathina introduced
an action languageH [Ch10] where he proposed an elegant approach to modeling con-
tinuously changing parameters. That is, a program in H describes a state transition
diagram of a system where each state models a time interval inwhich the parameter
dynamics is a known function of time. However, the implementation of H discussed in
[Ch10] cannot use PDE solvers nor ODE solvers.

Hybrid ASP is an extension of ASP that allows users to combinethe strength of the
ad-hoc approaches, i.e. the use of numerical methods to faithfully simulate physical
processes, and the expressive power of ASP which provides the ability to elegantly
model laws of a system. Hybrid ASP provides mechanisms to express the laws of
the modeled system via hybrid ASP rules which can control execution of algorithms
relevant for simulation.
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We should note that any given dynamical system may have a single trajectory or
have multiple trajectories if the system is non-deterministic. For example, in our James
Bond model given in the introduction, our agent may have two possible trajectories
which would get him to his desired destination as pictured inFigure 2.
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Figure 2: Multiple trajectories.

We shall start out this section by describing a simplified version of Hybrid ASP
program which Brik and Remmel called Basic Hybrid ASP (BH-ASP) programs.

5.1 Basic Hybrid ASP

A BH-ASP programP will have an underling parameter spaceS. For example, in our
secret agent example, imagine that we allow James Bond to make decision every∆
seconds where∆ > 0. Then one can think of describing the position and situationat
timek∆ by a sequence of parameters

x(k∆) = (x0(k∆), x1(k∆), x2(k∆), . . . , xm(k∆))

that specify both continuous parameters such as time, position, velocity, and accel-
eration as well as discrete parameters such as is the car configured as a car or as a
boat. In a BH-ASP program, we shall always think of the parameterx0 as specifying
time and the range ofx0 is {k∆ : k = 0, . . . , n} for some fixedn or of the form
{k∆ : k ∈ N}. In particular, for finite BH-ASP programs, we shall assume that the
range ofx0 is {k∆ : k = 0, . . . , n} for some fixedn and∆ > 0. Thus we shall always
write an element ofS in the formx = (k∆, x1(k∆), . . . , xm(k∆)) for somek. We
refer to the elements ofS asgeneralized positions. A BH-ASP program will also have
an underlying set of atomsAt. Then the underlying universe of the program will be
At× S.

Suppose thatM ⊆ At × S. Then we letM̂ = {x : (∃a ∈ At)((a,x) ∈ M)}.
We will say thatM satisfies(a,x) ∈ At × S, writtenM |= (a,x), if (a,x) ∈ M .
For any element(k∆, x1, . . . , xm) ∈ S, we letWM ((k∆, x1, . . . , xm)) = {a ∈ At :
(a, (k∆, x1, . . . , xm)) ∈M} and we shall refer toWM (k∆, x1, . . . , xm) as theworld
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of M at the generalized position(k∆, x1, . . . , xm). We say thatM is a single tra-
jectory model if for eachk ∈ {0, . . . , n}, there is exactly one generalized position
of the form(k∆, x1, . . . , xm) in M̂ . If M is a single trajectory model, then we let
(k∆, x1(k∆), . . . , xm(k∆)) be the unique element of the form(k∆, x1, . . . , xm) in
M̂ and we can writeM as a disjoint union

M =

n⊔

k=0

WM (k∆, x1(k∆), . . . , xm(k∆))× {(k∆, x1(k∆), . . . , xm(k∆))}.

We will say thatM is amultiple trajectory model if for eachk ∈ {0, . . . , n}, there
is at least one generalized positions of the form(k∆, x1, . . . , xm) in M̂ and for some
0 ≤ k0 ≤ n, there are at least two generalized position of the form(k∆, x1, . . . , xm) in
M̂ . The reason for introducing multiple trajectory models is that we may want to rea-
son about all possible trajectories of our secret agent rather than just reasoning about
a single trajectory. If we drop the requirement that for eachk∆, there is a general-
ized position(k∆, x1, . . . , xm) ∈ M̂ in the definition of single trajectory or multiple
trajectory models, we get what we callpartial single trajectoryandpartial multiple
trajectorymodels.

BH-ASP programs consist of collections of the following twotypes of clauses.

Stationary clausesare of the form

a← a1, ..., as, notb1, ..., notbt : O (16)

wherea, a1, ..., an, b1, ..., bm ∈ At, O is a set of generalized positions in the parame-
ter spaceS. The idea is that if for a generalized positionp ∈ O, if (ai,p) holds for
i = 1, ..., s and(bj ,p) does not hold forj = 1, ..., t, then(a,p) holds. Thus stationary
clauses are typical normal logic programming clauses relative to a fixed worldWM (p).

Advancing clausesare of the form

a← a1, ..., as, notb1, ..., notbt : A,O (17)

wherea, a1, ..., an, b1, ..., bm ∈ At, O is a set of generalized positions in the parameter
spaceS andA is an algorithm such that for any generalized positionp ∈ O, A(p) is
defined and is an element ofS. HereA can be any sort of algorithm which might be the
result of solving a differential or integral equation, solving a set of linear equations or
linear programming equations, running a program or automaton, etc. The idea is that
if for a generalized positionp ∈ O, if (ai,p) holds fori = 1, ..., s and(bj ,p) does not
hold for j = 1, ..., t, then(a,A(p)) holds. We will require that for allp ∈ O, A(p)
always produces the same output. In a BH-ASP program, we willalways assume that
if p = (k∆, x1, . . . , xm), thenA(p) is of the form((k + 1)∆, y1, . . . , ym) for some
y1, . . . , ym. Thus advancing clauses are like input-output devices in that the algorithm
A allows certain elementsa which are to hold at the next generalized position.

In both advancing clauses and stationary clauses, we shall refer to the setO as the
constraint setof the clause. The idea here is thatO allows one to use a single clause to
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specify clauses that can be used at a variety of generalized positions. We shall refer to
the algorithmA in advancing clause as theadvancing algorithmof the clause.

A BH-ASP Horn programH is a collection of clauses of the form (16) and (17)
such that there are no occurrences ofnot in any of its clauses. Aconsistent BH-ASP
Horn programG is a BH-ASP Horn program such that if(A,O) and(A′, O′) appear
in H , thenA ↾O∩O′= A′ ↾O∩O′ , where for an algorithmB and set of positionsK,
B ↾K is the restriction of the algorithm to the domainK.

Next we introduce the one-step provability operator for BH-ASP Horn programs.
Let I be an initial generalized position inS, M be a subset ofAt×S, andP be a basic
hybrid Horn program. Then we defineTP,I(M) to be the union ofM and the set of all
atoms(a,p) such that either

1. there existsC = a ← a1, ..., an : O ∈ P andp ∈ (M̂ ∪ {I}) ∩ O such that
(ai,p) ∈M for i = 1, ..., n or

2. there existsC = a ← a1, ..., an : A,O ∈ P andq ∈ (M̂ ∪ {I}) ∩O such that
(ai,q) ∈M for i = 1, ..., n andp = A (q).

It is easy to see thatTP,I is a continuous monotone operator so that the least fixpoint
of TP,I is

TP,I(∅)
ω =

⋃

n≥0

T n
P,I(∅).

A BH-ASP programis a collection of clauses of the form (16) and (17). We shall
define two types of stable models: partial multiple trajectory stable models and partial
single trajectory stable models. LetP be a BH-ASP program over the parameter setS
and sets of atomsAt. Suppose thatI = (0, x1, . . . , xm) ∈ S is an initial condition and
M ⊆ At× S is a partial multiple trajectory model. Then theGelfond-Lifschitz reduct
of P with respect toM and I is denoted byPM,I and is defined by the following
procedure.

1. Eliminate fromP all clausesC = a← a1, ..., an, notb1, ..., notbm : A,O such

that(∀p ∈
(
M̂ ∪ {I}

)
∩O)((∃i)((bi,p) ∈M) orA (p) /∈ M̂).

2. If a clauseC is not eliminated in step (1), then replace it by the clausea ←
a1, ..., an : A,O′ where

O′ equals the set of allp such thatp ∈
(
M̂ ∪ {I}

)
∩ O and(bi,p) /∈ M for

i = 1, . . . ,m andA (p) ∈ M̂ .

3. Eliminate fromP all clausesC = a ← a1, ..., an, notb1, ..., notbm : O such

that(∀p ∈
(
M̂ ∪ {I}

)
∩O)(∃i)((bi,p) ∈M).

4. If a clauseC in (3) is not eliminated, then replace it by the clause

a← a1, ..., an : O′

whereO′ =
{
p| p ∈

(
M̂ ∪ {I}

)
∩O and∀i = 1, ...,m ((bi,p) /∈M)

}
.
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Clearly,PM,I is always a BH-ASP Horn program. IfM is a partial single trajectory
model, then it is easy to see that it must be the case thatPM,I is a consistent BH-ASP
Horn program. Then we say thatM is a stable model ofP with initial conditionI if
TPM,I ,I (∅)

ω
= M . If, in addition,M is a partial single trajectory model so thatPM,I

is a consistent hybrid Horn program, then we say thatM is apartial single trajectory
stable model ofP with initial conditionI.

5.2 Hybrid ASP programs.

There are several features which are not available in BH-ASPprograms that one would
like to have in an ASP system that can reason about dynamic systems exhibiting a
mixture of continuous and discrete phenomena. For example,here is a partial list of
features that one would like to have.

1. The restriction that in BH-ASP programs, advancing clauses always have con-
clusions that represent information that occur at a fixed time interval∆ later than
the current time is inconvenient. For example, in our James Bond example, the
dynamics changes as we go from the mountain to the lake and as we go from the
lake to the desert, but the time of such transitions may not bea multiple of of∆.

2. It is often useful to specify that certain invariance properties hold over a set of
times or generalized positions so that it may be desirable tohave clauses whose
hypothesis refer to two or more different generalized positions.

3. In a BH-ASP program, every algorithm is required to produce the values for
all the parameters in a generalized position. As a number of parameters grows
such a requirement could become a serious drawback. In many cases, it would
be more convenient if an algorithm was allowed to specify values of only some
of the parameters, letting other parameters be ”unspecified” and possibly allow
unspecified values to be assigned by algorithms associated with other clauses.

4. There is the issue of how to deal with imprecise computations. That is, if our
algorithm is to solve a partial differential equation numerically, we may not be
able to get exact answers but only produce an answer that liesdistanceǫ from
the exact answer. Similarly, we may want to use randomized algorithms. For
this reason, we might want to allow our algorithms to be set-valued rather than
specify functions.

To deal with such issues, Brik and Remmel [BR11b] introducedan extension of
BH-ASP which they called Hybrid ASP (H-ASP for short). As before, we start with
a parameter spaceS consisting of tuples of parametersp = (vt, v1, ..., vk) and a set
of atomsAt. If p = (vt, v1, ..., vk) ∈ S, we will assume thatvt is always the time
parameter and we lett(p) denotevt andvi(p) denotevi for i = 1, . . . , k. The universe
U of a hybrid ASP program will equalAt× S.

GivenM ⊆ At × S, B = a1, . . . , an, notb1, ..., notbm, andp ∈ S, we say that
M satisfiesB at the generalized positionp, written M |= (Bi,p), if (ai,p) ∈ M
for i = 1, . . . , n, and(bj ,p) 6∈ M for j = 1, . . . ,m. Notice that ifBi is empty
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thenM |= (Bi,p) holds. We letposBody(Bi) = a1, . . . , an andnegBody(Bi) =

notb1, ..., notbm. Let M̂ = {x : (∃a ∈ At)((a,x) ∈M)}.
There are two types of clauses in H-ASP programs.

Extended stationary clausesare of the form

a← B1, B2, . . . , Br : H,O (18)

where eachBi is of the forma
(i)
1 , . . . , a

(i)
ni , notb(i)1 , ..., notb(i)mi wherea

(i)
1 , ....a

(i)
ni ,

b
(i)
1 , ..., b

(i)
mi are atoms,a is an atom,O ⊆ Sr is such that if(p1, . . . ,pr) ∈ O, then

t(p1) < · · · < t(pr), andH is a Boolean valued algorithm. Here and in subsequent
clauses, we allowni ormi to be equal to 0 for any giveni. Moreover, ifni = mi = 0,
thenBi is empty and we automatically assume thatBi is satisfied by anyM ⊆ At×S.

The idea is that if(p1, . . . ,pr) ∈ O and for eachi, Bi is satisfied at the general
positionpi, andH(p1, . . . ,pr) is true, then(a,q) holds. Thus extended stationary
clauses in H-ASP are similar to stationary clauses in BH-ASPexcept that we allow the
clause to refer to generalized positions that occur at multiple times up to and including
the timet(pr) where we require the pair(a,pr) to hold, and we allow a user to specify
an additional constraint on the tuples of positions via an algorithmH . For example,
H could involve such non-logical conditions as that the generalized position satisfies
some system of linear equations or that there exist clauses in the program that could be
used to advance positionpi to positionpi+1 for all i = 1, . . . , r − 1. We shall refer to
O as theconstraint setof the clause and the algorithmH as theBoolean algorithmof
the clause.

Extended advancing clausesare of the form

a← B1, B2, . . . , Br : A,O (19)

whereA is an algorithm and eachBi is of the forma
(i)
1 , . . . , a

(i)
ni , notb(i)1 , ..., notb(i)mi

wherea(i)1 ,....a(i)ni , b(i)1 , ..., b
(i)
mi are atoms,a is atom, andO ⊆ Sr is such that if

(p1, . . . ,pr) ∈ O, thent(p1) < . . . < t(pr) and for allq ∈ A(p1, . . . ,pr),
t(q) > t(pr).

The idea is that if(p1, . . . ,pr) ∈ O and for eachi, Bi is satisfied at the general
positionpi, then the algorithmA can be applied to(p1, . . . ,pr) to produce a set of
generalized positionsO′ such that ifq ∈ O′, thent(q) > t(pr) and(a,q) holds. Thus
advancing clauses in H-ASP are similar to advancing clausesin BH-ASP except that
we allow a clause to refer to generalized positions that occur at multiple times up to and
including the timet(pr) and our algorithmA is set-valued rather than single valued.
As before, we shall refer toO as theconstraint setof the clause and the algorithmA
as theadvancing algorithmof the clause.

An H-ASP program is a collection of clauses of the form (18) and (19). AH-ASP
Horn programis a H-ASP program which does not contain any occurrences ofnot . A
consistent H-ASP Horn programP is an H-ASP program such that if whenever two
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pairs of an advancing algorithm and a constraint set,(A,O) and(A′, O′), appear inP
andO,O′ ⊆ Sr, thenA ↾O∩O′= A′ ↾O∩O′ .

LetP be a H-ASP Horn program andI ∈ S be an initial condition such thatt(I) =
0. Then the one-step provability operatorTP,I is defined so that givenM ⊆ At × S,
TP,I(M) consists ofM together with the set of all(a, J) ∈ At× S such that

1. there exists an extended stationary clauseC = a← B1, B2, . . . , Br : H,O and

(p1, . . . ,pr) ∈ O ∩
(
M̂ ∪ {I}

)r

such thatH (p1, . . . ,pr) = 1 and

(a, J) = (a,pr) andM |= (Bi,pi) for i = 1, . . . , r or

2. there exists an advancing clauseC = a← B1, B2, . . . , Br : A,O and

(p1, . . . ,pr) ∈ O ∩
(
M̂ ∪ {I}

)r

such that(a, J) ∈ A(p1, . . . ,pr) and

M |= (Bi,pi) for i = 1, . . . , r.

It is easy to see that for all H-ASP Horn programsP and initial conditionsI ∈ S
such thatt(I) = 0, TP,I is a continuous monotone operator so that the least model of
P relative to the initial conditionI is given byTω

P,I(∅).
We can then define the stable model semantics for general H-ASP programs as

follows. Suppose that we are given a hybrid ASP programP , over a set of atomsAt
and a parameter spaceS, a setM ⊆ At × S, and an initial conditionI ∈ S such that
t(I) = 0. Then we form the Gelfond-Lifschitz reduct ofP overM andI, PM,I as
follows.

1. Eliminate fromP all advancing clausesC = a ← B1, . . . , Br : A,O such that
for all (p1, . . . ,pr) ∈ O, there is ani such thatM 6|= (negBody(Bi),pi) or
A (p1, . . . ,pr) ∩ M̂ = ∅ .

2. If the advancing clauseC = a ← B1, . . . , Br : A,O is not eliminated by
(1), then replace it bya ← B+

1 , . . . , B
+
r : A+, O+ where for eachi, B+

i =

posBody (Bi), O+ is equal to the set of all(p1, . . . ,pr) in O ∩
(
M̂ ∪ {I}

)r

such thatM |= (negBody(Bi),pi) for i = 1, . . . , r andA(p1, . . . ,pr) ∩ M̂ 6=
∅, andA+ is defined so that the domain ofA+ is O+ andA+(p1, . . . ,pr) is
A(p1, . . . ,pr) ∩ M̂ for all (p1, . . . ,pr) ∈ O+.

3. Eliminate fromP all extended stationary clausesC =← B1, . . . , Br : H,O
such that for all(p1, . . . ,pr) ∈ O, either there is ani such that
M 6|= (negBody(Bi),pi) orH(p1, . . . ,pr) = 0.

4. If the extended stationary clauseC = a← B1, . . . , Br : H,O is not eliminated
by (3), then replace it bya ← B+

1 , . . . , B
+
r : H,O+ where for eachi, B+

i =

posBody (Bi), O+ is equal to the set of all(p1, . . . ,pr) in O ∩
(
M̂ ∪ {I}

)r

such thatM |= (negBody(Bi),pi) for i = 1, . . . , r andH(p1, . . . ,pr) = 1.
Let H+ be the restriction ofH toO+.

We then say thatM is ageneral stable model ofP with initial conditionI if TPM,I (∅)ω =
M.
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We believe that the point of view of thinking of rules as general input-output devices
has the potential for many new applications of ASP techniques. Thus we believe that
one should view Brik and Remmel’s work on H-ASP programs [BR11b] as a first step
for further work that will lead to both theoretical tools used for the modeling and analy-
sis of dynamic systems and for computer applications that simulate dynamical systems.
There is considerable work to be done in developing a theory of such programs which
would be similar to the theory that has been developed for ASPprograms. For exam-
ple, a careful analysis of the complexity of the stable models of a H-ASP programs as
a function to the complexity of the advancing and Boolean algorithms in the program
needs to be done. One should explore more extended sets of rules that allows for par-
tial parameter passing or allow different rules to instantiate disjoint sets of parameters
for the next time step. We need to develop extensions of ASP solvers that can pro-
cess Hybrid ASP programs. That is, in action languages like H, the goal is to compile
an H program into a variant ASP program that can be processed with current variant
ASP solvers. The existence of Hybrid ASP solvers would allowus to develop Hybrid
ASP type extensions of action languages like H that could be compiled to Hybrid ASP
programs which, in turn, would be processed by Hybrid ASP solvers.

6 Conclusions

While there are several declarative formalisms that deal with finite-domain constraint-
satisfaction, two of these, ASP and Satisfiability (SAT) [BHMW09] are logic-based.
However, the motivations of these two technologies are different. ASP is extensively
discussed above and is based on generalizations of Horn logic and knowledge repre-
sentation. On the other hand, SAT has its roots in the theory of computation and has
significant applications in electronic design automation.However, at least up until now,
the SAT community did not pay much attention to the issue of constraint representa-
tion. The tools available for a programmer to prepare the input clausal theory for the
solver as well as tools for decoding the results returned by the solver have traditionally
been very limited. By contrast, ASP has its roots in Knowledge Representation as un-
derstood by the Artificial Intelligence community. Thus researchers in ASP have been
much more sensitive to the issue of proper representation ofconstraints and providing
a bigger repertoire of tools that could support the programmer. Example of such tools
includegroundersthat support the use of variables and pseudo-Boolean constraints.
The work of thedlv designers shows that solvers can also be tightly coupled with
traditional database systems.

It is only natural to ask whether there are further steps thatcan be taken to increase
the applicability of ASP and its underlying logic and universal algebra mechanisms.
As ASP solvers such asclasp [GKNS07] have recently become fast enough to com-
pete with SAT solvers, it is worth to ask whether the knowledge representation tools
available to the ASP programmer can be further extended. Putslightly differently, one
should ask if the mechanism of context-dependent reasoningas discovered by Gelfond
and Lifschitz can be applied to a richer class of applications that go well beyond finite
domain constraint satisfaction. As shown in a number of our papers quoted in this
paper, the abstract mechanism of fixpoint computation, based on the abstract form of
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the Knaster-Tarski fixpoint theorem, can be extended to muchricher programming en-
vironments by properly interpreting the Gelfond-Lifschitz construction of stable mod-
els. Conceptually, this is akin to Satisfiability-Modulo-Theories. This observation has
been made in a variety of forms by a number of other authors, especially, in [Nie09]
and [MGZ08]. We have presented four such extensions in this paper. However, we
should note that all of these extensions are compatible in that one can incorporate all
the features of these extensions into a single system. In other words, by choosing
appropriate libraries for processing various classes of constraints, one could use an
abstract Gelfond-Lifschitz mechanism for stable model computation as a single pro-
cessing paradigm. A step in this direction was made by Lierler who proposed such
abstract mechanism in [Lie08]. The next step is to develop efficient solvers for such
extensions so that one can extend the range of applications of ASP systems. This is a
highly complex task, but one that we think is worth the effort.

We hope our review of these four extensions of ASP will motivate other researchers
in ASP to investigate new extensions of ASP. This is a topic that has interested us over
the last 15 years and we feel that there is still much more workto be done on the theory
of such extensions, the implementations of such extensions, and the applications of
such extensions.
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