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Abstract

We discuss a number of possible extensions of Answer Set&mwging. The

four formalisms we investigate are:

1. logic programs where the negative parts of the bodiesainsels can be re-
placed by arbitrary constraints which we call Arbitrary Gtraint Logic Pro-
gramming (ACLP),

2. logic programs where we are allowed arbitrary set coimgtagdoms,

3. logic programs where atoms represent sets from some fetedd and the
one-step provability operator is composed with a monotdeenpotent op-
erator or2* which we call Set-based Logic Programming (SBLP), and

4. logic programming where the clauses (rules) have emledtiporithms
which we call Hybrid Answer Set Programming (H-ASP).

Introduction

Past research has demonstrated that logic programmingthétianswer-set seman-
tics, known asnswer-set programmingr ASP, for short, is an expressive knowledge-
representation formalism [MT99, Nie99, Lif99, GL02, Bay@BR04]. The availability
of the non-classical negation operatmt allows the user to model incomplete infor-
mation, frame axioms, and default assumptions such as titymssumptions and the
closed-world assumption (CWA). Modeling these conceptslagsical propositional
logic is less direct [GL02] and typically requires much kargepresentations. In addi-
tion, current implementations of ASP support aggregateatjpss over finite sets or,
more generally, constraints over finite sets.



A fundamental methodological principle behind ASP, whidsudentified in [MT99,
Nie99], is that to model a problem, one designs a programegdtanswer seesncode
or representproblem solutions. This is in contrast with the traditionaly automated
reasoning is used in knowledge representation, whichsrelieproof-theoretic meth-
ods of resolution with unification. Niemela [Nie99] hasaegd that logic programming
with the stable-model semantics should be thought of asgukage for representing
constraint satisfaction problems. Thought of from thisypaif view, ASP systems are
ideal logic-based systems to reason about a variety of yfegta and integrate quan-
titative and qualitative reasoning. ASP systems allow $@sito describe solutions by
giving a series of constraints and letting an ASP solverctefar solutions. In [MRO3]
it is shown that such systems can, in principle, solve anysii&-ch problem [MRO03],
i.e. any FNP problem as described in [BG94].

In this paper, we shall consider several ways to extend ansgteprogramming.
One of our main motivations for considering extension ofwarsset programming is
that currentsolverssuch ascmodelgBL02], smodeldSNS02], assat[LZ02], clasp
[GKNSO07], dlv [LPFO6], ppbmodeldLTO5b] andaspps[ET06, EIMTO6] have no sys-
tematic way to reason about infinite sets. Of course, thesaésobvious way that one
can use to reason about infinite sets in logic programmingehg we can add func-
tion symbols to the language. However, adding function syisito the language has
significant drawbacks, especially with regard to compiextor example, finding the
least model of a finite Horn program with no function symbas de done in linear
time [DG84] while the least model of a finite predicate logierd program with func-
tion symbols can be an arbitrary recursively enumerabl¢Sat68]. If we consider
logic programs with negation, Marek and Truszczyhski [MT'8howed that the ques-
tion of whether a finite propositional logic program has &kanodel is NP-complete.
However Marek, Nerode, and Remmel [MNR92] showed that thestijon of whether
a finite predicate logic program with function symbols pesss a stable model 33
complete. Similarly, the stable models of logic programet ttontain function sym-
bols can be quite complex. Starting with [AB90] and contiquivith [BMS95] and
[MNR92], a number of results showed that the stable modeleg@€ programs that
allow function symbols can be exceedingly complex, evetadase where the pro-
gram has a unique stable model. For example, Marek, NeratiRammel [MNR92]
showed that there exist finite predicate logic programs whiave stable models but
which have no hyperarithmetic stable models. Thus thereisape to have general
processing engines that will handle normal logic prograritis function symbols.

These complexity results for logic programs with functigméols may seem quite
negative, but they had a positive effect in the long run irt thay forced researchers
and designers to limit themselves to cases where programisecactually processed.
The effect was that processing programs cadlelderssuch axmodeldBL02], smod-
els[SNS02],assat[LZ02], lasp[GKNSO07], anddlv [LPFO06], pbmodelgLTO5b] and
aspps[ET06, EIMTO06], had to focus on finite programs that do not @domction
symbols. Thallv system does allow for some limited use of functions symbmith
the idea which is common in Computer Science that it is prognar’s responsibility
to write programs that the system can process. But at thigt,podne of the existing
solvers have good ways to deal with infinite sets.

Why do we need to reason about infinite sets? Clearly, if ongsia reason about



regions in Euclidean space or time intervals,then one idigitlp reasoning about in-
finite sets although one often can get by with finite des@iior approximations.
However, we believe that another source of need for reag@atiaut infinite sets comes
from the many interactions with the Internet that are rezpifior modern applications
which gives rise to the need to reason about sets and dasavhgeh are extremely
large and/or are constantly changing and evolving. We cthahinfinite sets offer an
effective way to address problems involving large finitesgbtait do not have a clear
structure and may change rapidly. Such finite sets often tlban@ concise represen-
tations, and manipulating them based on their explicit esnations is impractical. On
the other hand, infinite approximations to these large fg#ts, if chosen appropriately,
may have structure that makes concise finite represensgtiossible and possibly al-
low for effective reasoning and processing. For instantarge database of documents
and the set of WWW pages are examples of very large setsegtiteg subsets of which
can be thought of conceptually as infinite sets, e.g., “atloheents containing a given
string”. Often such sets can be described as regular larguag] hence have a finite
description. In addition, a set of localities that might liieeted by a tornado or the
scope of a battlefield provide examples of finite sets thamgbaapidly. Thus it may
be more convenient to find approximations such as polygovertw the affected ar-
eas that lend themselves to easy manipulation. In each whde, the finite sets of
interest may have no small representations, the infinitelsstd as approximations do
- a feature that can be exploited in automated reasoning.

For yet another example, consider the problem of contigbin unmanned under-
water vehiclel. Given parameters such as position, velocity and direafanotion,
as well as the model of the environment in which the vehicle@spwe can describe
constraints on various subsets of the set of possible toajes of the vehicle that main-
tain the vehiclé/ in stable condition. Here, not only is each trajectory inénbut the
set of trajectories that kedp stable may also be infinite. The many-dimensional space
describing the vehicle status, and other features of theelesis a regionX C R™, and
the desired regions, where the vehicle needs to be can bedr@asubsets of the same
R™. There are, potentially many such regions. One reasonabteawdescribing them
is by means of constraints on subset$6f

The designers of the solvers have also focused on the issussttoimproving
the processing of the logic programs, i.e. finding more efficivays to search for a
stable models, and improving the use of logic programs a®gramming language.
The latter task consists of extending the constructs avaita the programmer to make
programming easier and more readable. The extensions oftfsRe shall talk about
in this paper can be viewed as part of this latter task.

The basic idea behind all the extensions that we shall disituthis paper is to
carefully consider the definition of the stable model or agrsset semantics via the
Gelfond-Lifschitz transform and to consider ways in whiblattgeneral mechanism
can be extended. To make our ideas more precise, we shély beeiew the definition
of stable models for propositional and predicate logic paats.

A (propositional)ogic programming clause an expression of the form

C=p<+q,...,qm, NOtry,...,N0tr, (1)

wherep, q1,...,qm,71, - .., T, are atoms from a fixed set of atords. The atonp in



the clause above is called theadof C (head(C)), and the expression
qis---5Qm,N0try, ..., Notr,,

with ‘" interpreted as the conjunction, is called thedyof C (body(C)). The set
{q1,...,qn} is called thepositive part of the bodpf C' (posBody(C)) and the set
{r1,...,mm}is called thenegative part of the bodyf C' (negBody(C')). Given any set
M C At and atomu, we say thaf\/ satisfies: (nota), written M = a (M = nota), if
a € M (a ¢ M). We say thalM/ satisfiesC, written M = C, if wheneverM satisfies
the body ofC, then M satisfies the head @f. A normal logic progranP is set of
clauses of the form of (1). We say th&f C At is a model ofP, written M | P, if
M satisfies every clause .
A (propositional) Horn clause is a logic programming claakthe form

H=p<+qi,...,qm (2)

wherep,q1,...,qn € At. Thus in a Horn clause, the negative part of its body is
empty. A Horn progran® is a set of Horn clauses. Each Horn progr&rhas a least
model under inclusion relatiod,M p, which can defined using the one-step provability
operatorTp. For any setd, let 24 denote the set of all subsets 4f The one-step
provability operatofl’p : 24 — 24 associated with the Horn prograf[VEK76] is
defined by setting:

Tp(M)={p:3C € P(p = head(C) AN M = body(C))} (3)

for any M € 24. We definel’s(M) by induction by setting’, (M) = Tp(M) and
TR (M) = Tp(TE(M)). Then the least moddl M can be computed as

LMp =Tp(0)" = | J TE(®).

n>1

If Pis anormallogic program antlf C A, then the Gelfond-Lifschitz transform
of P with respect ta\/ [GL88] is the Horn progrand: L p (M) which results by elimi-
nating those clauses of the form (1) such that; € M for some: and replacing”’ by
p < q1,---,q, Otherwise. We then say that is astable modebr ananswer sefor
P if M equals the least model 6fLp(M).

We should note that the operatbp makes perfectly good sense for any normal
logic program [AVE82]. The fixpoints of the operafBp are calledsupported models
of P. One can prove that every answer setfdis a supported model. Supported
models ofP can be shown to coincide with models of the completiodptomp(P)
[Cla78]. Ascomp(P) is a propositional theory, one can use SAT solvers to compute
its models and so, the supported model®oBy pruning those supported models that
are not answer sets, one can also compute answer sets by oi&AB solvers. This
possibility was successfully used in systems sudsaafl. Z02] andcmodel4BL02].
Moreoverassatandcmodeldmplement pruning by expanding the input program with
the so-calledoop formulagLZ02]. The process can be viewed as a version of clause
learning used in SAT solvers. Recent solvers which are irgireents orassatand
cmodelssuch aglaspare very efficient.



One can extend the notion of stable models to predicate frgigrams as follows.
A (predicate)ogic programming clause an expression of the form

C=p+<aq,...,qm, NOtry,... . notr, 4)

wherep, ¢1,...,qm,71,...,r, are atoms from some fixed first order languayeAs
in the case of propositional logic clauses, the atonm the clause above is called
the headof C' (head(C)), and the expressiof, . . ., G, NOtry, . .., notr,, with *;
interpreted as the conjunction, is called baglyof C' (body(C)). The sef{qi, ..., qn}
is called thepositive bodyof C (posBody(C)) and the se{ry,...,r,} is called the
negative body o€’ (negBody(C)). A ground instance of the claugéis a substitution
instance ofC' where we have uniformly replaced the free variable€'iwith ground
terms, i.e. terms with no free variables, so that resultirigstution instance has no
free variables. A predicate logic prografis a collection of clauses of the form
(4). We then letyround(P) denote the set of all ground instances of clauseB.in
Thusground(P) can be thought of as propositional logic program. We thertisatya
collection of ground atom3/, i.e. a subset of atoms df with no free variables, is a
stable modebr ananswer sebf P if and only if M is a stable model ofround(P).

In this paper, we shall consider four different extensioinhe basic stable model
paradigm described above.

Extension 1 Arbitrary Constraint Logic Programming.

Our first extension is to follow the paper of Marek, Nerodel Remmel [MNR95] and
consider logic programs with arbitrary constraints. Netieat in the definition of sta-
ble model ofP, the negative bodies of the clausestobnly play a role in determining
which Horn clauses end up L p(M). Thus the idea of [MNR95] is to replace these
negative bodies by arbitrary constraints so that we end tipalauses of the form

Pé— iy, qn: V. (5)

Here U is anytype of constraint such that gived C At, we can decide whethéi
satisfiest. Thus¥ does not even have to be in the original language of the pnogra
and it could express an infinite constraint such as the onegest by Marek, Nerode,
and Remmel in [MNR97]. Thus replacing negative bodies bitraty constraints pro-
vides a rich way to reason about all sorts of infinite constsain ASP which we call
Arbitrary Constraint Logic Programming (ACLP).

Extension 2 Adding set constraint atoms to logic programming.

A powerful extension of Answer Set Programming stems ouhefwork of Niemela

et.al. [SNS02]. The idea was to use as building blocks of fanmg not only atoms and
negated atoms, but expressions of the fétky where X is a finite set of atoms, and
k,l are nonnegative integers, smaller or equal than the size dfhe interpretation of

such constraint is “at leagtbut not more thai of atoms fromX are true in a putative
modelM”.

Later Marek and Remmel [MRO03] introduced set constrainmat@f the form
(X,F) whereX is a set andF is a finite set of subsets 6f. Subsequent research
of many authors [MR03, GL02, MNTO08, LT05a] led to significgmbgress in under-
standing such constraints. On the concrete level, arpisetrconstraints atoms include



weight constraints, SQL constraints, parity constraiats] other kinds of common
constraints, and, on the abstract level, include monotangémonotone, and convex
constraints. Adding arbitrary set constraint atoms todggiogramming is a natural
mechanism that allows the user to reason about large vasfetgnstraints in ASP

solvers and SAT solvers.

Set constraint atomsY, 7) whereX is an infinite set and is a finite set 02X can
also be used to reason about infinite sets. For example, Cénasek, and Remmel
[CRMO5] studied constraints of the forfX, 7) whereX is an infinite recursive set
and.F is a finite set of indices for certain recursive or recursiveiumerable subsets
of X.

We shall also briefly outline the work of Brik and Remmel [BR] that shows
how one can use arbitrary set constraint atoms to reasort pbefierences in ASP.
The ability to express preferences and to reason about tifentieely has many im-
portant applications to problems in planning and negatiesti Recent work by Brik
and Remmel [BR11a] has shown that set constraint atoms canvieey convenient
and compact way to express a wide variety of such prefereftes is, suppose that
we are given a set constraint atd, F) and weight functionut : 2X — Q where
Q is the set of rational numbers. Then our idea is that the wdigictionwt is de-
fined in such a way so that we prefer thdsec F which have the smallest weight.
For example, suppose that Dr. X is buying a car and the de#knsseveral option
packages such as you can have a red car with an automatimtsaien with a high
end CD player or you can have a blue car with standard trasgmignd a standard
CD player. Suppose that the blue car costs $25,000 and thearecbsts $35,000.
Let B stand for blueR stand for red A stand for automatic transmissia$i stand for
standard transmissiot{ C'D stand for high end CD player, artt” D stand for stan-
dard CD player. Suppose that the prices of the cars can b&@2325,000, $30,000,
$35,000. Thenwe leX = {B,R, A, S,HCD,SCD, 20000, 25000, 30000, 35000}
We can thenviewthe sét = {B, S, SCD, 20000}, F» = {R, A, HC D, 35000}, and
F; = {B,S,HCD, 25000} as option packages available from the car dealer. While
an individual may prefer red cars to blue cars, standardsingssions to automatic
transmission, and high end CD players to standard CD playat$o get the car at the
lowest possible price, there may be no such packaddias, HCD,20000}. Thus
the buyer has to choose from one the three packBAges,, or F3 so that we may have
a set constraint atorX, { F1, F», F3}). Now we can insist that a modél satisfies
the set constraintX, 7) by adding a clause of the form

(X, F) +. (6)

One can use an auxiliary weighting function to expressefepace in this case. For
example, we might definet(Fy) = 2, wt(F») = 1.5 andwt(F3) = 1. Of course,
the buyer’s spouse may have a different set of preferencésasave might want to
create two copies of theX, { F1, F», F3}), one for the husband and one for the wife.
Thus we might want to consider programs which have sevesakels of the form (6).
This leads to a natural weighting on modéfsof the program defined to be the sum of
wt(M N X) for all such clauses. The idea is that lower weighted moagisfg more
of the preferences incorporated by clauses of the form (6).



Often times in such situations, it is impossible to meetradividual preferences.
This can lead to programs that do not have stable models. @getavhandle this
problem is to specify hard preferences, those that have satigfied, and soft prefer-
ences, those that do not necessarily have to be satisfiedhé&mapproach is to look
for looks for subsets of preferences which can be satisfiddtda naturally leads one
to search for maximal subprograms of a progrBrwhich do have stable models. To
date, none of the ASP solvers have the ability to find such mabsubprograms. How-
ever, there is an algorithm called the forward chaining atgm developed by Marek,
Nerode, and Remmel [MNR94b] which does allow one to find suakimal subpro-
grams when the original program does not have a stable métsdently, Brik and
Remmel [BR10] have combined the forward chaining algorithitm the Metropolis
algorithm [Met53] to produce a novel Monte Carlo type algori to find such maxi-
mal subprograms.

Extension 3.Set-based logic programming.

Blair, Marek, and Remmel [BMRO01] observed that the ASP fdisnacan be signif-
icantly extended by allowing atoms to represent sets in soraed universeX. That
is, instead having the intended underlying universe be thbtand base of the pro-
gram, one replaces the underlying Herbrand universe by e spaceX and has
the atoms of the program specify subsetsxgfi.e. elements of the sétt, the set of
all subsets ofX.

If we reflect for a moment on the basic aspects of logic prognarg with an Her-
brand model interpretation, a slight change in our pointiefwshows that interpreting
atoms as subsets of the Herbrand base is quite natural. imahtygic programming,
we determine the truth value of an atgnmn an Herbrand interpretatiahby declaring
I &= pifandonly ifp € I. However, this is equivalent to defining the serfs#, of a
ground atonp to be the se{p} and declaring thai |~ p if and only if [p] C I. By
this simple move, we have permitted ourselves to interpreisense of an atom as a
subset, rather than the literal atom itself.

This given, Blair, Marek, and Remmel developed a systemttet calledspatial
logic programmingn [BMRO1] in which they showed that it is a natural step togak
the sensd]p] of a ground atonp to be a fixed assigned subset of some nonempty set
X and to define d C X to be a model op, written I = P, if and only if [p] C I.
This type of model theoretic semantics makes available, mataral way, multiple
truth values, intensional constructs, and interpreteaticgiships among the elements
and subsets oK. Observe that the assignmefr} of a senseto ground atoms is in-
trinsically intensional. Interpreted relationships amadne elements and subsetsXof
allow the programs that use this approach, which was calpedial logic program-
ing in [BMRO1], to serve as front-ends for existing systems atiiblmve a seamless
model-theoretic semantics for the system as a whole.

In [BMRO8], Blair, Marek, and Remmel showed that if the uryieig spaceX
has structure such as a topology or an algebraic structgfeasia group, ring, field,
or vector space, then a number of natural options presemsttiges. For example, if
we are dealing with a topological space, one can composerthetep consequence
operatorT’p with an operator that produces topological closures of aeisteriors of
sets. In such a situation, one ensures that the the extéhidegerator always pro-



duces closed sets or always produces open sets. Simifdhg,underlying spac« is

a vector space, one might insist that the exterile@perator always produces a sub-
space ofX or a subset o which is convex closed. Notice that each of the operators:
closure interior, spanandconvex-closuré amonotone idempotent operatdrhat is,

an operatobp : 2% — 2% is an monotone operator if C J = op(I) C op(J) for

all I € J C X and is an idempotent operatorwip (op(I)) = op(I) forall I C X. We

call such an operatorraiop (pronounced “my op”).

Unlike the situation in Extensions 1 and 2, there is a vamdtyptions for how to
interpret negation in spatial logic programming. In nortogic programming, a model
M satisfiemotpif p ¢ M. From the set-based point of view wheis interpreted as a
singleton{p}, this would be equivalent to saying that satisfiesotp if (i) {p}NM =
@, or (equivalently) (ii){p} € M. When the sense gf is a set with more than one
element it is easy to see that saying thasatisfieqotp if [p] M = () which we call
strong negation is different from saying that satisfiesnotp if [p] € M which we
call weak negation. There are thus two natural interpiatatof the negation symbol.
Again, when the underlying space has structure, one cawvegeteore subsidiary types
of negation by taking\/ to satisfynotp if ci([p]) N M = cl(0), or by takingM to
satisfynotp if cl([p]) € M wherecl is some natural miop. By composing the one-
step provability operator with a miop, one naturally progdionly those stable models
which have desired properties such a being closed or beingpspace of a vector
space. The familial’» operator corresponds to the case where the underlying miop
operator is the simplest possible monotone idempotenat@enamely, the identity.

Blair, Marek, and Remmel [BMRO8] called the extension oftedéogic program-
ming with miopsset-based logic programmin@BLP). Set-based logic programming
provides yet another powerful way to reason about infinite as one is allowed to
have the sensf] of an atomu be an infinite subset of . Indeed, Marek and Remmel
[MRO09] showed that one can effectively reason about infigéts in SBLP provided
that infinite sets have an indexing scheme with certain @ecjgroperties. For exam-
ple, if the sense of all atoms are regular languages over $aegefinite alphabek
and X = X*, then Marek and Remmel [MR09] proved that the stable modedsfie
nite SBLP progran® are always regular languages o¥eand that one can effectively
decide whether a given regular langudgé€ >* is a stable model aP.

Extension 4.Hybrid Answer Set Programming

In [BR11b], Brik and Remmel introduced an extension of thePABrmalism in
which one can reason about continuous trajectories whigh ¢hlled Hybrid Answer
Set Programming (H-ASP). This extension is different tHandther three in that the
notion of a clause is greatly extended. To motivate thisresitan, consider the fol-
lowing situation where James Bond wants to take his AstomtiM&rom point A to
point B where the underlying trajectory his divided up into thregioes: Region/
which consists of ice and snow on a mountain, Redibmhich consists of lake, and
Region/II which consists of desert. With a push of button, Bond'’s Adtartin can
change its configuration so that it can run on snow and iceasua boat, or run as
a high performance car. This situation is pictured in Figurghere the rectangle in
Region | is some building which must be avoided, the circleRegion Il are some
islands that must be avoided, and the hexagon is regionsbnse fort which must be



avoided. We imagine that Bond makes certain decisions ataeintervals of lengti\
as to what to do depending on his positiait A), his velocityv(kA), his acceleration
a(kA) and other requirements such as surface conditions, windigknd other logi-
cal conditions such as “l am being chased” or “| am at a mininsafa distance from an
obstacle.” In Figure 1, we have indicated Bond’s positi@'smes), A, 2A, ..., 11A
by placing thek A at the position he has reached at tikn.

10A
3A

2A
4A B
A

11A
8A

o

A 64

Region | Region Il Region 11l
Figure 1: Picture of Bond's trajectory.

In [BR11b], Brik and Remmel discuss two systems of hybrid A shall briefly
describe their simplified system of hybrid ASP in this intuotion which they called
basic hybrid ASABH-ASP) and discuss a more extended version of hybrid ASP in
Section 4. In basic hybrid ASP, one specifies a parameteespaad a set of atoms
At. The intended universe of an BH-ASP programdisx S. That is, one thinks of
the position and situation at timieA as being specified by a sequence of parameters
Z(kA) = (z1(kA), z2(kA), ..., z,(kA)) € S that specify such things as time, posi-
tion, velocity, acceleration, etc. which are needed to asephe next position and the
data basé/ (kA)za) Of atomsa in At such thata, Z(kA)) are true at imé&A.

There are two types of clauses in a BH-ASP program.

1. Stationary clausewnhich are of the form
a< ai,...,a,,N0thy, ...,N0tH,, : O

wherea, as, ..., an, b1, ....,b,, € At, O C S. The idea is that iff(kA) € O,
a; € M(kA)zga) fori = 1,...,n, andb; & M(kA)zua) forj =1,...,m,
thena € M(kA)f(kA)

2. Advancing clausewhich are of the form
@ 4 a1, ...,a,,N0tby, ..., NOtH,, : A, O

wherea, ay, ..., an, b1, ....bm, € A, O C S, andA is an algorithm. The idea is
that if f(k/’A) €0,a; € M(kA)f(kA) fori = 1,...,n, andbj Q/ M(kA)f(kA)



for j = 1,...,m, then we can apply the algorithrh to the set of parameters
Z(kA) to compute the set of parameteai§k + 1)A) at the next time step and
the clause specifies that, Z((k + 1)A)) holds.

Here for advancing clauses, we envision that algorithiroould require that one
solve a differential or integral equation to get the nextafgparameters or it could
require solving some system of linear equations or someaidipeogramming problem
to get the next set of parameters, etc.. From this point of,wee can think of an
advancing clause as input-output device. Of course, claskigic rules also can be
thought of as input-output devices, but one rarely thinkihis sort of terms.

The outline of this paper is as follows. In Section 2 we shatdss ACLP of
Extension 1. In Section 3, we shall discuss various extessa§ ASP that use set
constraint atoms. In Section 4, we shall discuss set-baggcprogramming and how
it can be used to reason about certain classes of infinitéfeetieely. In Section 5, we
shall briefly introduce basic hybrid ASP and its more genexénsion called Hybrid
ASP (H-ASP) as described by Brik and Remmel [BR11a]. FinatlySection 6 we
discuss conclusions and further research.

2 Arbitrary Constraint Logic Programming

In this section we discuss the variation of programs obthlnetreating the negative
part of the body of a clause as a constraint on applicabifitg clause. That is, we
shall give a detailed description of Arbitrary Constraimtgic Programming (ACLP)
as described in Extension 1 of the introduction.

The basic Gelfond-Lifschitz transform mechanism of Ans\Bet Programming
can be expressed as follows. The negative literals in the bbb clause serve as
a “semaphore”. Namely, when we guess a set of atdig putative answer set),
the negative part of the clauge tells us if the Horn part of” can be used in the
computation or not. To make this intuition a bit more precggeen a clause

C=p<+qi,...,qn,N0try,..., N0Otr,, (7

leth(C) bethe Hornclausg < g1, ..., qn. ThenPy = {h(C) : M | —~negBody(C)}.
Thus—negBody(C') is a constraint on usability df(C'). There is no reason why such
constraints should be restricted to be only conjunctionsegfative literals. Motivated
by this observation, we introduce the concept of ACLP claarsdof ACLP program.
An ACLP clause is a string’":

pF(hv---a‘]m:(I)C

wherep, q1, . . ., g, are atoms, anéd is a formula of some languag&for which we
have a satisfaction relatiga which allows us to test it/ = ®<. An ACLP program

is a set of ACLP clauses. Now, the idea is to generalize thmagdhore” as defined
above. Namely, we first guess a gdt of atoms and then we test if the constraint
. is satisfied byM or not. If it is satisfied2(C) is placed inPy,, otherwise it is
eliminated. Then we compute the least modePgf and check if it coincides witid/.

In such situation, we call/ aconstraint answer sdor P.

10



The simplest case is whary: consists of conjunctions of negative literals only. In
that case, we get nothing new. Indeed, let us assign to aectaws the form (7), a
constraint clause:

C'=pqu,...,qn:=T1,..., Ty

andP’ = {C’" : C' € P}. Then we have

Proposition 2.1. A set of atom3\/ is an answer set foP if and only if M is a con-
straint answer set foP’.

We note that the notion of answer set for constraint progriacisdes the notion
of a supported model via the following construction. GiveslauseC' we assign ta”
a constraint claus€” as follows

C//:pFS q1y---5qn, 7 T1y..., T
and setP’ = {C” : C € P}. Then we have

Proposition 2.2. A set of atomsd\/ is a supported model foP if and only if M is a
constraint answer set faP”’.

As long as the constraints are taken from the propositional language generated
by the set of atoms of the prograf) the expressive power of the concept of constraint
answer set does not increase. We have the following fact.

Proposition 2.3. Let PC be class of constraint programs where all the constraints
are propositional formulas. Then the existence problenctorstraint answer sets of
programs inPC is an NP-complete problem.

In [PR96], Pollett and Remmel looked at a class of const@@iograms where the
constraints were guantified Boolean formulas over the setarhs occurring in the
program. That is, Pollett and Remmel consider programs &loteuses are of the
form

pat,...,an:Bi(b1), ..., Bn(bm) (%)

wherep, a1, . .., a, are propositional variables ariglis a quantified Boolean formula
andb;’s represents the free propositional variables in edch

Let X denote the set of quantified Boolean formulas with at niealternations
of quantifier type and whose outermost quantifier iSagimilarly, letII] denote the
set of quantified Boolean formulas with at masalternations of quantifier type and
whose outermost quantifier is &h In both cases, unless we say we are dealing with
only sentences, we assume our formulas have free varidbdstly, we writeQ) B Fj,
to denote Boolean combinations of these two classes. Ik the0 case, all of the
above classes are the same. They each define the class o$ificop@d formulas. We
recall that the problem of determining whetheEgsentence is true iE -complete
and the problem of determining whethelI§-sentence is true iH}-complete. Given
an assignment to the free variables @ ® Fj, formula, we can determine whether or

. . P
notitis true inA; ;.
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We now definel P, is the class ofinite arbitrary constraint logic programs whose
constraints are all i) BF}, and
LPy =0 LPs.

Itturns out that Proposition 2.3 generalizes in a stragyiatérd way. Thatis, Pollett
and Remmel proved the following theorem.

Theorem 2.1. 1. The problem of determining whether &, program has an an-
swer set isS;, | -complete.

2. The problem of determining whether a finit&,, program has an answer set is
PSPACE-complete.

3. The problem of deciding whether a given variables in an answer set of an
L Py, program isEkPH-complete.

4. The problem of deciding whether a given variables in an answer set of an
LP,, program isPSPACE-complete.

Pollett and Remmel pointed out that there are several wageneralize the no-
tion of logic programming with quantified Boolean consttaithat fits the paradigm
of ACLP programs. For example, rather than take our atomsamtified Boolean for-
mulas to be just propositional variables, we could let thenpiopositional variables
and expressions of the formas . . . a,, € A. That s, checking if the concatenation of
some string propositional variables is in an oradleGiven a variable assignment
we sayv(aias .. .a, € A) = lifand only if the stringv(a1)v(az) .. .v(a,) isin the
setA. Thus, there is a well defined semantics for such formulas cviethus define
the classe&] (A), II} (4), andQ BF;,(A) and use them in our logic programming the-
ories. Hence, we can defideP; (A) to be those finite logic programs withBF,(A)
constraints SAT,(A)(y) is X, ;-complete [GJ79]. Then Pollett and Remmel proved
the following generalization of Theorem 2.1

Theorem2.2. 1. The problem of deciding whether dnP.(A) program has an
answer set i&;’ | (A)-complete.

2. The problem of deciding whether dP.,(A) program has an answer set is
PSPACE(A)-complete.

3. The problem of deciding whether a given variables in an answer set of an
LP,(A) programisXf , (A)-complete.

4. The problem of deciding whether a given variables in an answer set of an
LP.(A) program isPSPACE(A)-complete.

Going beyond propositional logic and quantified Booleamfalas leads to inter-
esting but not investigated class of constraint prograrpscifically, for integerg > 2
and0 < i < j, we define a new formulanodj and stipulate, for a finite set of atoms
M, M =imodj if |M| =imod j. It should be clear that due to the localization prop-
erties of propositional logic and quantified Boolean foras,lthe formulag mod j
are not definable in the languages defined above. But once fireedesatisfaction
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for expressions of the formmodj, we have immediately satisfaction relation for the
language of propositional formulas with atoms of the famwd;j. Let us call such
constraintsnod-constraintsWe can then consider programs that use mod-constraints.
Parity constraints as considered in [MNR95] are from thigleage. Complexity is-
sues for the constraint programs in this language have reot siidied. We illustrate
the programs with mod-constraints with a simple example.

Example 2.1. Let P be a mod-constraint program consisting of the followingisks.

D q,u,w

T4 8,0

U<

VT

s <—:2mod3

t <: 2mod3

q <: 1mod3

w <: 1mod3

.U 4+: 1mod3

We then check that/; = {p, s, ¢, u} is a mod-constraint answer set #Br Indeed, the
reduct of P by M; yields the program:
D q,u,w

TS,

u<—r

VT

q <

w

U

with M; as the least model.

Likewise, we leave to the reader the task of testing fat= {s, ¢} is another mod-
constraint answer set fdr.

CoNoO~WDNE

The family of answer sets for a constraint program does netl e form an an-
tichain. Minimal answer set of constraint programs havebeen studied.

3 Logic Programming with Set Constraint Atoms

In this section we define a number of generalizations of caly and weight con-
straints.

One can think about propositional atoms as very simple caings on assignments.
Specifically, an atonp is just a requirement that the intended modélsatisfiesp.
Likewise, a clause

C=p<+<aq,...,qm,N0try,...Notr,

propagates constraints and can be informally interpret@dc@nstraint on the intended
model M. That is, onceVl satisfies the body af, it has to satisfy the head @f as
well. This point of view has been proposed in [Nie99, MT99wihe idea that the
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program specifies constraints of the problem at hand, whiéeahswer sets encode
intended solutions of the problem.

Once such point of view is adopted, it is natural to ask whethe ASP mechanism
could be adopted to propagation of more complex constraimt$SNS02] Niemela
and his collaborators have shown that, indeed one can ad®ptfdrmalism to a sit-
uation where the constraints are more complex. SpecifidallfSNS02] its authors
show a construction dealing with two specific types of caists: cardinality con-
straints and its generalization, weight constraints. €lmmstraints, under the name
of pseudo-Boolean constraints are used in logic design Esodracombinatorial op-
timization. Next, we describe the case of cardinality craists which are the simple
case of pseudo-Boolean constraints where all the weights@matoms are equal to
1. A cardinality constraint is a string’ of the formk X[ where X is a finite set of
atoms andc < | < |X|. Whenk = 0 we drop it from the description of’, and
similarly we dropl when it is|X|. WhenM is a set of atoms, we writ®/ = kX if
k <|X NM|<I. Weobservethat! |= pifand only if M = 1{p}, andM = notp
if and only if M = {p}0. Thus cardinality constraints generalize atoms. Thefaatis
tion relation|= can be extended to the language treating cardinality cainsdras new
atoms. We can also write program clauses where the headsusied and elements of
bodies are cardinality constraints. The notion of a modslch clause generalizes the
usual notion of a model of a program. Specifically, a set ainstd/ satisfies a clause

if for somej < m, M W k;Y;l;, orif M |= kX1. A setM is a model of a program
if it is @ model of each clause of the program. The cardinaldgstraints considered
here concern the sets of atoms; the original definition ing8R] used literals, not only
atoms.

The notion of an answer set of a cardinality constraint paogP involves a signif-
icant modification of the usual Gelfond-Lifschitz transfo(GL-transform). We will
call it the NSS-transform. A number of steps are performesiwg shall see, some of
these step are different from the steps used to define thedblsform. Let us guess
M, a putative answer set. First, we require thatis a model ofP. Next, one elim-
inates all clause€’ in P of the form of (8) such thad! = body(C). The final step
transforms each remaining clauSeof form (8) of the progran® in two ways.

(a) First one eliminates the upper bounds of all constraimtise body ofC'. Let us
call the resulting claus€”’

(b) Second, one replaces the clad®eby all clauses of the formp «+ body(C")
suchthap € M N X.

The NSS-transform of is the set of clauses produced frafhby this process.
The programP” has two key properties. First, the heads of clauseB’o&re atoms.
Second, for every clausg” of the programP”, the collection of setéV that satisfy
the body of the claus€” is upper-closed. Thatis, iV = body(C”) andN C N’,
then N’ = body(C"). This implies that the one-step provability operator agged
with P” and M is monotone. It is also continuous, but, since in this sectie shall
limit ourselves to finite cardinality constraints programe shall not discuss this issue
further. Thus by Knaster-Tarski theorem, this operdier, possesses a least fixpoint.
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If that fixpoint coincides withA/, we call M an answer set aP. Notice that by the
construction, an answer set must be a modé? of

We observe that for normal logic programs, the SMS-tramsfafra program elim-
inates more clauses than the GL-transform. That is, ther@hsform tests only the
negative part of the clauses, not the entire body. Yet, fomab programs, the fix-
points obtained via GL-transform and via SMS-transformtagesame. The reason
is that if a clause” has the property thaiosBody(C) \ M # () andC survives the
GL-test, thenC will fire only if an atomg; € posBody(C) \ M is computed. This
guarantees, however, thaf is different from the fixpoint and, hence, is not an answer
set [MT98].

A very similar construction can be done for weight constainhere atoms are
weighted and the boundsand! are on cumulative weight df/ N X. We should note
that if one allows weight functions which admit negativeued, then the results are
not always intuitive and alternative approaches have begpoged [LPSTO07, FPL11].

Recall that we defined a set constraint to be a p&irF) whereX is a finite set
andF C 2%, A set constrain{SC)clauseis a string of the form

(X, F) + (Y1,G1), ..., (Y0, Gn).

A set constraint program is a finite set of SC clauses.

We note that there are interesting constraints that are avofirality constraints
nor weight constraints. An example of one such constraiatésnstraint analogous
to 1mod3 discussed above, specificallf = (X, 1mod3) if |[M N X| = 1mod3.
Many other natural constraints can be defined as set-cantstrdn fact generalized
quantifiers over finite sets of atoms [Lib04] can be expresfisisdvay.

To see how the NSS-transform can be utilized for SC prograradijrst need to
define the satisfaction relation like we did in case of caatiiy constraints. Let\/
be a set of atoms anll = (X, F) be a set constraint atom. We say thidt}= K if
XNM € F. Thisis an abstract version of the satisfaction relatidineéd above. Letus
notice that going to the abstract version of the constramy significantly increase the
size of the representation. For example, the cardinalibgtaintl{p, ¢, r}2 becomes
{p,a, v}, {{pt {a}, {r} {p, at. {p, 7}, {q. r}}).

We now show how the NSS-transform can be adopted for SC pregrahe fol-
lowing observation is easy.

Proposition 3.1. For every sefX and a familyF of subsets oK there exists & -least
family G of subsets oKX such that

1. FCgG

2. G is upper-closed that is, whenevédrc G andA C B C X thenB € G.

Since the familyg is C-least, it is unique. Hence we call the unique fangilwhose
existence is established by Proposition 3.1, the closu/e afid denote ifF. It is easy
to see that wheX, ) is equivalent to the cardinality constraink /, then(X, F) is
equivalent to the cardinality constraink .

At a cost of a possible large representation, we can desaribeer sets for pro-
grams that include arbitrary set-constraints. Again thecess of defining a stable
model for SC programs is based on some form of “Horn” progr@hsreduction, and
least fixpoints of the one-step provability operators fortHprograms.
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We wiill call an SC-clausélorn if

1. the head of that clause is a single atom (recall that ateeesearesented as set
constraints) and

2. whenever X;, ;) appears in the body, theh; is an upper closed family of
subsets ofX;.

A set-constraint Horn prograri® is an SC-program which consists entirely of Horn
clauses. There is a natural one-step provability operasoa@ated to an SC-Horn
programP, Tp : 2% — 2% whereX is the underlying set of atoms of the program.
Specifically, T (S) consists of alp such that there is clause

C:p<— <X1,]:1>,...,<Xm,]:m> epP

such thatS satisfies the body of’. Our definitions ensure th&fp is a monotone
operator and hence each SC-Horn progrrhas a least model/”. MT can be
computed in a manner analogous to the computation of the teadel of a definite
Horn program ag'¢ (). The NSS transforrSS,, (P) of the set-constraint program
P for a given set of atomd/ which is a model ofP is defined as follows. First
eliminate all clauses with bodies not satisfiedMy Next, for each remaining clause

(X, F) (X1, F1)y o {Xomy Fin)
and eacly € M N X, put the clause
p < <X15?1>a-'-a<Xm7?m>

into NSS,,(P). Clearly the resulting progratiSS,,(P) is an SC-Horn program and

hence has a least modetNSSv (), 1/ is a stable model oP if M is a model ofP
andM = MNSSu(P) it can be shown that this construction corresponds to thresa
notion of Gelfond-Lifschitz stable models when we restoigtselves to ordinary logic
programs.

We should note that there are other semantics availabled@r8grams. For exam-
ple, Son, Pontelli, and Tu [SPTO07], observed that the staloléels for an SC programs
may be included one in another. That is, consider the fohgv8C progranP.

a
b+
C%q

q < <{aa b, C}a {{a7 b, C}}>

One can easily checked that there are two stable mddels- {a, b, ¢, ¢} and My =
{a,b}. An alternative semantics that does not allow for nesteolestaodels was de-
fined by Son, Pontelli, and Tu [SPTO07].

We end this section with a few remarks on how set constraimbatcan allows us
to reason about infinite sets and preferences.
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3.1 Using set constraint atoms to reason about infinite sets.

Cenzer, Marek, and Remmel [CRMO05] suggested a way to useosstraint atoms
to reason about infinite sets. The basic idea is as followst fie allowX to be an
infinite recursive set and assume that we have a particuingscheme for some
family of subsets of a seX. Let F be a finite family of such codes. We will writé,
for the set with the code. Then we can write two types of constraints. One constraint
(X, F)< has the meaning that the putative set of integérsatisfies(X, F)< if and
onlyif M N X D C, for somee € F. Similarly, we shall also consider constraints of
the form(X, F)= where we say thal/ satisfies X, 7)= ifandonlyif M N X = C.
for somee € F. Observe that constraints of the fora¥, 7)< behave like atomg
in that they are preserved when the set grows while constrafrthe form(X, F)=
behave like constraintsot p in that they are not always preserved as the set grows.
Now, it is clear that once we introduce these types of comitsghemes, we can
consider various coding schemes for the set of indices. kample, Cenzer, Marek
and Remmel [CRMO5] used three such schemes: explicit isdi€éinite sets, recur-
sive indices of recursive sets and recursively enumeralalg (ndices of recursively
enumerable (r.e.) sets. They then defined extended setraionstiauseC to be a
clause of the form

<X, .A>* “— <Y1,Bl>g, ey <Yk,8k>g, <Zl,C1>:, ceey (Zl,Cl):,

wheresx is either= or C.
Formally, Cenzer, Marek, and Remmel defined three typesiidés three types of
indices (i.e. codes) for certain subsets of the natural ressi

(1) Explicit indices of finite sets For each finite sef’ C N, we define the explicit
index of " as follows. The explicit index of the empty set is 0 and thdiekpndex of
{1 <+ <x,}is2% + .- 4 2%, We shall letF;,, denote the finite set whose index
isn.

(2) Recursive indices of recursive sets Let ¢q, ¢1,..., be an effective list of all
partial recursive functions. By a recursive index of a retu setR, we mean arm
such thatp, is the characteristic function @t. If ¢. is a total{0, 1}-valued function,
thenR, will denote the sefz € N: ¢.(x) = 1}.

(3) R.e. indices of r.e. setsBy ar.e. index of a r.e. sé/, we mean are such
thatW equals the domain af., thatis,IW. = {z € N : ¢.(x) converges.

Then for any subset/ C N, we shall say thal\/ is a model of(X, F)=, written
M E (X, F)=, if there exists am € F such that\/ N X equals that set with index
Similarly, we shall say that/ is a model of X, F)<, writen M = (X, F)<, if there
exists are € F such thatM N X contains the set with index

Based on these three differenttypes of indices, Cenzeelland Remmel [CRMO05]
considered three different types of constraints.

(A) Finite constraints. Here we assume that we are given an explicit indeof a
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finite setX and a finite familyF of explicit indices of finite subsets of. We iden-
tify the finite constraintg X, F)= and (X, F)< with their codesjnd(0,0,z,n) and
ind(0,1, z, n) respectively where® = F,,, that is, the finite set with explicit index.
Here the first coordinate O tells us that the constraint isefithe second coordinate is
0 or 1 depending on whether the constraints F)= or (X, F)<, and the third and
fourth coordinates are the codesXfand.F respectively.

(B) Recursive constraints Here we assume that we are given a recursive index
of a recursive seX and a finite familyR of recursive indices of recursive subsets of
X. Again we shall identify the recursive constrainfs, R)= and(X, R)< with their
codes,ind(1,0,z,n) andind(1, 1, z,n) respectively, wher&® = F,,. Here the first
coordinate 1 tells us that the constraint is recursive, #wisd coordinate is 0 or 1
depending on whether the constrainti$, R)= or (X, R)<, and the third and fourth
coordinates are the codes&fandR respectively.

(C)R.e. constraints Here we are given ar.e. indexof ar.e. setX and &finite family
W ofr.e. indices of r.e. subsets &f. Again we identify the finite constraints(, W)=
and (X, W)< with their codesjnd(2,0,z,n) andind(2, 1, z, n) respectively, where
W = F,. Thefirst coordinate 2 tells us that the constraint is e second coordinate
is 0 or 1 depending on whether the constraintXs W)= or (X, W)<, and the third
and fourth coordinates are the codesoand.

An extended set constraifESC)clauseis defined to be a clause of the form

<X, .A>* “— <Y1,Bl>g, ceey <Yk,Bk>g, <Zl,C1>:, ey (Zl,Cl>: (9)

wherex is either= or C. We shall refer tg X, .4)* as the head of', written head(C'),
and (Y1, B1)S, ..., (Yi,B)S, (Z1,C1)7,...,(Z;,C))~ as the body ofC, written
body(C). Here eitherk or [ may be 0. M is said to be a model of' if either M
does not model every constrainttody(C) or M = head(C'). An extended set con-
straint (ESC) progran® is a set of clauses of the form of (1).

A (ESC)Horn programP is a set of clauses of the form

(X, A « (Y1,B)S, ..., (Y3, By)<. (10)

where A is a singleton, that isA consists of a single index. We define thee-step
provability operator Tp : 2V — 2N so that for anyS C N, Tp(S) is the union

of the set of allD. such that there exists a clauSec P such thatS = body(C),
head(C) = (X, A)S andA = {e} whereD, = F, if head(C) is a finite constraint,

D, = R. if head(C) is a recursive constraint, and, is W, if head(C) is an r.e.
constraint. It is easy to see thAp is a monotone operator and hence there is a least
fixpoint of T» which we denote byV*. Moreover it is easy to check that” is a
model of P.

If P is an ESC Horn program in which the body of every clause ctmsidinite
constraints, then one can easily prove that the least fixpdifi'p is reached inw-
steps, thatisN ¥ = T%((}). However, if we allow clauses whose bodies contain either
recursive or r.e. constraints, then we can no longer gueeahiat we reach the least
fixpoint of T» in w steps. Here is an example.
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Example 3.1. Let ¢,, be the explicit index of the sdtn} for all n > 0, let w be a
recursive index oN andf be a recursive index of the set of even numbder€onsider
the following program.

({0}, {eo})=
({22 42}, {earsa})S < ({22}, {e2.})S (for every number)
(NAwhs « (BAFHS

ClearlyN is the least model oP but it takesv + 1 steps to reach the fixpoint. That is,
it is easy to check that = E and thatls ™' = N.

Once we have a notion of ESC Horn program, we are in a positiatefine the
analogue of stable models for ESC programs.

Definition 3.1. Suppose thal/ is a model of an ESB prograi.

1. We define the analogue of the NSS-transform by sayind\tB&t, (C'), where
C € P is a clause of the form (1), is:l if M does not satisfy the body 6f.
If M does satisfy the body 6f, then sincelV! is model ofP, it must also be a
model of the head af, (X, A)* wherex is either= or C. If x =C, there must
be an explicit (recursive, r.e.) index i#, of such that eithed/ N X contains the
set with index and for each such, we add the clause

(X, {e})S «— (Y1, B)S, ..., Vi, BL)S, (Z1,C1)S, ..., (Z,,0)S. (11)

Similarly, if x is =, there must be an indexsuch that)/ N X is the set coded by
e and again for each such, we add the clause

<Xa {e}>g — <}/17Bl>ga cee <Yka Bk>g7 <Zlacl>g; cee <Zl7cl>g' (12)
ThenNSS,,(P) = {NSSy(C) : C € P} will be an ESB Horn program.

2. We then say thaV/ is astable model of if M is a model ofP and M equals
the least model diSS, (P).

Cenzer, Marek, and Remmel explored the complexity of thst leendels of recur-
sive ESC Horn programs and recursive ESC programs in [CRMO05]
3.2 Using set constraint atoms to reason about preferences.

In this subsection, we briefly describe how we can use setr@insatoms to describe
preferences based on ideas in a forthcoming paper by BrilRandmel [BR11b]. The
basic idea is to consider triples of the frdi, 7, wt) or (X, F, <) where

1. X is a finite set of atoms,
2. F C2¥X,
3. wt]:—> [0700) QRI
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4. K is a partial order inF.

We call triples of the form{X, 7, wt) weight preference set constraint atormsd
triples of the form(X, F, x) partially ordered preference set constraint atoma/e
say that a set of atom¥ is satisfieg X, F, wt) or (X, F, <) if and only if M satisfies
(X, F).
Now suppose that we have an SC progrBrwhich in addition has a finite set of
clausedl” of the form
<Xi, fi, ’LUfi> —

i € {1,...,n}. Now suppose thal/ is a stable model oP U T'. Then we can define
the weight of the model/ as

i=1

As described in the introduction, we can use the weight fanstto describe our pref-
erences for what we waitf N X; to be by saying that foF , F, € F;, F} is preferred
over Iy if wt;(F1) < wt;(Fy). Then we say that a stable modef, of P U T is
preferred over the stable modeh, of PUT if W(M;) < W(Mz). Thus the introduc-
tion of weight preference set constraint atoms can lead i@ al weighting of stable
models which can be used to model preferences.

Similarly, suppose that we have an SC progrfamvhich in addition has a finite set
of claused” of the form

(Xi, Fi, i)

fori € {1,...,n}. Now suppose that we are given two stable moddisand M-

of PUT. Then we say thal/; < M; if and only if My N X; <; My N X; for

i =1,...,n. Thusthe introduction of partial order preference set trairg atoms can
lead to a natural partial order on stable models which carsbd to model preferences.

4 Set-Based Logic Programming

We start this section with a review the basic definitions ¢fssesed logic programming
as introduced by Blair, Marek, and Remmel [BMRO08]. The syrdaset-based logic
programs will essentially be the syntax of DATALOG programith negation. We will
then briefly discuss some results of Marek and Remmel [MR@33anditions which
ensure that we can effectively process set-based logicqumsy

Following [BMRO08], we define aet-based augmented first-order languaggset-
based languagefor short)£ as a triple(L, X, [-]), where
(2) L is a language for first-order predicate logic (without fuoietsymbols other than
constants),
(2) X is a nonempty (possibly infinite) set, called theerpretation space, and
(3)[-] is @ mapping from the ground atomsibto the power set ok, called thesense
assignmentlf p is an atom, theffp] is called thesenseof p.

Intuitively, one can treat the set of atorsof £ as a set of descriptions or codes of
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subsets ofX. For example, ifX = ¥* whereX is a finite alphabet, then a description
might be a regular expression for a languag€ X or a deterministic finite automaton
(DFA) that acceptd.. If X = R", then a convex polygon oX can be described by
the finite set of extreme points &. We shall see later that the properties we need
to effectively process set-based logic programs is thasetiof atoms or descriptions
come with algorithms which allow us to decide things like ez for any given atoms
AandB, [A] C [B] or [A] N [B] = 0 holds and how to find an atom or co@esuch
that[C] = [A] U [B].

For the rest of this section, we shall fix a sétand a first order language with
no function symbols except constants. We let;Hfenote the Herbrand base bfi.e.
the set of atoms of.. We omit the subscripf. when the context is clear. We 2
be the power set ok. Given[-] : HBr, — 2%, aninterpretation/ of the set-based
languageC = (L, X, [-]) is a subset o .

A set-based logic programming clause is a clause of the form

C=A<+ By,...,B,,notCy,...,notC,,. (13)

whereA, B;, andC; are atomsfof = 1,...,nandj = 1,...,m. We lethead(C) =

A, Body(C) = By,...,By,notCy,...,notC,,, andposBody(C) = {Bi, ..., Bn},
andnegBody(C) = {C4, ..., Cy}. A set-based program is a set of clauses of the form
(13) and a set-based Horn program is a set of clauses of the(f8) which contain

no occurrences afot.

A second component of a set-based logic program is one or mon@tonic idem-
potent operator® : 2X — 2% that are associated with the program. Recall that an
operatorO : 2% — 2% is monotonidf forall Y C Z C X, we haveO(Y) C O(2)
and isidempotentfforall Y C X, O(O(Y)) = O(Y'). We call a monotonic idempo-
tent operator aniop (pronounced “my op”). We say that a Sétis closedwith respect
to miopO ifand only if Y = O(Y).

For example, suppose that the interpretation spadg eitherR™ or Q™ whereR
is the reals an€) is the rationals. ThenX is a topological vector space under the usual
topology so that we have a number of natural miop operators:

1. op;;(A) = A, i.e. the identity map is simplest miop operator,
2. op.(A) = AwhereA is the smallest closed set containing
3. 0p;(A) = int(A) whereint(A) is the interior ofA,

4. 0P .pnves(A) = K(A) whereK (A) is the convex closure od, i.e. the smallest
setK C X suchthatd € K and whenevet,...,z, € K andaq,...,a,
are elements of the underlying fiel@® (or Q) such thaty_; , a; = 1, then
Z?:l ;T isin K, and

5. 0pgupsp(A) = (A)* where(A)* is the subspace of generated byl.

We should note that (5) is a prototypical example if we stétth analgebraicstructure.
That is, in such cases, we cantgt,,;..(A) = (4)* where(A)* is the substructure
of X generated byl. Examples of such miops include the following:
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(a) if X is a group, we can leip,,;,,,(A) = (A)* where(A)* is the subgroup o
generated bw,

(b) if X is aring, we can lebp,,,;,,(A) = (A)* where(A)* is the subring ofX
generated by,

(c) if X is a field, we can lebp,;,4(A) = (A)* where(A)* is the subfield ofX
generated by,

(d) if X is a Boolean algebra, we can lep,,;,;,(A) = (A)* where(A)* is the
subalgebra o generated byl or we can lebp,;.,;(A) = Id(A) whereld(A)
is the ideal ofX generated by, and

(e) if (X,<x) is a partially ordered set, we can lep,,;;..;(A) = Uid(A) where
Uid(A) is the upper order ideal of, that is, the least subsgtof X containing
A such that whenever € S andz <x y, theny € S.

For simplicity, for the rest of this section, we shall assubha all our miop$) have
the additional property that C O(Y') forall Y € 2X. Now suppose that we are given
amiopop™ : 2% — 2% and Horn set-based logic prografover X. Blair, Marek,
and Remmel [BMRO08] generalized the one-step provabiligrator to set-based logic
programs relative to a miop operaigr™ as follows. First, for any atom and/ C X,
we say thatl }=[.j.,+ A if and only if op* ([A]) C I. Then, given a set-based logic
programP, let P’ be the set of ground instances of a clauseB and let

Tp,op+(I) = op™ (1)
wherel; = U{[[A]] A Ay, . A, € P &I ':[['H-,OPJF Al = 1,...,77,}. We

then say that aupported model relative tap™ of P is a fixpoint of T'p ,,,,+ .
We iteratel p ,,+ according to the following.

T(])J,o +(I) = 1
Toopt (1) = Trops (T3, (D)
Thopt (D) = opT(|J (T, (D}), Alimit

a<A

It is easy to see that i is a set-based Horn program ampi™ is a miop, then
Tp,op+ is monotonic. Blair, Marek, and Remmel [BMRO8] proved thiédeing.

Theorem 4.1. Given a miopop™, the least model of a Horn set-based logic program
P exists and is closed undep™ , is supported relativep™, and is given byr ¢, , . (1)
for the least ordinak at which a fixpoint is obtained.

We note, however, that if the underlying univeseuniverse of a set-based logic
program is infinite, then, unlike the situation with ordipadorn programs'p ,,+
will not in general be upward continuous even in the case et (A4) = A for all
A C X. Thatis, consider the following example which was givenBIMR08].
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Example 4.1. Assume thabp* is the identity operator o2X. Let £ = (L, X, [])
where L has four unary predicate symbols; ¢, » ands, and countably many con-
stantseg, e1, ...,. X is the setN|{J{N}. [-] is specified by[q(e,)] = {0,..., n},
[p(en)] =A0,...,n+ 1}, [r(en)] = N, and[s(e,,)] = {N}.

The set-based program consists of the following three clauses:

q(eo)
p(X) < ¢(X)and
s(eg) « r(eo).

Itis then easy to see that afteriterations of thel’» operator starting from the empty
set,r(ep) becomes satisfied. One more iteration is required to readhtarpretation
that satisfies(eq) which is the least fixpoint of'p.

Next, we consider how we should deal with negation in thergettf miop oper-
ators. Suppose that we have a miop operagor on the spaceX. We do not require
thatop— is the same as the miap ™, but it may be. Our goal is to define two different
satisfaction relations for negative literals relativehe tmiop operatobp— which are
called strong and weak negation in [BMR(8]

Definition 4.1. Suppose thaP is a set-based logic program ovErandop™ andop™
are miops onX anda € {s, w}.

(I) Given any atomd and set/ C X, we say
J lzﬁ[lﬂ.pp*.,op’ Aif and only if op™ ([A]) C J.

(II)s (Strong negation) Given any atorhand set/ C X, we say
J (] ].0p+,0p- NOLAifandonly if op~([A]) N J C op~ (D).

(I1),, (Weak negation) Given any atorhand set/ C X, we say
J ] op+,op- NOtAifand only if op~([A]) ¢ J.

This given, we can naturally define two analogues of the Gelfbifschitz trans-
form and two analogues of stable models depending on wheghgrant to use strong
or weak negation to definition the satisfactiomat A.

Definition 4.2. Given a set/ C X, we define thestrong Gelfond-Lifschitz transform
GL? (P), of a programP with respect to miopsp ™ andop~ on2%, in two

J,[H],Op*,op* .
steps. First, we consider all clausedin
C=A+ Bi,...,B,,notCq,...,notC,, (14)
where A, By,...,B,,C1,...,C,, are atoms. If for some, it is not the case that

J Fﬁ]] op+.op— NOLCY, then we eliminate clausé. Otherwise we replacé by the
Horn clause
A<« By,...,By,. (15)

1Lifschitz [Lif94] observed that different modalities, thifferent operators, can be used to evaluate
positive and negative part of bodies of clauses of normajnams.
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Then,GL? (P) consists of the set of all Horn clauses produced by this two

J,II']],OP+,R
step process.
We define thaveak Gelfond-Lifschitz transfor,rﬁ:L}”H‘]] op 0p— (P), of a program

P with respect to miopsp™ andop~ on 2% in a similar manner except that we use
il op+.0p- INPlace of=p, . inthe definition.

Notice that since L L, op+ 0p- (P) is a Horn set-based logic program for either

a = sora = w, the least model o&zL¢ [1,0p+ 0p— (P) relative toop™ is defined.
We then define the-stable model semantics for a set-based logic progfPanver X

relative to the miopsp™* andop™ on X fora € {s,w} as follows.

Definition 4.3. J is ana-stablemodel of P relativeto op™ andop~ if and only if J

is the least fixpoint OTGLz,[[-]],op*,op* (P),op+-

Next we give a simple example to show that there is a diffexdratweers-stable
andw-stable models.

Example 4.2. Suppose that the spage= R? is the real plane. Our program will have
two atoms{a, b}, {c, d} wherea, b, c andd are reals. We Ida, b] and|c, d] denote the
line segments connectingto b andc to d respectively. We let the sense of the these
atoms be the corresponding subsets, i.e. wleth}] = {a, b} and[{c, d}] = {c¢, d}.

We letop™ = op~ The consider the following progra.

= 0D convex*
(1) {a,b} + not{c,d}
(2) {¢,d} + not{a,b}

There are four possible candidates for stable models ir#sis, namely (i, (ii) [a, 8],
(i) [e,d], and (iV) 0P .onper{@s b, ¢, d}. Let us recall thabp,.,,, ... (X) is the convex
closure ofX which, depending on, b, ¢, andd may be either a quadrilateral, triangle,
or a line segment.

If we are considering-stable models wheré ':E-]],oer,op* notC' if and only if
op~(C)NJ = op~ (D) = 0, then the only case where there atstable models ifa, b]
and[c, d] are disjoint in which (ii) case and (iii) arestable models.

If we are consideringv-stable models wherg Hffl]- notC' if and only if

,opt,op~
op~— (C) ¢ J, then there are na-stable models ifa,b] = [c,d], (i) is a w-stable
model if [a,b] € [c,d], (iii) is w-stable model ific,d] ¢ [a,b] and (i) and (iii) are
w-stable models if neithgr, b] C [¢, d] noric, d] C [a, b)]. ad

It is still the case that the-stable models of a set-based logic progrBrform an
antichain fora € {s,w}. Thatis, Blair, Marek, and Remmel [BMRO08] proved the
following result.

Theorem 4.2. Suppose thaP is a set-based logic program ovét, op* andop™ are
miops onX, anda € {s,w}. If M and N are a-stable models oP and M C N, then
M = N.
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We end this section by considering the question of what ¢mmdi are required
if one is to effectively process a finite set-based logic progwhere the sense of
the underlying atoms are allowed be infinite sets. This guestas considered by
Marek and Remmel [MR09, MR11]. The idea of Marek and Remmal toastart with
a finite set-based logic prograf and letSp denote set of fixpoints over all finite
unions of sets represented by the atoms of a finite set-bagedgdrogrampP of the
miops associated witl?. Here the elements &» may be finite or infinite. Marek
and Remmel [MR11] showed that if there is a way of associativdesc(A) to the
elements ofA € Sp such that there are effective procedures which, given codés
andc(B) for elements ofd, B € Sp, will

(i) decideifA C B,
(i) decideifAn B = (), and

(iii) produce of the codes of closures df U B and A N B under miop operators
associated wittP,

then we can effectively decide whether a ca(ld) is the code of a stable model &f
There are several examples where conditions (i), (ii), @)aén be realized.

(1) Let X = N and assume that the atoms are codes for finite sets. Fordestar

can let the code of the finite sgt, ..., z,} be)", 2% and the code of the empty set

be 0. If the miops are just the identity operators, then gteamditions (i)-(iii) are sat-

isfied. Thus the scheme proposed above can be realized fingons using such codes.

(2) Another example consists of the finite dimensional sabep of the spac@".
Such subspace can be coded by any of its bases. The miop ga#@ss the subspace
generated by a given set of vectors. Clearly, given two b&sesnd B- for subspaces
S1 andsS, of Q", respectively, we can generate effectively frémand B, a basis for
the least space containing the unionSgfand.S,. We can test if one space is included
in another, and see if there is any vector different from the€tor in their intersec-
tion. Thus again, we can reason about such spaces with ntwgialprograms and
form weak and strong answer sets.

(3) The third example is one where one naturally wants to usetrivial miops.
Namely, the space i§? and the collectiont’ consists of convex polygons ip? de-
termined by lines with rational slopes. The codes are setheextreme points of
polygons. The miop il ... There are effective procedures for computation of the
code of the closure of the union of two polygons, as well agdsting inclusion and
disjointness. Thus, we can reason about such polygons,ampute weak and strong
answer sets for programs with atoms being codes for convggpos.

(4) The fourth example of a situation where we can reasontdhfinite sets that are
regular languages. Here, the codes are the regular exgmedsir the language or a
DFA which accepts the language. The sense function assigihe tcode the regular
set it describes.

We shall expand on example 4 to illustrate how conditions({ii), and (iii) can
naturally be satisfied. It is well known that given two detamistic finite automata
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(DFA) A, and A, one can effectively decide whether the languabe4;) andL(A4s)
accepted by4d; and A,, respectively, satisfyl; C A, A1 = A, or Ay N Ay = 0.
Similarly, one can effectively construct DFA's which actéfA;) U L(A42), L(A1) N
L(AQ), andX* — L(Al)

We say that a miopp : 2> — 2% is effectively automata-preservitiigfor any
DFA M whose underlying alphabet of symbols3is we can effectively construct a
DFA N whose underlying alphabet of symbolsXssuch thatL(N) = op(L(M)).
For example, suppose that = {0,1,...,m}. Then, the following are effectively
automata-preserving operators.

1. If N is a DFA whose underlying set of symbols3is then we can definep :
25" — 2% by settingop(S) = SUL(N) foranyS C ¥*. Clearly if S = L(M
for some DFAM whose underlying set of symbols 15, thenop(L(M)) =
L(M U N) soop is effectively automata-preserving.

2. If N is a DFA whose underlying set of symbols3s then we can definep :
25" — 2% py settingop(S) = SNL(N) foranyS C ©*. Clearlyif S = L(M
for some DFAM whose underlying set of symbols 15, thenop(L(M)) =
L(M n N) soop is effectively automata-preserving.

3. If T is any subset oE, we can letop(S) = S(T*). Againop will be an ef-
fectively automata-preserving miop sincelif is DFA whose underlying set of
symbols is¥, then let/N be NFA constructed fromd/ by adding loops on all
the accepting states labeled with letters frémlt is easy to see thal’ accepts
L(M)T™* and then one can use the standard construction to find alDFuch
that L(N') = L(N). Notice that in the special case whéfeequalsy:, we can
think of op as constructing the upper ideal in X* relative to the partial order
C where for any words, v € ¥*, u C v if and only if u is prefix ofv, i.e. v is of
the formuw for somew € X*. For any posetP, <p), we say that a séf C P
is anupper idealin P, if wheneverr <p y andx € P, theny € P. Clearly, for
the poset>*, C), op(S) is the upper ideal ofx*, C) generated bys.

4. LetP = (X, <) be a partially-ordered set. For amyw’ € X*, we say that
w' is a factor ofw if there are words:,v € X* with w = uw’v. Define the
generalized factor ordeon P* by lettingu < w if there is a factor’ of w
having the same length assuch that, < w’, where the comparison af and
w'’ is done componentwise using the partial ordePinAgain we can show that
if op(S) is the upper ideal generated Bythe generalized factor order relative
to P*, thenop is an effectively automata-preserving miop. That is, if werts
withaDFAM = (Q, X, 4, s, F'), then we can modify/ to an NFA that accepts
op(L(M)) as follows. Think ofM as a digraph with edges labeled by elements
of 3 in the usual manner. First, we add a new start stat&here are loops from
so labeled with all letters ifE. There is also a-transition froms, to the old
start states. We then modify the transitions il so that if there is an edge from
stateq to ¢’ labeled with symbot, then we add an edge froqto ¢’ with any
symbols such that- < s. Finally we add loops to all accepting states such that
labeled with all letters in irk.
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Then Marek and Remmel [MR11] proved the following theorem.

Theorem 4.3. Suppose thaP is a finite set-based logic program ovér= (L, X, [-])
whereX = ¥* for some finite alphabét andopt : 2" — 2" andop™ : 2% — 2%

are effectively automata-preserving miops. Moreoveruags that for any atom
which appears inQ, [A4] is a language accepted by a DFA whose underlying set of
symbols isC. Then:

1. Every weak (strong) stable model®is a language accepted by a DFA.

2. For any DFAM whose underlying set of symbolsiswe can effectively decide
whetherL (M) is a weak or strong stable model Bt

5 Hybrid ASP

In this section, we shall give the definition of Hybrid ASP grams and stable models
as defined by Brik and Remmel [BR11b].

The goal of Hybrid ASP is to allow the user to reason about thioal systems
that exhibit both discrete and continuous aspects. Theuerfiepture of Hybrid ASP is
that Hybrid ASP rules can be thought of as general inpututtidpvices. In particular,
Hybrid ASP programs allow the user to include ASP type rutes &ct as controls for
when to apply a given algorithm to advance the system to thepuesition.

Modern computational models and simulations such as thehoddog’s heart de-
scribed in [KNGBOMO7] rely on existing PDE solvers and ODHveos to determine
the values of parameters. Such simulations proceed byiimgalppropriate algorithms
to advance a system to the next state, which is often distilmge short time inter-
val into the future from the current state. In this way, a datian of continuously
changing parameters is achieved, although the simulat$etf is a discrete system.
The parameter passing mechanisms and the logic for makiigiadies regarding what
algorithms to invoke and when are part of the ad-hoc contgarahm. Thus the laws
of a system are implicit in the ad-hoc control software.

On the other hand, action languages [GL98] which are alsd iesmodel dynami-
cal systems allow the users to describe the laws of a systpfitidly. Initially action
languages did not allow simulation of the continuously diag parameters, which
severely limited applicability of such languages. Reger@hintabathina introduced
an action languag# [Ch10] where he proposed an elegant approach to modeling con
tinuously changing parameters. That is, a program in H de=srm@ state transition
diagram of a system where each state models a time interwveathich the parameter
dynamics is a known function of time. However, the implenaéioh of H discussed in
[Ch10] cannot use PDE solvers nor ODE solvers.

Hybrid ASP is an extension of ASP that allows users to comthiaetrength of the
ad-hoc approaches, i.e. the use of numerical methods tduijt simulate physical
processes, and the expressive power of ASP which providealiliity to elegantly
model laws of a system. Hybrid ASP provides mechanisms toesspthe laws of
the modeled system via hybrid ASP rules which can controteten of algorithms
relevant for simulation.

27



We should note that any given dynamical system may have &esdiragectory or
have multiple trajectories if the system is non-deterntinig-or example, in our James
Bond model given in the introduction, our agent may have twssjble trajectories
which would get him to his desired destination as pictureigure 2.

A

Region | Region Il Region 11l
Figure 2: Multiple trajectories.

We shall start out this section by describing a simplifiedsicar of Hybrid ASP
program which Brik and Remmel called Basic Hybrid ASP (BHRA®rograms.

5.1 Basic Hybrid ASP

A BH-ASP programP will have an underling parameter spageFor example, in our
secret agent example, imagine that we allow James Bond te whadision every\
seconds wheré > (0. Then one can think of describing the position and situaibn
time kA by a sequence of parameters

x(kA) = (zo(kA), 21 (kA), 22 (kA), . .., zm(kA))

that specify both continuous parameters such as time,ipositelocity, and accel-
eration as well as discrete parameters such as is the cageedias a car or as a
boat. In a BH-ASP program, we shall always think of the patame, as specifying
time and the range of; is {kA : k = 0,...,n} for some fixedn or of the form
{kA : k € N}. In particular, for finite BH-ASP programs, we shall assuimat the
range ofzg is{kA : k=0, ...,n} for some fixedh andA > 0. Thus we shall always
write an element of in the formx = (kA, z1(kA),. ..,z (kEA)) for somek. We
refer to the elements of asgeneralized positionsA BH-ASP program will also have
an underlying set of atomdt¢. Then the underlying universe of the program will be
At x S.

Suppose thal/ C At x S. Then we leth] = {x: (3a € At)((a,x) € M)}.
We will say thatM satisfies(a,x) € At x S, written M = (a,x), if (a,x) € M.
For any elementk A, x1,...,zy) € S, we letWy (KA, x1,...,2m)) = {a € At :
(a, (KA, z1,...,2m,)) € M} and we shall refer t&Vy, (kA, 21, ..., z,,) as theworld

28



of M at the generalized positiofkA, x4, . ..,z,,). We say thatM is asingle tra-
jectory model if for eachk € {0,...,n}, there is exactly one generalized position
of the form (kA z1,...,x,,) in M. If Misa single trajectory model, then we let
(kA,z1(kA),. ..,z (kA)) be the unique element of the for(RA, 1, ...,2,) In

S~

M and we can writé\/ as a disjoint union

M= | | War(kDd, 21 (D), ..., 20 (kD)) X {(kA, 21 (KA, ..., 2 (kA))}.
k=0

We will say that)M is amultiple trajectory model if for eachk € {0,...,n}, there
is at least one generalized positions of the fékm\, x4, ..., x,,) in M and for some
0 < ko < n, there are at least two generalized position of the foty, 1, ..., z,,) in
M. The reason for introducing multiple trajectory modelshiattwe may want to rea-
son about all possible trajectories of our secret agenerdttan just reasoning about
a single trajectory. If we drop the requirement that for ea¢h) there is a general-
ized position(kA, x1,...,&m,) € M in the definition of single trajectory or multiple
trajectory models, we get what we calhrtial single trajectoryand partial multiple
trajectorymodels.

BH-ASP programs consist of collections of the following ttypes of clauses.

Stationary clauseare of the form
a < ay,...,as,NOtby, ..., N0t : O (16)

wherea, aq, ..., an, b1, ..., by, € At, O is a set of generalized positions in the parame-
ter spaceS. The idea is that if for a generalized positipne O, if (a;, p) holds for
i=1,...,sand(b;, p) does nothold foj = 1, ..., ¢, then(a, p) holds. Thus stationary
clauses are typical normal logic programming clausesiveltt a fixed worldiWy, (p).

Advancing clauseare of the form
a 4+ ai,...,as,N0tby, ...,notb, : A, O a7

wherea, a1, ..., an, b1, ..., by, € At, O is a set of generalized positions in the parameter
spaceS and A is an algorithm such that for any generalized positioa O, A(p) is
defined and is an element 8f Here A can be any sort of algorithm which might be the
result of solving a differential or integral equation, salya set of linear equations or
linear programming equations, running a program or automatdtc. The idea is that
if for a generalized positiop € O, if (a;, p) holds fori =1, ..., s and(b;, p) does not
hold forj = 1, ...,¢, then(a, A(p)) holds. We will require that for alp € O, A(p)
always produces the same output. In a BH-ASP program, wealwmitlys assume that
if p=(kA,21,...,2m), thenA(p) is of the form((k + 1)A, y1, ..., ym) for some
Y1, ---,Ym- Thus advancing clauses are like input-output devicesdnttre algorithm
A allows certain elementswhich are to hold at the next generalized position.

In both advancing clauses and stationary clauses, we gfi@ilto the seO as the
constraint sebf the clause. The idea here is tliagllows one to use a single clause to
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specify clauses that can be used at a variety of generalastigns. We shall refer to
the algorithmA in advancing clause as tlaglvancing algorithnof the clause.

A BH-ASP Horn progran¥ is a collection of clauses of the form (16) and (17)
such that there are no occurrencesof in any of its clauses. Aonsistent BH-ASP
Horn programG is a BH-ASP Horn program such that(ifi, O) and(A’, O") appear
in H, thenA [ono= A’ [onor, where for an algorithnB and set of positiong,
B [k is the restriction of the algorithm to the domdin

Next we introduce the one-step provability operator for BHP Horn programs.
Let I be an initial generalized position §, M be a subset afit x S, andP be a basic
hybrid Horn program. Then we defiffg ; (M) to be the union of\/ and the set of all
atoms(a, p) such that either

1. there exist®® = a <+ ai,...,a,: O € P andp € (]\//\[U {I'}) N O such that
(a;,p) € M fori=1,..,nor

2. there exist€ = a + aq,...,a, : A,0 € Pandq € (]\/ZU {I'}) N O such that
(a;,q) € Mfori=1,...,nandp = A(q).

Itis easy to see th&tp ; is a continuous monotone operator so that the least fixpoint
of pr[ is

Tpr(0) = | Tp ().

n>0

A BH-ASP progranis a collection of clauses of the form (16) and (17). We shall
define two types of stable models: partial multiple trajegstiable models and partial
single trajectory stable models. LBtbe a BH-ASP program over the parameter$et
and sets of atomd¢. Suppose that = (0, z1,...,x,,) € S is an initial condition and
M C At x S'is a partial multiple trajectory model. Then tllfond-Lifschitz reduct
of P with respect to M and I is denoted byP"-! and is defined by the following
procedure.

1. Eliminate fromP all clauses” = a + ag, ..., an, NOtby, ..., NOtD,, : A, O such
that(vp € (M U{1}) N O)((3))((bi, p) € M) or A (p) ¢ M).

2. If a clauseC is not eliminated in step (1), then replace it by the clawse-
ai, ..., an : A, O where

O’ equals the set of ajp such thatp € (]\//TU {I}) N O and(b;,p) ¢ M for
t=1,...,mandA (p) € M.

3. Eliminate fromP all clauses” = a <« ay,...,a,,N0tby,...,N0OtdH,, : O such
that (¥p € (M U {1}) N0)(2i)((bi, p) € M).

4. If aclause” in (3) is not eliminated, then replace it by the clause

!/
a4 a1y.,p 2 O

whereO' = {p| pe (A?u {1}) NOandvi =1,...,m ((b;, p) ¢ M)}.
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Clearly, PM:! is always a BH-ASP Horn program. M is a partial single trajectory
model, then it is easy to see that it must be the caseftiat is a consistent BH-ASP
Horn program. Then we say thaf is a stable model of” with initial condition I if
Tpu1 g (0)* = M. If, in addition, M is a partial single trajectory model so thiat’-!
is a consistent hybrid Horn program, then we say fhais apartial single trajectory
stable model of” with initial condition.

5.2 Hybrid ASP programs.

There are several features which are not available in BH-g#®Brams that one would
like to have in an ASP system that can reason about dynamiemsgsexhibiting a
mixture of continuous and discrete phenomena. For exarhplhe, is a partial list of
features that one would like to have.

1. The restriction that in BH-ASP programs, advancing aausways have con-
clusions that represent information that occur at a fixee fimervalA later than
the current time is inconvenient. For example, in our JanmsdB2xample, the
dynamics changes as we go from the mountain to the lake and ge fvom the
lake to the desert, but the time of such transitions may netieltiple of of A.

2. Itis often useful to specify that certain invariance pdiges hold over a set of
times or generalized positions so that it may be desirabtate clauses whose
hypothesis refer to two or more different generalized st

3. In a BH-ASP program, every algorithm is required to pradtiee values for
all the parameters in a generalized position. As a numbeardmeters grows
such a requirement could become a serious drawback. In naa®gcit would
be more convenient if an algorithm was allowed to specifyi@alof only some
of the parameters, letting other parameters be "unspetdied possibly allow
unspecified values to be assigned by algorithms associatie@ther clauses.

4. There is the issue of how to deal with imprecise computatidrhat is, if our
algorithm is to solve a partial differential equation nuinally, we may not be
able to get exact answers but only produce an answer thadiesncee from
the exact answer. Similarly, we may want to use randomizgadridhms. For
this reason, we might want to allow our algorithms to be sdtied rather than
specify functions.

To deal with such issues, Brik and Remmel [BR11b] introduaedxtension of
BH-ASP which they called Hybrid ASP (H-ASP for short). As bed, we start with
a parameter spacg consisting of tuples of parametgss= (v, v1, ..., vx) and a set
of atomsAt. If p = (v, v1,...,v%) € S, we will assume that, is always the time
parameter and we léfp) denotev; andv; (p) denotey; fori = 1,..., k. The universe
U of a hybrid ASP program will equalt x S.

GivenM C At x S, B = ay,...,a,,N0thy,....,N0th,, andp € S, we say that
M satisfiesB at the generalized positiop, written M = (B;,p), if (a;,p) € M
fori = 1,...,n, and(b;,p) ¢ M for j = 1,...,m. Notice that if B; is empty
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thenM = (B;,p) holds. We letposBody(B;) = ax,...,a, andnegBody(B;) =
notby, ...,Notb,,. Let M = {x : (3a € At)((a,x) € M)}.
There are two types of clauses in H-ASP programs.

Extended stationary clausese of the form

a<—Bl,Bg,...,B,.:H,O (18)
where eachB; is of the form agi), . .,aﬁf},notbgi), ...,notbﬁ,ﬁ)l. where agi), aﬁf)
bgl), ,bS,? are atomsg is an atomO C S” is such that if(py,...,p.) € O, then

t(p1) < --- < t(pr), andH is a Boolean valued algorithm. Here and in subsequent
clauses, we allowt; or m; to be equal to O for any givein Moreover, ifn; = m; = 0,
thenB; is empty and we automatically assume tBais satisfied by any/ C At x S.

The idea is that ifp1, ..., p-) € O and for each, B; is satisfied at the general
positionp;, and H(p1, ..., p,) is true, then(a, q) holds. Thus extended stationary
clauses in H-ASP are similar to stationary clauses in BH-&ggept that we allow the
clause to refer to generalized positions that occur at pialtimes up to and including
the timet(p,-) where we require the pajt, p,) to hold, and we allow a user to specify
an additional constraint on the tuples of positions via @odlhm H. For example,
H could involve such non-logical conditions as that the galiwzd position satisfies
some system of linear equations or that there exist clangég iprogram that could be
used to advance positigs to positionp;; foralli =1,...,r — 1. We shall refer to
O as theconstraint sebf the clause and the algorithf as theBoolean algorithiof
the clause.

Extended advancing clausaee of the form

G%Bl,BQ,...,BTZA,O (19)
where A is an algorithm and eacB; is of the forma&i), ce aﬁfi), notbgi), . notb%)i

wherea?),...ai?, bgi), vy bS,? are atomsg is atom, and) C S™ is such that if
(p1,.-.,pr) € O, thent(p1) < ... < t(p,) andforallg € A(p1,-..,pPr),
t(a) > t(p,)-

The idea is that ifp1, ..., p-) € O and for each, B; is satisfied at the general
positionp;, then the algorithmA can be applied t¢p, ..., p.) to produce a set of
generalized positionS’ such thatifq € O’, thent(q) > ¢(p,) and(a, q) holds. Thus
advancing clauses in H-ASP are similar to advancing clausB$i-ASP except that
we allow a clause to refer to generalized positions thatioatoultiple times up to and
including the timet(p,-) and our algorithmA is set-valued rather than single valued.
As before, we shall refer t® as theconstraint sebf the clause and the algorithr
as theadvancing algorithnof the clause.

An H-ASP program is a collection of clauses of the form (18] §19). AH-ASP
Horn programis a H-ASP program which does not contain any occurrencastofA
consistent H-ASP Horn progratf is an H-ASP program such that if whenever two
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pairs of an advancing algorithm and a constraint(sét0O) and(A’, O’), appear inP
andO, O’ C 5", thenA [orno= A’ [onor.

Let P be a H-ASP Horn program arfde S be an initial condition such thatl) =
0. Then the one-step provability operafys ; is defined so that give! C At x S,
Tp (M) consists ofM together with the set of all, J) € At x S such that

1. there exists an extended stationary clause a < Bi, Ba, ..., B, : H,O and
(P1,---,pPr) €E0ON (]\//fu {I}) such thatd (p1,...,p-) =1 and
(a,J) = (a,pr) andM = (B;,p;) fori=1,...,ror

2. there exists an advancing cladse= a < By, B, ..., B, : A,O and
(p1,-..,pr) €E0ON (M\U {I}) such thafa, J) € A(p1,...,pr) and
M ': (Bupz) fori = 1,...,7.

It is easy to see that for all H-ASP Horn prografsnd initial conditions € S
such that(I) = 0, Tp s is a continuous monotone operator so that the least model of
P relative to the initial conditiord is given byT's (1)

We can then define the stable model semantics for general P{#8grams as
follows. Suppose that we are given a hybrid ASP progfanover a set of atoms¢
and a parameter spadg a setM C At x S, and an initial conditiorl € S such that
t(I) = 0. Then we form the Gelfond-Lifschitz reduct &f over M and I, P! as
follows.

1. Eliminate fromP all advancing clause§ = a < By,..., B, : A, O such that
for all (p1,...,pr) € O, there is an such thatM = (negBody(B;), p;) or

—

A(p1,.--,pr)NM=10.

2. If the advancing claus€ = a + Bi,..., B, : A, O is not eliminated by
(1), then replace it by, < By ,..., B : AT, OT where for each, B =
posBody(B;), O is equal to the set of allpy,...,p,) iINn O N (J\?u {I})T
such thatM = (negBody(B;),p;) fori=1,...,r andA(p1,...,pr) "M #

0, and A" is defined so that the domain df+ is O and A (p1,...,p;) is
A(p1,...,pr) N M forall (py,...,pr) € O7.

3. Eliminate fromP all extended stationary clausés =« Bi,...,B, : H,O
such that for al(ps, ..., p,) € O, either there is ansuch that
M |~ (negBody(B;), pi) of H(p1,...,pr) = 0.

4. If the extended stationary clau6e= a < By,..., B, : H,O is not eliminated
by (3), then replace it by < Bi,..., B} : H,O" where for each, B;" =
posBody(B;), OT is equal to the set of allpy,...,p,) iNn O N (J\?u {I})
such thatM = (negBody(B;),p;) fori = 1,...,r andH(p1,...,p,) = 1.
Let H* be the restriction off to O .

We then say that/ is ageneral stable model aP with initial condition! if Tpar,: (1) =
M.
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We believe that the point of view of thinking of rules as geh@rput-output devices
has the potential for many new applications of ASP techriqddus we believe that
one should view Brik and Remmel’'s work on H-ASP programs [BRas a first step
for further work that will lead to both theoretical tools dder the modeling and analy-
sis of dynamic systems and for computer applications thatlsite dynamical systems.
There is considerable work to be done in developing a thebsych programs which
would be similar to the theory that has been developed for pi®grams. For exam-
ple, a careful analysis of the complexity of the stable medéla H-ASP programs as
a function to the complexity of the advancing and Booleaiiyms in the program
needs to be done. One should explore more extended setesfthalt allows for par-
tial parameter passing or allow different rules to instetdisjoint sets of parameters
for the next time step. We need to develop extensions of ASRsothat can pro-
cess Hybrid ASP programs. That is, in action languages likiaélgoal is to compile
an H program into a variant ASP program that can be procesgbdcurrent variant
ASP solvers. The existence of Hybrid ASP solvers would allswo develop Hybrid
ASP type extensions of action languages like H that couldbepiled to Hybrid ASP
programs which, in turn, would be processed by Hybrid ASkessl

6 Conclusions

While there are several declarative formalisms that det finite-domain constraint-
satisfaction, two of these, ASP and Satisfiability (SAT) [BW09] arelogic-based
However, the motivations of these two technologies aresbfit. ASP is extensively
discussed above and is based on generalizations of Horm dogi knowledge repre-
sentation. On the other hand, SAT has its roots in the thebcpmputation and has
significant applications in electronic design automatidawever, at least up until now,
the SAT community did not pay much attention to the issue ofst@int representa-
tion. The tools available for a programmer to prepare theticfausal theory for the
solver as well as tools for decoding the results returnedhbyolver have traditionally
been very limited. By contrast, ASP has its roots in Knowk&gpresentation as un-
derstood by the Atrtificial Intelligence community. Thusearchers in ASP have been
much more sensitive to the issue of proper representatioardtraints and providing
a bigger repertoire of tools that could support the progremifExample of such tools
include groundersthat support the use of variables and pseudo-Boolean edmtstr
The work of thedl v designers shows that solvers can also be tightly couplea wit
traditional database systems.

It is only natural to ask whether there are further stepsdhatbe taken to increase
the applicability of ASP and its underlying logic and unsa&ralgebra mechanisms.
As ASP solvers such adasp[GKNSQ7] have recently become fast enough to com-
pete with SAT solvers, it is worth to ask whether the knowkedgpresentation tools
available to the ASP programmer can be further extendedslightly differently, one
should ask if the mechanism of context-dependent reas@sidiscovered by Gelfond
and Lifschitz can be applied to a richer class of applicatithat go well beyond finite
domain constraint satisfaction. As shown in a number of apeps quoted in this
paper, the abstract mechanism of fixpoint computation,asethe abstract form of
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the Knaster-Tarski fixpoint theorem, can be extended to migbler programming en-
vironments by properly interpreting the Gelfond-Lifs@hionstruction of stable mod-
els. Conceptually, this is akin to Satisfiability-Modultidories. This observation has
been made in a variety of forms by a number of other authopgaally, in [Nie09]
and [MGZ08]. We have presented four such extensions in thggep However, we
should note that all of these extensions are compatibleahdhe can incorporate all
the features of these extensions into a single system. ler etbrds, by choosing
appropriate libraries for processing various classes obfraints, one could use an
abstract Gelfond-Lifschitz mechanism for stable model potation as a single pro-
cessing paradigm. A step in this direction was made by Lievtleo proposed such
abstract mechanism in [Lie08]. The next step is to devel@ipiefit solvers for such
extensions so that one can extend the range of applicatfokS® systems. This is a
highly complex task, but one that we think is worth the effort

We hope our review of these four extensions of ASP will maéather researchers
in ASP to investigate new extensions of ASP. This is a topt lias interested us over
the last 15 years and we feel that there is still much more wwobe done on the theory
of such extensions, the implementations of such extensams the applications of
such extensions.
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