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Abstract. In answer set programming (ASP), one does not allow the
use of function symbols. Disallowing function symbols avoids the problem
of having logic programs which have stable models of excessively high
complexity. For example, Marek, Nerode, and Remmel showed that there
exist finite predicate logic programs which have stable models but which
have no hyperarithmetic stable model. Disallowing function symbols also
avoids problems with the occurs check that can lead to wrong answers
in logic programs. Of course, by eliminating function symbols, one loses
a lot of expressive power in the language. In particular, it is difficult to
directly reason about infinite sets in ASP.

Blair, Marek, and Remmel [BMR08] developed an extension of logic pro-
gramming called set based logic programming. In the theory of set based
logic programming, the atoms represent subsets of a fixed universe X
and one is allowed to compose the one-step consequence operator with a
monotonic idempotent operator (miop) O so as to ensure that the ana-
logue of stable models are always closed under O. We let SP denote the
set of fixed points of finite unions of the sets represented by the atoms
of P under the miops associated with P . We shall show that if there is a
coding scheme which associates to each element A ∈ SP a code c(A) such
that there are effective procedures, which given two codes c(A) and c(B)
of elements A,B ∈ SP , will (i) decide if A ⊆ B, (ii) decide if A ∩B = ∅,
and (iii) produce the codes of the closures of A ∪ B and of A ∩ B un-
der the miop operators associated with P , then we can effectively decide
whether an element A ∈ SP is a stable model of P . Thus in such a
situation, we can effectively reason about the stable models of P even
though SP contains infinite sets. Our basic example is the case where all
the sets represented by the atoms of P are regular languages but many
other examples are possible such as when the sets involved are certain
classes of convex sets in Rn.
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1 Introduction

Computer Science for the most part reasons about finite sets, relations and func-
tions. There are many examples in computer science where adding symbols for
infinite sets or arbitrary function symbols into programming languages results in
big jumps in the complexity of models of programs. For example, finding the least
model of a finite Horn program with no function symbols can be done in linear
time [DG82] while the least model of finite predicate logic Horn program with
function symbols can be an arbitrary recursively enumerable set [Sm68]. If we
consider logic programs with negation, Marek and Truszczyński [MT93] showed
that the question of whether a finite propositional logic program has a stable
model is NP-complete. However Marek, Nerode, and Remmel [MNR94] showed
that the question of whether a finite predicate logic program with function sym-
bols possesses a stable model is Σ1

1 complete. Similarly, the stable models of
logic programs that contain function symbols can be quite complex. Starting
with [AB90] and continuing with [BMS95] and [MNR94], a number of results
showed that the stable models of logic programs that allow function symbols
can be exceedingly complex, even in the case where the program has a unique
stable model. For example, Apt and Blair [AB90] have shown that arithmetic
sets can be defined with stable models of stratified programs and Marek, Nerode
and Remmel [MNR94] showed that there exist finite predicate logic programs
which have stable models but which have no hyperarithmetic stable model.

While these type of results may at first glance appear negative, they had a
positive effect in the long run since they forced researchers and designers to limit
themselves to cases where programs can be actually processed. The effect was
that processing programs called solvers such as cmodels [BL02,GLM06], smodels
[SNS02], clasp [GKN+], ASSAT [LZ02], and dlv [LPF+06] had to focus on
finite programs that do not admit function symbols (dlv allows for use of a very
limited class of programs with function symbols). The designers of solvers have
also focused on the issues of both improving processing of the logic programs
(i.e. searching for a stable model) and improving the use of logic programs as
a programming language. The latter task consists of extending the constructs
available to the programmer to make programming easier and more readable.
This development resulted in a class of solvers that found use in combinatorial
optimization [MT99,Nie99], hardware verification [KN03], product configuration
[SNTS01], and other applications.

Of course, by eliminating function symbols, one loses a lot of expressive power
in the language. One of the motivations of this paper was to find ways to extend
the ASP formalism to allow one to reason directly about infinite sets yet still
allow the programs to be processed in an effective manner. This requires a very
careful analysis of the complexity issues involved in the formalisms as well as
developing various ways to code the infinite sets involved in any given application
so that one can process information effectively. Part of our motivation is that
with the rise of the Internet, there are now many tools which use the Internet
as a virtual data base. While all the information on the Internet at any given
point of time is a finite object, it is constantly changing and it would be nearly



impossible to characterize the totality of information available in any meaningful
way. Thus, for all practical purposes, one can consider the information on the
Internet as an infinite set of information items. Hence we need to consider ways
in which one can extend various formalisms in computer science to reason about
infinite objects.

The main goal of this paper is to show that there are extensions of the ASP
formalism where one can effectively reason about infinite languages which are
accepted by deterministic finite automata (DFAs). In particular, we shall show
that in a recent extension of logic programming due to Blair, Marek, and Remmel
[BMR08], one can effectively reason about languages which are accepted by finite
automaton. We will also show that under reasonable assumptions, this approach
can be lifted to other areas as well.

In [BMR01], Blair, Marek, and Remmel developed an extension of the logic
programming paradigm called spatial logic programming in which one can di-
rectly reason about regions in space and time as might be required in applica-
tions like graphics, image compression, or job scheduling. In spatial logic pro-
gramming, one has some fixed space X be the intended universe of the program
rather than having the Herbrand base be the intended underlying universe of
the program and one has each atom of the language of the program specify a
subset of X, i.e. an element of the set 2X .

As pointed out in [BMR08], if one reflects for a moment on the basic aspects
of logic programming with an Herbrand model interpretation, a slight change in
one’s point of view shows that it is natural to interpret atoms as subsets of the
Herbrand base. In ordinary logic programming, we determine the truth value of
an atom p in an Herbrand interpretation I by declaring I |= p if and only if
p ∈ I. However, this is equivalent to defining the sense, [[p]], of an atom p to be
the set {p} and declaring that I |= p if and only if [[p]] ⊆ I. By this simple move,
we have permitted ourselves to interpret the sense of an atom as a subset of a
set X rather than the literal atom itself in the case where X is the Herbrand
base of the language of the program.

It turns out that if the underlying space X has structure such as a topology
or an algebraic structure such as a group or vector space, then a number of
other natural options present themselves. That is, Blair, Marek, and Remmel
[BMR08] extended the theory of spatial logic programming to what they called
set based logic programming where one composes the one-step consequence op-
erator of spatial logic programing with a monotonic idempotent operator. For
example, if we are dealing with a topological space, one can construct a new one-
step consequence operator T by composing the one-step consequence operator
for spatial logic programming with an operator that produces the topological
closure of a set or the interior of a set. In such a situation, we can ensure that
the new one-step consequence operator T always produces a closed set or al-
ways produces an open set. Similarly, if the underlying space is a vector space,
one might construct a new one-step consequence operator T by composing the
one-step consequence operator for spatial logic programming with the operator
that produces the smallest subspace containing a set, the span operator, or with



the operator that produces the smallest convex closed set containing a set, the
convex closure operator. In this way, one can ensure that the new one-step con-
sequence operator T always produces a subspace or always produces a convex
closed set. More generally, We say that an operator O : 2X → 2X is monotonic
if for all Y ⊆ Z ⊆ X, we have O(Y ) ⊆ O(Z) and we say that O is idempotent for
all Y ⊆ X, O(O(Y )) = O(Y ). Specifically, many familiar operators such as clo-
sure, interior, or the span and convex-closure operators in vector spaces over the
rationals and other fields are monotonic idempotent operators. We call a mono-
tonic idempotent operator a miop. We say that a set Y is closed with respect to
miop O if and only if Y = O(Y ). Besides of examples listed above, in the context
or regular languages, we discuss a number of monotone idempotent operators
in Example 3, Section 4. By composing the one-step consequence operator for
spatial logic programs with the operator O, we can ensure that the resulting
one-step consequence operator always produces a fixed point of O. We can then
think of the operator O as a parameter. This naturally leads us to a situation
where we have a natural polymorphism for set based logic programming. That
is, one can use the same logic program to produce stable models with different
properties depending on how the operator O is chosen.

Moreover, in such a setting, one also has a variety of options for how to
interpret negation. In normal logic programming, a model M satisfies ¬p if
p /∈M . From the spatial logic programming point of view, when p is interpreted
as a singleton {p}, this would be equivalent to saying that M satisfies ¬p if
(i) {p} ∩ M = ∅, or (equivalently) (ii) {p} * M . When the sense of p is a
set with more than one element, it is easy to see that saying that M satisfies
¬p if [[p]] ∩M = ∅ (strong negation) is different from saying that M satisfies
¬p if [[p]] * M (weak negation). This leads to two natural interpretations of
the negation symbol which are compatible with the basic logic programming
paradigm. When the underlying space has a miop cl, one can get even more
subsidiary types of negation by taking M to satisfy ¬p if cl([[p]]) ∩M ⊆ cl(∅)
(strong negation) or by taking M to satisfy ¬p if cl([[p]]) *M (weak negation).

Blair, Marek, and Remmel [BMR08] showed that set based logic programing
provides the foundations and basic techniques for crafting applications in the
answer set paradigm as described in [MT99,Nie99] and then [GL02,Ba03]. That
is, if in a given application, topological, linear algebraic, or similar constructs are
either necessary or at least natural, then one can construct an answer set pro-
gramming paradigm whose models correspond to natural closed structures. The
expressive power of miops allows us to capture functions and relations intrinsic
to the domain of a spatial logic program, but independent of the program. This
permits set based logic programs to seamlessly serve as front-ends to other sys-
tems. Miops play the role of back-end, or “behind-the-scenes”, procedures and
functions.

We let SP denote the set of least fixpoints with respect to the miops associ-
ated with P containing all finite unions and intersections of sets represented by
the atoms of a finite set based logic program P . Here the elements of SP may
be finite or infinite. The main goal of this paper is find conditions on SP which



ensure that we can effectively decide whether a given element of SP is a stable
model of P . We shall show that if there is a way of associating codes c(A) to the
elements of A ∈ SP such that there are effective procedures which, given codes
c(A) and c(B) for elements of A,B ∈ SP , will (i) decide if A ⊆ B, (ii) decide if
A ∩B = ∅, and (iii) produce of the codes of closures of A ∪B and A ∩B under
miop operators associated with P , then we can effectively decide whether a code
c(A) is the code of a stable model of P . Our running example will be the case
where P is a finite set-based logic program over a universe X = Σ∗ where Σ is a
finite alphabet and the sets represented by atoms in P are languages contained
in X which are accepted by finite automaton and the miops O involved in P
preserve regular languages, i.e, if A is an automata such that the language L(A)
accepted by A is contained in X, then we can effectively construct an automaton
B such that the language L(B) accepted by B equals O(L(A)). Then, we shall
show that the stable models of P are languages accepted by finite automaton
and one can effectively check whether a language accepted by finite automaton
is a stable model. Thus in this setting, one can effectively reason about an im-
portant class of infinite sets. However, it will be clear from our proofs that the
only properties that we use for regular languages coded by their accepting DFAs
are that the procedures for (i), (ii), and (iii) are effective.

The outline of this paper is as follows. In Section 2, we shall give the basic
definitions of set based logic programming with miops. as developed by Blair,
Marek, and Remmel [BMR08]. In Section 3, we shall review that basic properties
of languages accepted by finite automata that we shall need. In Section 4, we
shall show how the formalisms of finite automata can be seamlessly incorporated
into the set based logic programming formalism. Finally, in Section 5, we give
conclusions and directions for further research.

2 Set Logic Programs: syntax, miops, and semantics

We review the basic definitions of set based logic programming as introduced
by Blair, Marek, and Remmel [BMR08]. The syntax of set based logic programs
will essentially be the syntax of DATALOG programs with negation.

Following [BMR08], we define a set based augmented first-order lan-
guage (set based language, for short) L as a triple (L,X, [[·]]), where
(1) L is a language for first-order predicate logic (without function symbols other
than constants),
(2) X is a nonempty (possibly infinite) set, called the interpretation space,
and
(3) [[·]] is a mapping from the atoms of L to the power set of X, called the sense
assignment. If p is an atom, then [[p]] is called the sense of p.

In our setting, a set based logic program has three components.
1) The language L which includes the interpretation space and the sense assign-
ment.
2) The IDB (Intentional Database): A finite set of program clauses, each of
the form A← L1, . . . , Ln, where each Li is a literal, i.e. an atom or the negation



of an atom, and A is an atom.
3) The EDB (Extensional Database): A finite set of clauses of the form A←
where A is an atom.
Given a set based logic program P , the Herbrand base of P is the Herbrand base
of the smallest set based language over which P is a set based logic program.

We shall assume that the classes of set based logic programs that we consider
are always over a language for first-order logic L with no function symbols except
constants, and a fixed set X. We let HBL denote the Herbrand base of L, i.e.
the set of atoms of L. We omit the subscript L when the context is clear. Thus
we allow clauses whose instances are of the following form:

C = A← B1, . . . , Bn,¬C1, . . . ,¬Cm. (1)

where A, Bi, and Cj are atoms for i = 1, . . . , n and j = 1, . . . ,m. We let
head(C) = A,Body(C) = B1, . . . , Bn,¬C1, . . . ,¬Cm, and PosBody(C) = {B1, . . . ,
Bm}, and NegBody(C) = {C1, . . . , Cm}.

We let 2X be the powerset of X. Given [[·]] : HBL −→ 2X , an interpretation
I of the set based language L = (L,X, [[·]]) is a subset of X.

2.1 Examples of Monotonic Idempotent Operators

A second component of a set based logic program is one or more monotonic
idempotent operators O : 2X → 2X that are associated with the program.
Recall that an operator O : 2X → 2X is monotonic if for all Y ⊆ Z ⊆ X, we have
O(Y ) ⊆ O(Z) and we say that O is idempotent for all Y ⊆ X, O(O(Y )) = O(Y ).
We call a monotonic idempotent operator a miop (pronounced “my op”). We
say that a set Y is closed with respect to miop O if and only if Y = O(Y ).

For example, suppose that the interpretation space X is either Rn or Qn

where R is the reals and Q is the rationals. Then, X is a topological vector space
under the usual topology so that we have a number of natural miop operators:

1. opid(A) = A, i.e. the identity map is simplest miop operator,
2. opc(A) = Ā where Ā is the smallest closed set containing A,
3. opint(A) = int(A) where int(A) is the interior of A,
4. opconvex(A) = K(A) where K(A) is the convex closure of A, i.e. the smallest

set K ⊆ X such that A ⊆ K and whenever x1, . . . , xn ∈ K and α1, . . . , αn
are elements of the underlying field (R or Q) such that

∑n
i=1 αi = 1, then∑n

i=1 αixi is in K, and
5. opsubsp(A) = (A)∗ where (A)∗ is the subspace of X generated by A.

We should note that (5) is a prototypical example if we start with an algebraic
structure. That is, in such cases, we can let opsubstr(A) = (A)∗ where (A)∗ is the
substructure of X generated by A. Examples of such miops include the following:

(a) if X is a group, we can let opsubgrp(A) = (A)∗ where (A)∗ is the subgroup
of X generated by A,

(b) if X is a ring, we can let opsubrg(A) = (A)∗ where (A)∗ is the subring of X
generated by A,



(c) if X is a field, we can let opsubfld(A) = (A)∗ where (A)∗ is the subfield of
X generated by A,

(d) if X is a Boolean algebra, we can let opsubalg(A) = (A)∗ where (A)∗ is the
subalgebra of X generated by A or we can let opideal(A) = Id(A) where
Id(A) is the ideal of X generated by A, and

(e) if (X,≤X) is a partially ordered set, we can let opuideal(A) = Uid(A) where
Uid(A) is the upper order ideal of X (that is, the least subset S of X
containing A such that whenever x ∈ S and x ≤X y, then y ∈ S).

2.2 Set based logic programming with miops

Now suppose that we are given a miop op+ : 2X → 2X and Horn set based
logic program P over X. Here we say that a set based logic program is Horn if
its IDB is Horn. Blair, Marek, and Remmel [BMR08] generalized the one-step
consequence-operator of ordinary logic programs with respect to 2-valued logic
to set based logic programs relative to a miop operator op+ as follows. First, for
any atom A and I ⊆ X, we say that I |=[[·]],op+ A if and only if op+([[A]]) ⊆ I.
Then, given a set based logic program P with IDB P , let P ′ be the set of
instances of a clauses in P and let

TP,op+(I) = op+(I1 ∪ I2)

where I1 =
⋃
{[[a]] | a← L1, . . . , Ln ∈ P ′, I |=[[·]],op+ Li, i = 1, . . . , n} and

I2 =
⋃
{[[a]] | a← is an instance of a clause in the EDB of P}.

We then say that a supported model relative to op+ of P is a fixed point of
TP,op+ .

We iterate TP,op+ according to the following.

TP,op+ ↑0 (I) = I
TP,op+ ↑α+1 (I) = TP,op+(TP,op+ ↑α (I))

TP,op+ ↑λ (I) = op+(
⋃
α<λ

{TP,op+ ↑α (I)}), λ limit

It is easy to see that if P is a Horn spatial logic program and op+ is a
miop, then TP,op+ is monotonic. Blair, Marek, and Remmel [BMR08] proved
the following.

Theorem 1. Given a miop op+, the least model of a Horn set based logic pro-
gram P exists and is closed under op+ , is supported relative op+, and is given
by TP,op+ ↑α (∅) for the least ordinal α at which a fixed point is obtained.

We note, however, that if the Herbrand universe of a set based logic program
is infinite (contains infinitely many constants) then, unlike the situation with
ordinary Horn programs, TP,op+ will not in general be upward continuous even
in the case where op+(A) = A for all A ⊆ X. That is, consider the following
example which was given in [BMR08].



Example 1. Assume that op+ is the identity operator on 2X . To specify a set
based logic program, we must specify the language, EDB and IDB. Let L =
(L,X, [[·]]) where L has four unary predicate symbols: p, q, r and s, and count-
ably many constants e0, e1, . . . , . X is the set N

⋃
{N} where N is the set of

natural numbers, {0, 1, 2, . . . }. [[·]] is specified by [[q(en)]] = {0, . . . , n}, [[p(en)]] =
{0, . . . , n+ 1}, [[r(en)]] = N, and [[s(en)]] = {N}.

The EDB is q(e0)← and the IDB is: p(X)← q(X) and s(e0)← r(e0).

Now, after ω iterations upward from the empty interpretation, r(e0) becomes
satisfied. One more iteration is required to reach an interpretation that satisfies
s(e0), where the least fixed point is attained. �

Next we consider how we should deal with negation in the setting of miop
operators. Suppose that we have a miop operator op− on the space X. We do
not require that op− is the same as that miop op+ but it may be. Our goal is
to define two different satisfaction relations for negative literals relative to the
miop operator op− which are called strong and weak negation in [BMR08] 3.

For the rest of this paper, we shall think of a set based logic program P as a
set of clauses of the form (1) where it may be that either n or m equals 0. We let
horn(P ) denote the set of all Horn clauses in P and nohorn(P ) = P \ horn(P ).

Definition 1. Suppose that P is a set based logic program over X and op+ and
op− are miops on X and a ∈ {s, w}.

(I) Given any atom A and set J ⊆ X, then we say
J |=a

[[·]],op+,op− A if and only if op+([[A]]) ⊆ J .

(II)s (Strong negation) Given any atom A and set J ⊆ X, then we say
J |=s

[[·]],op+,op− ¬A if and only if op−([[A]]) ∩ J ⊆ op−(∅).
(II)w (Weak negation) Given any atom A and set J ⊆ X, then we say

J |=w
[[·]],op+,op− ¬A if and only if op−([[A]]) * J .

Definition 2. For any given set J ⊆ X we define the strong Gelfond-Lifschitz
transform, GLsJ,[[·]],op+,op−(P ), of a program P with respect to miops op+ and

op− on 2X , in two steps. First, we consider all clauses in P ,

C = A← B1, . . . , Bn,¬C1, . . . , Cm (2)

where A,B1, . . . , Bn, C1, . . . , Cm are atoms. If for some i, it is not the case that
J |=s

[[·]],op+,op− ¬Ci, then we eliminate clause C. Otherwise we replace C by the
Horn clause

A← B1, . . . , Bn. (3)

Then, GLsJ,[[·]],op+,R(P ) consists of the set of all Horn clauses produced by this
two step process.

3 Lifschitz [Li94] observed that different modalities, thus different operators, can be
used to evaluate positive and negative part of bodies of clauses of normal programs.



We define the weak Gelfond-Lifschitz transform, GLwJ,[[·]],op+,op−(P ), of a pro-

gram P with respect to miops op+ and op− on 2X in a similar manner except
that we use |=w

[[·]],op+,op− in place of |=s
[[·]],op+,op− in the definition.

Note that since GLaJ,[[·]],op+,op−(P ) is a Horn set based logic program for either

a = s or a = w, the least model of GLaJ,[[·]],op+,op−(P ) relative to op+ is defined.
We then define the a-stable model semantics for a set based logic program P
over X relative to the miops op+ and op− on X for a ∈ {s, w} as follows.

Definition 3. J is an a-stable model of P relative to op+ and op− if and only
if J is the least fixed point of TGLa

J,[[·]],op+,op−
(P ),op+ .

Next we give a simple example to show that there is a difference between
s-stable and w-stable models.

Example 2. Suppose that the space X = R2 is the real plane. Our program will
have two atoms {a, b}, {c, d} where a, b, c and d are reals. We let [a, b] and [c, d]
denote the line segments connecting a to b and c to d respectively. We let the
sense of the these atoms be the corresponding subsets, i.e. we let [[{a, b}]] = {a, b}
and [[{c, d}]] = {c, d}. We let op+ = op− = opconvex. The consider the following
program P.

(1) {a, b} ← ¬{c, d}
(2) {c, d} ← ¬{a, b}

There are four possible candidate for stable models in this case, namely (i) ∅,
(ii) [a, b], (iii) [c, d], and (iv) opconvex{a, b, c, d}. Let us recall that opconvex(X)
is the convex closure of X which, depending on a, b, c, and d may be either a
quadrilateral, triangle, or a line segment.

If we are considering s-stable models where J |=s
[[·]],op+,op− ¬C if and only if

op−(C) ∩ J = op−(∅) = ∅, then the only case where there are s-stable models if
[a, b] and [c, d] are disjoint in which (ii) case and (iii) are s-stable models.

If we are considering w-stable models where J |=w
[[·]],op+,op− ¬C if and only if

op−(C) * J , then there are no w-stable models if [a, b] = [c, d], (ii) is a w-stable
model if [a, b] * [c, d], (iii) is w-stable model if [c, d] * [a, b] and (ii) and (iii) are
w-stable models if neither [a, b] ⊆ [c, d] nor [c, d] ⊆ [a, b]. �

It is still the case that the a-stable models of a set based logic program P
form an antichain for a ∈ {s, w}. That is, we have the following result.

Theorem 2. Suppose that P is a set based logic program over X, op+ and op−

are miops on X, and a ∈ {s, w}. If M and N are a-stable models of P and
M ⊆ N , then M = N .

Proof. It is easy to see that in general if M ⊆ N , then

GLaN,[[·]],op+,op−(P ) ⊆ GLaM,[[·]],op+,op−(P ).



Hence the least fixed point of TGLa
N,[[·]],op+,op−

(P ),op+ is a subset of the least fixed

point of TGLx
M,[[·]],op+,op−

(P ),op+ . But if M ⊆ N and M and N are a-stable models,

then N equals the least fixed point of TGLa
N,[[·]],op+,op−

(P ),op+ and M equals the

least fixed point of TGLa
M,[[·]],op+,op−

(P ),op+ so that N ⊆M . �

3 Languages accepted by finite automaton

In this section, we shall briefly list some of the basic properties of languages
accepted by finite automaton that we shall need.

Recall that a deterministic finite automaton (DFA) M is specified by a quin-
tuple M = (Q,Σ, δ, s, F ) where

Q is a finite alphabet of state symbols,
Σ is finite alphabet of input symbols,
δ : Q×Σ → Q is a transition function,
s in Q is the start state, and
F ⊆ Q is the set of final (accepting) states.

We let L(M) denote the set of all words w accepted by M . A nondeterministic
automaton (NFA) M = (Q,Σ, δ, s, F ) is specified by similar 5-tuple except that
in this case δ ⊆ Q×Σ×Q. It is well known that for any fixed finite alphabet Σ,
the set of languages L ⊆ Σ∗ accepted by DFAs and the set languages of L ⊆ Σ∗
accepted by NFA’s are the same. Moreover, given any two DFAs M1 and M2,
there are standard constructions of DFAs M3, M4, and M5 such that

L(M3) = L(M1) ∩ L(M2),
L(M4) = L(M1) ∪ L(M2), and
L(M5) = Σ∗ − L(M1).

We shall denote these three DFAs by M3 = M1 ∩ M2, M4 = M1 ∪ M2, and
M5 = M̄1. We notice that in such setting the automaton accepting the language
L is a code for L. It is a well-known fact that instead of DFA one can consider
a different class of codes for regular languages, namely regular expressions.

A crucial property of DFAs is the pumping lemma of [BPS61].

Lemma 1. Let M = (Q,Σ, δ, s, F ) be a DFA and p = |Q|. Then for all words
w ∈ L(M) such that |w| ≥ p, we can write w = xyz for some x, y, z ∈ Σ∗ such
that

1. |xy| ≤ p,
2. |y| ≥ 1, and
3. xyiz ∈ L(M) for all i ≥ 0.

One immediate consequence of the pumping lemma is that we can effectively
decide whether L(M) is empty or finite. That is, we have the following lemmas.

Lemma 2. Let M = (Q,Σ, δ, s, F ) be a DFA. Then, L(M) is empty if and only
if for every w ∈ Σ∗ such that |w| < |Q|, w is not accepted by L(M).



Lemma 3. Let M = (Q,Σ, δ, s, F ) be a DFA. Then, L(M) is finite if and only
if for every w ∈ Σ∗ such that |Q| ≤ |w| < 2|Q|, w is not accepted by L(M).

Thus the complexity of the decision procedure to decide whether L(M) is
empty or finite depends directly on |Q| and |Σ|. The fact that we can effectively
decide if L(M) = ∅ also means that we can decide for any given DFAs M1 and
M2 whether

1. L(M1) ⊆ L(M2) since L(M1) ⊆ L(M2) if and only if L(M1 ∩ M̄2) = ∅,
2. L(M1) = L(M2) since L(M1) = L(M2) if and only if L(M1) ⊆ L(M2) and
L(M2) ⊆ L(M1), and

3. L(M1)∩L(M2) = ∅ since L(M1)∩L(M2) = ∅ if and only if L(M1∩M2) = ∅.

4 Set Based Logic Programming with Automata

In this section, we shall consider finite set based logic programs P over L =
(L,X, [[·]]) where X = Σ∗ for some finite alphabet Σ. Thus P consists of clauses
of the form

C = A← B1, . . . , Bn,¬C1, . . . , Cm (4)

where A,B1, . . . , Bn, C1, . . . , Cm are atoms. We shall assume that X = Σ∗ for
some finite alphabet Σ and that for any clause of the form (4) in P ,

[[A]], [[B1]], . . . , [[Bn]], [[C1]], . . . , [[Cm]]

are all accepted by DFAs whose alphabet of symbols is Σ. For the moment,
assume also that op+ and op− are the identity operators. For ease of
notation, we shall assume that for any atom A that appears in P , A is a DFA
whose over the alphabet Σ and that [[A]] = L(A).

Proposition 1. For every finite set based program P where op+ = opid, every
weak or strong stable model of P is a finite union of the sense assignments of
the heads of clauses in P .

Thus any weak or strong stable model of P must be a finite union of languages
in Σ∗ which are accepted by DFAs and, hence, the stable model itself is accepted
by a DFA since languages accepted by DFAs are closed under union. We claim
that if M is a DFA whose alphabet of symbols is Σ, then we can effectively
decide whether L(M) is a weak or strong stable model of P .

The first thing to observe is that we can effectively find the weak or strong
Gelfond-Lifschitz transform of P . That is, under our assumptions for any atom
A and any a ∈ {s, w},

1. L(M) |=a
[[·]],op+,op− A if and only if L(A) ⊆ L(M),

2. L(M) |=s
[[·]],op+,op− ¬A if and only if L(A) ∩ L(M) = ∅, and

3. L(M) |=w
[[·]],op+,op− ¬A if and only if L(A) * L(M).



It follows from the results in Section 3, that we can effectively decide whether
L(M) |=a

[[·]],op+,op− A, L(M) |=s
[[·]],op+,op− ¬A, and L(M) |=w

[[·]],op+,op− ¬A. Hence,

we can effectively construct GLsL(M),[[·]],op+,op−(P ) and GLwL(M),[[·]],op+,op−(P ).

Now suppose that Q is a finite Horn set based logic program over L =
(L,X, [[·]]) where X = Σ∗ for some finite alphabet Σ and op+ and op− are the
identity operators. Moreover, assume that for any atom A which appears in
Q, [[A]] is a language accepted by a DFA whose alphabet is Σ. Again, for ease
of notation, we shall assume that for any atom A that appears in P , A is a
DFA whose alphabet is Σ and that [[A]] = L(A). Then, we claim that we can
effectively construct a DFA M such that L(M) is the least model of Q. First,
we shall show that for all n ≥ 1, we can effectively construct a DFA Mn such
TnQ,op+(∅) = L(Mn). Note that TQ,op+(∅) is equal to

⋃
{L(A) : A ← ∈ Q}.

Now if {A ← ∈ Q} is empty, then TQ,op+(∅) = ∅ and the least model of Q
equals ∅ so that we simply let M1 be the one state DFA which has no accepting
state. Otherwise, suppose

{A : A← ∈ Q} = {A0
1, . . . , A

0
n0
}.

Then, we set M1 = A0
1∪· · ·∪A0

n0
. Now assume that we have constructed a DFA

Mn such that TnQ,op+(∅) = L(Mn). Then,

TQ,op+(L(Mn)) = op+(I1 ∪ I2)

where I1 =
⋃
{[[A]] | A ← B1, . . . , Bm ∈ Q,L(Mn) |=[[·]],op+ Bi, i = 1, . . . , n}

and I2 =
⋃
{[[A]] | A← is a clause in the EDB of Q}.

Note that I1 ∪ I2 is finite since Q is finite. Since we can effectively decide
whether L(N) ⊆ L(Mn) for any DFA N , we can effectively decide whether
L(Mn) |=[[·]],op+ Bi for any atom Bi and hence we can effectively compute I1
and I2. Then we simply let L(Mn+1) be the DFA whose language is the union
of all the L(A) such that A ∈ I1 ∪ I2.

Finally, we can effectively check whether L(Mn+1) = L(Mn). Since the least
model of Q equals L(Mn) where n is the least integer such that L(Mn+1) =
L(Mn), we can effectively construct a DFA R such that L(R) is the least model
of Q.

It follows that we can effectively construct DFAs Ms and Mw such that
L(Ms) is the least model of GLsL(M),[[·]],op+,op−(P ) and L(Mw) is the least model

of GLwL(M),[[·]],op+,op−(P ). Since we can effectively check whether L(M) = L(Ms)

and whether L(M) = L(Mw), it follows that we can effectively decide if L(M)
is a weak or strong stable model of P .

We can extend our analysis to finite set based logic programs P with miops
assuming that the miops for P satisfy the following property.

Definition 4. We say that a miop op : 2Σ
∗ → 2Σ

∗
is effectively automata

preserving if for any DFA M whose underlying alphabet of symbols is Σ, we can



effectively construct a DFA N whose underlying alphabet of symbols is Σ such
that L(N) = op(L(M)).

We will now give a number of examples of miops on regular languages.

Example 3. Suppose that Σ = {0, 1, . . . ,m}. Then, the following are effectively
automata preserving operators.

1. If N is a DFA whose underlying set of symbols is Σ, then we can define
op : 2Σ

∗ → 2Σ
∗

by setting op(S) = S ∪ L(N) for any S ⊆ Σ∗. Clearly if
S = L(M) for some DFA M whose underlying set of symbols is Σ, then
op(L(M)) = L(M ∪N) so op is effectively automaton preserving.

2. If N is a DFA whose underlying set of symbols is Σ, then we can define
op : 2Σ

∗ → 2Σ
∗

by setting op(S) = S ∩ L(N) for any S ⊆ Σ∗. Clearly if
S = L(M) for some DFA M whose underlying set of symbols is Σ, then
op(L(M) = L(M ∩N) so op is effectively automata preserving.

3. If T is any subset of Σ, we can let op(S) = S(T ∗). Again op will be an
effectively automata preserving miop since if M is DFA whose underlying
set of symbols is Σ, then let N be NFA constructed from M by adding loops
on all the accepting states labeled with letters from T . It is easy to see that
N accepts L(M)T ∗ and then one can use the standard construction to find
a DFA N ′ such that L(N ′) = L(N). Note that in the special case where
T equals Σ, we can think of op as constructing the upper ideal of S in Σ∗

relative to the partial order v where for any words u, v ∈ Σ∗, u v v if and
only if u is prefix of v, i.e. v is of the form uw for some w ∈ Σ∗. For any
poset (P,≤P ), we say that a set U ⊆ P is an upper ideal in P , if whenever
x ≤P y and x ∈ P , then y ∈ P . Clearly, for the poset (Σ∗,v), op(S) is the
upper ideal of (Σ∗,v) generated by S.

4. Let P = (Σ,≤) be a partially-ordered set. For any w,w′ ∈ Σ∗, we say that
w′ is a factor of w if there are words u, v ∈ Σ∗ with w = uw′v. Define the
generalized factor order on P ∗ by letting u ≤ w if there is a factor w′ of w
having the same length as u such that u ≤ w′, where the comparison of u
and w′ is done componentwise using the partial order in P. Again we can
show that if op(S) is the upper ideal generated by S the generalized factor
order relative to P ∗, then op is an effectively automata preserving miop.
That is, if we start with a DFA M = (Q,Σ, δ, s, F ), then we can modify M
to an NFA that accepts op(L(M)) as follows. Think of M as a digraph with
edges labeled by elements of Σ in the usual manner. First, we add a new
start state s0. There are loops from s0 labeled with all letters in Σ. There
is also a λ-transition from s0 to the old start state s. We then modify the
transitions in M so that if there is an edge from state q to q′ labeled with
symbol r, then we add an edge from q to q′ with any symbol s such that
r ≤ s. Finally we add loops to all accepting states such that labeled with all
letters in in Σ.

5. If we allow multiple representations of the infinite dimensional vector space
V∞ for the field GFq where q is prime, then the operator opsubsp can be



thought of an automaton preserving miop. Let Σ = {0, . . . , q − 1}. The
standard way to represent the elements of V∞ is to let 0 = 0 and think
of a non-zero element of V∞ as a finite sequence σ1 . . . σn where σn 6= 0.
The operations of scalar multiplication and addition are then performed
componentwise. In our case, we will let any element σ ∈ V∞ have multiple
representations, namely, σ can be represented by σ0n for any n ≥ 0. Then,
we let opsubsp(S) be the set of all representatives of the subspace of V∞
generated by S. In what follows, we shall only describe how to construct
NFA’s that accept the desired languages since the Myhill-Nerode Theorem
allows us to construct in a uniform manner, for any NFA M , a DFA D such
that L(M) = L(D). First, consider miop op1 such that op1(S) is the set of all
representations of elements of S. If M is a DFA whose underlying alphabet
is Σ, then we can modify M to an NFA N that accepts op1(S) as follows.
First, any state q such that there is an n such that the word 0n starting at
state q ends in an accepting state is an accepting state of N . In particular,
every accepting state of M is an accepting state of N . In addition, we add
loops labeled with 0 to all the accepting states of N .

Next we let op2(S) denote the set of all representations of any element which
is a scalar multiple of an element of S. We claim op2 is also an automaton
preserving miop. That is, if M is a DFA whose underlying alphabet is Σ, then
we can modify M to an NFA N̄ that accepts op2(S) as follows. First, let N
be the NFA such that op1(L(M)) = L(N). The for each a ∈ {0, . . . , q−1}, let
aN be the NFA that is constructed from N by replacing each edge labeled
with the letter x by an edge labeled ax. Then, it is clear that L(aN) =
{(aσ1) . . . (aσn) : σ1 . . . σn ∈ L(N)} so that op2(L(M)) = L(N̄) where N̄ =
0N ∪ 1N ∪ · · · ∪ (q − 1)N .

Finally for any a, b ∈ {0, . . . , q − 1}, we let opa,b(S) denote the set of all
representatives of the form aσ + bτ such that σ, τ are in S and |σ| = |τ |.
opa,b is not a miop, but nevertheless for any DFA M , we can construct an
NFA Ra,b such that L(Ra,b) = opa,b(L(M)). First, let N = (Q,Σ, δ, s, F )
be the DFA such that L(N) = op2(L(M)). Then, the set of states of Ra,b
will be Q × Q, (s, s) will be the start state of Ra,b, and F × F will be the
set of final states of Ra,b. Now suppose that there are edges from p0 to p1
labeled with α and from q0 to q1 labeled with β in N . Then, we will have
an edge in Ra,b from (p0, q0) to (p1, q1) labeled with aα + bβ. It is easy to
see that L(Ra,b) = opa,b(L(M)). and hence if we let R be the DFA such
that R =

⋃
(a,b)∈Σ×Σ Ra,b, then S ⊆ L(R) ⊆ opsubsp(S) and L(R) has the

property that if s1, s2 ∈ S, then as1 + bs2 ∈ L(R) for any a, b ∈ GFq.
By a similar argument, we can construct for any finite sequence of distinct
elements a1, . . . , ar from GFq, a DFA Ua1,...,ar such that L(Ua1,...,ar ) equals
the set of all a1t1 + · · ·+artr such that t1, . . . tr ∈ L(R). It then follows that
opsubsp(S) equal the union of L(Ua1,...,ar ) over all possible finite sequence of
distinct elements from GFq and hence is we can construct a DFA U which
accepts opsubsp(S). �



It is then easy to check that if op+ : 2Σ
∗ → 2Σ

∗
, then for any Horn set based

logic program Q with the properties described above, we can construct a DFA
Mn such that TnQ,op+(∅) = L(Mn) and, hence, we can effectively construct the
least model of Q. Thus we have the following result.

Theorem 3. Suppose that P is a finite set based logic program over L = (L,X, [[·]])
where X = Σ∗ for some finite alphabet Σ and op+ : 2Σ

∗ → 2Σ
∗

and op− : 2Σ
∗ →

2Σ
∗

are effectively automaton preserving miops. Moreover, assume that for any
atom A which appears in Q, [[A]] is a language accepted by a DFA whose under-
lying set of symbols is Σ. Then:

1. Every weak (strong) stable model of P is a language accepted by a DFA.
2. For any DFA M whose underlying set of symbols is Σ, we can effectively

decide whether L(M) is a weak or strong stable model of P .

Note that under the assumptions of Theorem 3, there are only finitely many
possible strong or weak stable models the program P , namely a union of the
sense of the head of certain clauses, and these are all recognizable by DFAs.
Hence it is decidable whether such a set based logic program has a weak or
strong stable model and there is an algorithm to find all such weak or strong
stable models.

5 Conclusions

We showed in Theorem 3 that if the senses of the atoms of a finite set based
logic program P are all regular languages over some fixed finite alphabet and
the miops involved are all automaton preserving miops, then we can effectively
decide if P has weak or strong stable model and there is an algorithm to find
all weak and strong stable models. In fact, it is not difficult to see that all the
operations in searching for either a weak or strong stable model of such programs
are effective so that it is possible to extend existing search engines to produce
either weak or strong stable models of such programs. However, we suspect that
the problem of how to optimize such extensions of existing search engines will be
an interesting and challenging research problem. Finite automaton are useful for
carrying out a lot of recognition tasks such as search for keywords or ensuring
documents or strings have a proper form so that our results show that we can
add ASP programming on top of such recognition tasks.

If we examine the proof of Theorem 3, it is clear that we used DFAs as codes
for set of regular languages SP that arise by taking the closures under op+ and
op− of finite unions of the languages associated with atoms of P . Here we consider
the empty set as the empty union so that the emptyset is in SP . Then the only
properties of such regular languages that were necessary to prove Theorem 3 was
that we have effective procedures which, given codes for A,B ∈ mathcalSP , (i)
decide if A ⊆ B, (ii) decide A∩B = ∅, and (iii) produce the codes of op+(A∪B),
op+(A ∩B), op−(A ∪B) and op+(A ∪B).

For any finite set based logic program P , we let SP denote set of fix points
of all finite unions of sets represented by the atoms of a finite set based logic



program P of the miops associated with P . If we can associate a code c(A) to
each elements of A ∈ SP such that there are effective procedures which, given
codes c(A) and c(B) for elements of A,B ∈ SP , will (i) decide if A ⊆ B, (ii)
decide if A ∩ B = ∅, and (iii) produce of the codes of closures of A ∪ B and
A∩B under miop operators associated with P , then we can prove the analogue
of Theorem 3 for P . We have shown that the case where the code of an atom A is
a DFA which accepts A (alernatively a regular expression describing A) then we
have such procedures. However, such codes and procedures are available in many
other cases. For example, if all sets involved are the convex closures of a finite
set of points in Rn and op+ = opconvex and op− = opid or if all sets involved are
finite dimensional vector spaces over a computable fiel and op+ = op− = opsubsp,
then such codes and procedures as described above can be constructed.
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