
Set Based Logic Programming

H.A. Blair1, V.W. Marek2, and J.B. Remmel3

1 Department of Electrical Engineering and Computer Science, Syracuse University,
Syracuse, NY 13244 ?

2 Department of Computer Science, University of Kentucky, Lexington, KY 40506 ??

3 Departments of Mathematics and Computer Science, University of California at
San Diego, La Jolla, CA 92903 ? ? ?

Abstract. In a previous paper [BMR01], the authors showed that the
mechanism underlying Logic Programming can be extended to handle
the situation where the atoms are interpreted as subsets of a given space
X. The view of a logic program as a one-step consequence operator along
with the concepts of supported and stable model can be transferred to
such situations. In this paper, we show that we can further extend this
paradigm by creating a new one-step consequence operator by composing
the old one step consequence operator with a monotonic idempotent op-
erator (miop) in the space of all subsets of X, 2X . We call this extension
set based logic programming. We show that such a set based formalism
for logic programming naturally supports a variety of options. For ex-
ample, if the underlying space has a topology, one can insist that the
new one-step consequence operator always produces a closed set or al-
ways produces an open set. The flexibility inherent in the semantics of set
based logic programs is due to both the range of natural choices available
for specifying the semantics of negation, as well as the role of monotonic
idempotent operators (miops) as parameters in the semantics. This leads
to a natural type of polymorphism for logic programming, i.e. the same
logic program can produce a variety of outcomes depending on the miop
associated with the semantics. We develop a general framework for set
based programming involving miops. Among the applications, we ob-
tain integer-based representations of real continuous functions as stable
models of a set based logic program.

1 Introduction

In [BMR01], the authors developed an extension of the logic programming
paradigm which can directly reason about regions in space and time as might
be required, for example, for applications in graphics, image compression, or
job scheduling. Thus instead of having the intended underlying universe be the
Herbrand base of the program, one replaces the underlying Herbrand universe
? email: blair@ecs.syr.edu
?? email: marek@cs.uky.edu

? ? ? email: jremmel@ucsd.edu

by some fixed space X and has each atom of the language of the program specify
a subset of X, i.e. an element of the set 2X .

If we reflect for a moment on the basic aspects of logic programming with an
Herbrand model interpretation, a slight change in our point of view shows that
it is natural to interpret atoms as subsets of the Herbrand base. In normal logic
programming, we determine the truth value of an atom p in an Herbrand inter-
pretation I by declaring I |= p if and only if p ∈ I. However, this is equivalent to
defining the sense, [[p]], of a ground atom p to be the set {p} and declaring that
I |= p if and only if [[p]] ⊆ I. By this simple move, we have permitted ourselves to
interpret the sense of an atom as a subset of a set X rather than the literal atom
itself in the case where X is the Herbrand base of the language of the program.

More generally, in [BMR01] we showed that it is a natural step to take
the sense [[p]] of ground atom p to be a subset of some fixed nonempty set
X and to define a I ⊆ X to be a model of p, written I |= p, if and only if
[[p]] ⊆ I. This approach to setting up a semantics makes available multiple truth
values, intentional constructs, and interpreted relationships among the elements
and subsets of X. Observe that the assignment of a sense to ground atoms
is intrinsically intentional. Interpreted relationships among the elements and
subsets of X allow the programs that use this approach, which we called spatial
logic programing in [BMR01], to serve as front-ends for existing systems and still
have a seamless model theoretic semantics for the system as a whole.

It turns out that if the underlying space X has structure such as a topol-
ogy or an algebraic structure such as a group, ring, field, or vector space, then
a number of other natural options present themselves. For example, if we are
dealing with a topological space, one can construct a new one-step consequence
operator T by composing the one-step consequence operator for spatial logic
programming with an operator that produces, for example, the topological clo-
sure of a set, or the interior of a set. In such a situation, we can ensure that
the new one-step consequence operator T always produces a closed set or always
produces an open set. Similarly, if the underlying space is a vector space, one
might construct a new one-step consequence operator T by composing the one-
step consequence operator for spatial logic programming with an operator that
produces the smallest subspace containing a set, the span operator, or with an
operator that produces the smallest convex closed set containing a set, the con-
vex closure operator, so that one can ensure that the new one-step consequence
operator T always produces a subspace or always produces a convex closed set.
More generally, we say that an operator O : 2X → 2X is monotonic if for all
Y ⊆ Z ⊆ X, we have O(Y) ⊆ O(Z) and we say that O is idempotent for all
Y ⊆ X, O(O(Y)) = O(Y). Notice that each of the operators described above,
closure, interior, span and convex-closure, are monotonic idempotent operators.
We call a monotonic idempotent operator a miop (pronounced “my op”). We
say that a set Y is closed with respect to miop O iff Y = O(Y). This terminol-
ogy is synonymous with being a fixed point of O, but in many of the situations
that we have in mind, such as having the operator always produce a subgroup
of a group, a subfield of field, an ideal in Boolean algebra, etc., closure seems

a more natural way to think. By composing the one-step consequence operator
for spatial logic programs with the operator O, we can ensure that the resulting
one-step consequence operator always produces a fixed point of O. We can then
think of the operator O as a parameter. This naturally leads us to a situation
where we have a natural polymorphism for set based logic programming. That
is, one can use the same logic program to produce stable models with different
properties depending on how the operator O is chosen.

Moreover, in such a setting, one also has a variety of options for how to
interpret negation. In normal logic programming, a model M satisfies ¬p if
p /∈M . From the spatial logic programming point of view, when p is interpreted
as a singleton {p}, this would be equivalent to saying that M satisfies ¬p if
(i) {p} ∩M = ∅, or (equivalently) (ii) {p} * M . When the sense of p is a set
with more than one element, it is easy to see that saying that M satisfies ¬p if
[[p]]∩M = ∅ (strong negation) is different from saying that M satisfies ¬p if [[p]] *
M (weak negation). As we shall see, this leads to two natural interpretations of
the negation symbol which are compatible with the basic logic programming
paradigm. When the underlying space has a miop cl, one can get even more
subsidiary types of negation by taking M to satisfy ¬p if cl([[p]])∩M = cl(∅), or
by taking M to satisfy ¬p if cl([[p]]) *M .

The main contribution of this paper is to extend the spatial logic program-
ming paradigm of [BMR01] to the full set based logic programming paradigm
with associated miops. In particular, the main objectives of this paper are the
following:

1. We show that logic programming with stable semantics lifts to lattices dif-
ferent from the power set lattice of the usual Herbrand interpretations4. It
turns out that stable semantics generalizes to at least two different con-
structions in the general case, with subsidiary variations obtained by using
closures under monotonic idempotent operators.

2. We show how several standard mathematical constructions such as separa-
tion properties, complementary subspaces, and continuity can be cast in the
form of such generalized stable models relative to one of our two basic gen-
eralizations of stable semantics. This extends various representability results
presented in [Ba03,GL02] to the continuous setting.

The ultimate purpose of this paper is to provide the foundations and basic
techniques for crafting applications in the answer set paradigm, as described
in [MT99,Nie99] and then [ASP01,Ba03], where topological, linear algebraic, or
similar constructs associated with a given application are either necessary or
at least natural. The use of miops allows for operations on what we call the
senses of ground atoms that materially contribute to determining the models
of programs. The expressive power of miops allows us to capture functions and
relations intrinsic to the domain of a spatial logic program, but independent of
the program. It is this feature that permits set based logic programs to seamlessly
4 Other lattices were considered in [BS89], but stable semantics or the closure of

models under miops were not studied.

serve as front-ends to other systems. Miops play the role of back-end, or “behind-
the-scenes”, procedures and functions.

The outline of this paper is as follows. In sections 2 and 3, we shall briefly
review the spatial logic programming paradigm as given in [BMR01]. These
sections relate to the objective (1) described above. In section 4, we introduce
and develop the role of monotonic idempotent operators. In particular we give
several examples where the same program can give different results depending
on which miop and/or negation operator we use. Finally, in section 5, we discuss
further work and extensions of the set based framework.

2 Spatial Logic Programs: syntax and semantics

Before giving the general definitions of our formalism for set based logic program-
ming with miop operators, we shall first recall the relevant aspects of spatial logic
programs as developed in [BMR01]. Fundamentally, the set based logic programs
to be introduced in section 4 are spatial logic programs interleaved with miops.

The syntax of a spatial logic program is based on the syntax of the formulas
of what we define as a spatially augmented first-order logic. Spatial augmentation
is an intentional notion. The syntax of spatial programs will essentially be the
syntax of DATALOG programs with negation.

Definition 1. A spatially augmented first-order language (spatial lan-
guage, for short) L is a triple (L,X, [[·]]), where
(1) L is a language for first-order predicate logic (without function symbols other
than constants),
(2) X is a nonempty (possibly infinite) set, called the interpretation space,
and
(3) [[·]] is a mapping from the ground atoms of L to the power set of X, called
the sense assignment. If p is a ground atom, then [[p]] is called the sense of p.

At first glance, the mapping [[·]] and the interpretation space X might seem
to properly belong in the semantics of spatially augmented languages. However,
these languages are to be thought of as having a fixed partial interpretation;
hence the interpretation space and sense assignment should be fixed by the lan-
guage analogously to fixing the interpretation of the equality symbol in ordinary
first-order languages to be the identity relation.

Definition 2. A spatial logic program has three components.
1) The language L which includes the interpretation space and the sense assign-
ment.
2) The IDB (Intentional Database): A finite set of program clauses, each of
the form A← L1, . . . , Ln, where each Li is a literal, i.e. an atom or the negation
of an atom, and A is an atom.
3) The EDB (Extensional Database): A finite set of ground atoms.

Given a spatial logic program P , the Herbrand base of P is the Herbrand base
of the smallest spatial language over which P is a spatial logic program.

For the rest of this section, we shall assume that the classes of spatial logic
programs that we consider are always over a language for first-order logic L with
no function symbols except constants, and a fixed set X.

Informally, we think of the Herbrand universe ΛL of the underlying language
L, i.e. the set of constant symbols of L, as being a set of indices which we may
employ to suit whatever purpose is at hand. We let HBL denote the Herbrand
base of L, i.e. the set of ground atoms of L. We omit the subscript L when
the context is clear. Let X be a nonempty set, 2X be the powerset of X, and
[[·]] : HBL −→ 2X . An interpretation I of the spatial language L = (L,X, [[·]]) is
a subset of X.

We note that sense assignments [[·]] can also be used to partition the ground
atoms into multiple sorts. For example, suppose X is the disjoint union of X1 and
X2 and HBL is the disjoint union of A1 and A2. Then we can achieve multiple
sorts by letting [[·]] be such that [[p]] ⊆ Xi for p ∈ Ai, i = 1, 2. However, we shall
not pursue such uses in the paper.

Suppose that we are given a satisfaction relation between interpretations and
ground literals, i.e. the criterion for how it is that an interpretation I satisfies a
ground literal L, denoted by I |=[[·]] L. We can then extend the given satisfaction
relation |=[[·]] to all formulas generated from literals by ∧, ∨ and → in the usual
fashion. More formally, because of the diversity of notions of negation available,
we will employ a mapping αI corresponding to each I ⊆ X from the set of
sentences, i.e. the set of all formulas without free occurrences of variables, to
three truth values t, f, and ⊥. (Conventionally, we call the truth-value ⊥ bottom.)
We first define, for a given interpretation I, αI on the ground literals and then
extend αI from ground literals to all other sentences that are not negations. For
αI to be well-defined, we must avoid situations where there are atoms A such
that both I |=[[·]] A and I |=[[·]] ¬A, as is the case for strong negation whenever
[[A]] = ∅.

For each ground atom A,

αI(A) =

 t if I |=[[·]] A
f if I |=[[·]] ¬A
⊥ otherwise.

For each negative literal ¬A,

αI(¬A) =

 f if I |=[[·]] A
t if I |=[[·]] ¬A
⊥ otherwise.

We adopt a three-valued logic with truth values {t, f,⊥}. (Every sentence, i.e.
the set of all formulas without free occurrences of variables, will turn out to have
a truth-value other than ⊥ if every ground atom has truth-value other than ⊥.)

We adopt a standard set of strong interpretations of the 3-valued connectives.

αI(A ∧B) =

t if αI(A) = αI(B) = t
f if αI(A) = f and αI(B) 6= ⊥
f if αI(B) = f and αI(A) 6= ⊥
⊥ otherwise.

Similarly,

αI(A ∨B) =

f if αI(A) = αI(B) = f
t if αI(A) = t
t if αI(B) = t
⊥ otherwise.

For the three-valued conditional:

αI(A→ B) =

t if αI(B) = t
t if αI(A) = f
f if αI(A) = t and αI(B) = f
⊥ otherwise.

The quantifiers are interpreted schematically.

αI(∀xϕ(x)) =

 t if αI(ϕ(e)) = t, for all constants e
f if αI(ϕ(e)) = f, for some constant e
⊥ otherwise.

αI(∃xϕ(x)) =

 t if αI(ϕ(e)) = t, for some constant e
f if αI(ϕ(e)) = f, for all constants e
⊥ otherwise.

Finally, we define I |=[[·]] ϕ if and only if αI(ϕ) = t. A model (not necessarily
stable) of a spatial program is a model of the set of all formulas in the EDB and
IDB. Again, α, and consequently |=[[·]] is not defined for negations other than
negative literals.

For the rest of this paper, we shall assume for each atom p that I |=[[·]] p if
and only if [[p]] ⊆ I. Thus a model of a program must contain the sense of every
ground instance of each atom in the EDB. Also note that if every ground literal
in the language of program P has a non-bottom truth-value with respect to
interpretation I, then every clause in P will also have a non-bottom truth-value
with respect to interpretation I.

3 The consequence operator and stable models

The following operator generalizes the one-step consequence-operator of ordinary
logic programs to spatial logic programs. Given a spatial program P with IDB
P , let P ′ be the set of ground instances of the clauses in P and let

TP (I) = I1 ∪ I2

where

I1 =
⋃
{[[A]] | A← L1, . . . , Ln ∈ P ′, I |=[[·]] Li, i = 1, . . . , n} and

I2 =
⋃
{[[A]] | A is a ground atom in the EDB of P}.

A supported model of P is a model of P that is a fixed point of TP . It should
be noted that since clause bodies can contain negative literals, the supported
models of P are partly dependent on the criteria used to determine the validity
of negative literals in an interpretation.

A spatial logic program is Horn if its IDB is Horn. Our definitions allow us
to generalize the familiar characterization of the least model of ordinary Horn
programs. We iterate TP in the usual manner:

TP ↑0 (I) = I
TP ↑α+1 (I) = TP (TP ↑α (I))

TP ↑λ (I) =
⋃
α<λ

{TP ↑α (I)}, λ limit

It is clear that TP is monotonic if P is a Horn program. Thus, the following
result follows from the Tarski fixed point theorem.

Theorem 1. The least model of spatial Horn program P exists, is supported,
and is given by TP ↑α (∅) for the least ordinal α at which a fixed point is
obtained.

We note, however, that if the Herbrand universe of a spatial program is infi-
nite (contains infinitely many constants) then, unlike the situation with ordinary
Horn programs, TP will not in general be upward continuous. That is, consider
the following example.

Example 1. To specify a spatial program, we must specify the language, EDB
and IDB. Let L = (L,X, [[·]]) where L has four unary predicate symbols: p,
q, r and s, and countably many constants e0, e1, . . . , . X is the set N

⋃
{N}

where N is the set of natural numbers, {0, 1, 2, . . . }. [[·]] is specified by [[q(en)]] =
{0, . . . , n}, [[p(en)]] = {0, . . . , n+ 1}, [[r(en)]] = N, [[s(en)]] = {N}.

The EDB is empty and the IDB is: q(e0)←, p(X)← q(X), and s(e0)← r(e0).

Now, after ω iterations upward from the empty interpretation, r(e0) becomes
satisfied. One more iteration is required to reach an interpretation that satisfies
s(e0), where the least fixed point is attained. 4

What is different about the ascending iteration of TP from the ordinary
situation in logic programming is that, in the spatial case, the senses of ground
body atoms can be satisfied by the union of the senses of infinitely many ground
clause heads without any finite collection of these clause heads uniting to satisfy
the body atom. But, if there are only finitely many primitive atoms, i.e. if the

Herbrand universe of the program is finite or the sense of each atom is a finite set,
then this source of upward discontinuity vanishes. The proof of upward continuity
is essentially the same in that case as that for ordinary Horn programs.

Theorem 2. The least model of spatial Horn program P exists, is supported,
and is given by TP ↑ω (∅), if the set of primitive ground atoms in the Herbrand
base of P is finite or the sense of each atom is a finite set.

In spatial logic programs, we allow clauses whose ground instances are of the
following form:

A← B1, . . . , Bn,¬C1, . . . ,¬Cm. (1)

In [BMR01], we defined two types of stable models depending upon how we
interpreted the satisfaction relation for ground atoms. That is, consider the fol-
lowing two different definitions of the satisfaction relation I |=[[·]] for negative
atoms ¬p.

I |=s
[[·]] ¬p ⇐⇒ [[p]] ∩ I = ∅ (2)

and
I |=w

[[·]] ¬p ⇐⇒ [[p]] 6⊆ I = ∅. (3)

We shall refer to I |=s
[[·]] as strong negation and I |=w

[[·]] as weak negation. In both
cases, if p is an atom, then we define

I |=s
[[·]] p ⇐⇒ I |=w

[[·]] p ⇐⇒ [[p]] ⊆ I. (4)

We can then define the stable model semantics relative to I |=a
[[·]] for a ∈ {s, w}

for such programs as follows. For any given set J ⊆ X, we define Gelfond-
Lifschitz transform [GL88] of a program P , GLaJ,[[]](P), in two steps. First we
consider all ground instances C of clauses in P as in (1). If it is not the case
that J |=a

[[·]] ¬Ci for some Ci in the body of C, then the we eliminate clause C.
If not, then we replace C by the Horn clause

A← B1, . . . , Bn. (5)

The GLaJ,[[·]](P) consists of EDB(P) plus the sets of all Horn clauses produced
by this two step process. Thus GLaJ,[[·]](P) is a Horn program so that the least
fixed point of TGLa

J,[[·]](P) is defined. Then we say that J is an a-stable model of
P if and only if J equals the least model of GLaJ,[[·]](P).

Example 2. Let L = (L,X, [[·]]) where L has five atoms x, y, z, m, and n. Let
X = {1, 2, 3, 4} and let [[·]] is specified by

[[x]] = {1},
[[y]] = {1, 2},
[[z]] = {2, 3},
[[m]] = {1, 2, 3, 4}, and
[[n]] = {1, 2}.

The EDB is empty and the IDB is:
x←
y ← ¬m
z ← ¬n.

Now it is easy to see that the only possible s-stable models or w-stable models
must be unions of the senses of some of the heads of the clauses of P so that
there are only three possible candidates of either s-stable or w-stable models for
P , namely, M1 = {1}, M2 = {1, 2}, or M3 = {1, 2, 3}.

Now it is easy to see that for strong negation, Mi 6|=s
[[·]] ¬m and Mi 6|=s

[[·]] ¬n
for all i ∈ {1, 2, 3}. If follows that for each i ∈ {1, 2, 3}, GLaMi,[[·]](P) = x ← so
that the least model of GLaMi,[[·]](P) is {1}. Thus only M1 is an s-stable model
of P .

For weak negation, it is easy to see that Mi |=s
[[·]] ¬m for all i and Mi |=s

[[·]] ¬n
if and only if i = 1. Thus

GLaM1,[[·]](P) = {x←, y ←, z ←}

and the least model of GLwP (M1) is {1, 2, 3} so that M1 is not w-stable. For
i = 2, 3,

GLaMi,[[·]](P) = {x←, y ←}

and the least model of GLwP (Mi) is {1, 2}. Thus M2 is a w-stable model of P
and M3 is not w-stable. This example shows that the notions of s-stable models
and of w-stable models do not always coincide. 4

Theorem 3. For any spatial logic program P and any a ∈ {s, w},

1. I ⊆ X is a model of P iff TP (I) ⊆ I and
2. I is a-stable with respect to P implies that I is supported with respect to P.

Proof: The proofs of the two parts of the above proposition proceed exactly as
they do for ordinary programs after noting that for any I ⊆ X, an element x of
TP (I) is an element of the sense of at least one of the clause heads in P whose
body is satisfied by I. �

The next theorem shows the relationship between stable models of a spatial
program, and a natural topology induced by a spatial language on its interpre-
tation space.

Theorem 4. If L is a spatially augmented first-order language, then the set of
senses of the ground atoms form a subbasis of a topology in which all supported
models, a fortiori all a-stable models for a ∈ {s, w}, of all spatial programs over
L are open subsets of the interpretation space.

Proof: First we define the desired topology. Recall, [Ku66], that a topology in
a set X is a family O ⊆ 2X such that O contains the empty set and the entire
X, and O is closed under finite intersections and arbitrary unions. Here is how

we define O. We first define a basis B for O. Let A be the set of ground atoms
in L.

B = {Y ⊆ X | for some finite Γ ⊆ A, Y =
⋂
p∈Γ

[[p]]}.

The topology O is the closure of B under arbitrary unions:

O = {Y ⊆ X | for some subset B′ of B, Y =
⋃
B′}.

It immediately follows that O is closed under finite intersections and arbitrary
unions.

Next let us observe that if Y is an open set in our topology associated with
the program, and if Y is any set, then TP (Y) is open (for it is union of senses of
intentional atoms). In particular fixed points of the operator TP are open, and
so also a-stable models are open. �

We will call the topology given by the previous theorem the Herbrand topol-
ogy. This topology has a utility in finding stable models. Ordinarily one expects
to recover a guess for a stable model as the least fixed point of the Gelfond-
Lifschitz transform determined by the guess. The previous theorem allows one
to recover merely the interior of the guess, or equivalently, confine one’s guesses
to open sets. In the next section, where we incorporate miops into the one-step
consequence operator of a program, we can achieve even greater selectivity of
stable models.

4 Set Based Logic Programming with Miops

In this section, we shall introduce miops on the underlying intentional space
X of a family of logic programs and show how we can extend the spatial logic
programming paradigm of the previous section to incorporate miops. We shall
call this combination of spatial logic programming with miops set based logic
programming.

4.1 Operators and stable models

Let us suppose that the underlying intentional space X is either Rn or Qn were
R is the reals and Q is the rationals. Then X is a topological vector space under
the usual topology so that we have a number of natural miop operators:

1. opid(A) = A, i.e. the identity map is simplest miop operator,
2. opc(A) = Ā where Ā is the smallest closed set containing A,
3. opint(A) = int(A) where int(A) is the interior of A,
4. opconvex(A) = K(A) where K(A) is the convex closure of A, i.e. the smallest

set K ⊆ X such that A ⊆ K and whenever x1, . . . , xn ∈ K and α1, . . . , αn
are elements of the underlying field (R or Q) such that

∑n
i=1 αi = 1, then∑n

i=1 αixi is in K, and
5. opsubsp(A) = (A)∗ where (A)∗ is the subspace of X generated by A.

We should note that (5) is a prototypical example if we start with an algebraic
structure. That is, we can let opsubstr(A) = (A)∗ where (A)∗ is the substructure
of X generated by A. For example,

(a) if X is a group, we can let opsubgrp(A) = (A)∗ where (A)∗ is the subgroup
of X generated by A,

(b) if X is a ring, we can let opsubrg(A) = (A)∗ where (A)∗ is the subring of X
generated by A,

(c) if X is a field, we can let opsubfld(A) = (A)∗ where (A)∗ is the subfield of
X generated by A,

(d) if X is a Boolean algebra, we can let opsubalg(A) = (A)∗ where (A)∗ is the
subalgebra of X generated by A or we can let opideal(A) = Id(A) where
Id(A) is the ideal of X generated by A, and

(e) if X is a partially ordered set, we can let oplideal(A) = Lid(A) where Lid(A)
is the lower order ideal of X (that is, the least subset of X containing A and
closed under predecessors) generated by A.

Now let us suppose that we are given a miop op+ : 2X → 2X and Horn set
based logic program P over X. Recall that a set based logic program is Horn
if its IDB is Horn. Then we can further generalize the one-step consequence-
operator of ordinary logic programs with respect to 2-valued logic to spatial
logic programs relative to miop operator op+ as follows. First for any atom A
and I ⊆ X, we say that I |=[[·]],op+ A if and only if op+([[A]]) ⊆ I. Then given a
spatial program P with IDB P , let P ′ be the set of ground instances of a clauses
in P and let

TP,op+(I) = op+(I1 ∪ I2)

where
I1 =

⋃
{[[A]] | A← L1, . . . , Ln ∈ P ′, I |=[[·]],op+ Li, i = 1, . . . , n}.

I2 =
⋃
{[[A]] | A is a ground atom in the EDB of P}. We then say that a sup-

ported model relative to op+ of P is a fixed point of TP,op+ .
We iterate TP,op+ according to the following.

TP,op+ ↑0 (I) = I
TP,op+ ↑α+1 (I) = TP,op+(TP,op+ ↑α (I))
TP,op+ ↑λ (I) = op+(

⋃
α<λ

{TP,op+ ↑α (I)}), λ limit

Again it is easy to see that if P is a Horn spatial logic program and op+

is a miop, then TP,op+ is monotonic. Thus just like in the case a spatial logic
programs, we have the following theorem.

Theorem 5. Given a miop op+, the least model of a Horn set based logic pro-
gram P exists and is closed under op+ , is supported relative op+, and is given
by TP,op+ ↑α (∅) for the least ordinal α at which a fixed point is obtained.

Next we consider how we should deal with negation in the setting of miop
operators. Suppose that we have a miop operator op− on the underlying space

X. We do not require that op− is the same as that miop op+ but it may be. Our
goal is to define two different satisfaction relations for negations of atoms relative
to the miop operator op− that correspond to the strong and weak satisfaction
relations for negative atoms described in Section 2 above5. However, we can
make the following more general definition.

Definition 3. Suppose that P is spatial logic program over X. Let R be any
binary relation between subsets of X. Then, given any ground atom A and set
J ⊆ X, then we say J |=[[·]],op+,R ¬A if and only if R(J, [[A]]).

The preceding definition is too general to play much of a role in a program-
ming paradigm because it strips negation of negation’s intended meaning except
through special cases of the choice of R, but there is still a point to it. That is,
the Gelfond-Lifschitz transform works by marking atoms for special evaluation;
it does not care what the mark means to achieve its fundamental objective which
is to ensure that if I is a supported model of the Gelfond-Lifschitz transform
with respect to I, then I is a supported model of P .

We will specialize R to two cases of interest for developing set based logic
programming before moving on to fundamental canonical examples involving
vector spaces and continuous functions, but first we give our main generalization
of the one-step consequence operator and develop stable-model semantics.

Definition 4. Let op+ be a miop and R be a binary relation between subsets
of X. Then for any subset I of X, we say that I satisfies a positive literal A if

I |=[[·]],op+,R A iff op+([[A]]) ⊆ I

and I satisfies a negative literal ¬A if

I |=[[·]],op+,R ¬A iff R(I, [[A]]).

Recall from Section 2 that whenever the satisfaction relation is defined for all
ground literals we may extend it to all formulas.

Let
TP,op+,R(I) = op+(

⋃
A∈Γ

[[A]])

where

Γ = {A | A← L1, . . . , Ln ∈ ground(P), I |=[[·]],op+,R Li, i = 1, . . . , n}⋃
{A : A is in EDB(P)}.

We say that I is a supported model of P relative to op+ and R iff I is a fixed
point of TP,op+,R and I |= P .

Note that the definition of TP,op+,R agrees with that of TP,op+ for Horn
programs P . We have the following basic essentially classical result.
5 Lifschitz [Li94] observed that different modalities, thus different operators, can be

used to evaluate positive and negative part of bodies of clauses of normal programs.

Theorem 6. Suppose that we are given X, a miop op+ on X, and a binary
relation R over 2X . Then if I ⊆ X,

I |=[[·]],op+,R P iff TP,op+,R(I) ⊆ I

Note that we have defined the satisfaction of a positive literal A by a set I by
the criterion that op+([[A]]) ⊆ I rather than merely that [[A]] ⊆ I. The following
example shows why. Suppose that we defined satisfaction of positive literals by
the weaker criterion that I |= A iff [[A]] ⊆ I.

Example 3. For the program P consisting of the single clause p ← q take
X = 2{p,q} with [[p]] = {p}, [[q]] = {q}, and let op+(∅) = ∅, op+({p}) =
op+({q}) = {q}, op+({p, q}) = {p, q}. The choice of R is immaterial. For
I = {q}, TP,op+,R(I) = op+([[p]]) = I, but I 6|=[[·]],op+,R p since [[q]] ⊆ I while
[[p]] 6⊆ I. 4

The Example 3 indicates there would be substantial difficulties in generalizing
results from logic programming to set based logic programming if we had used
the weaker criteria. In effect, we have used a miop to alter the semantics of the
spatially augmented first-order language L in the background of our discussion
to be compatible with the miop op+ to be used with the set based programs
over L by having the miop-closure of the sense of an atom be contained in a
miop-closed set in order for the set to satisfy the atom. However because we
use the definition that I |=[[·]],op+ A if and only if op+([[A]]) ⊆ I, we can set the
senses of ground atoms at our convenience in applications, and the difficulties of
the previous example vanish. This move resolves the difficulties in generalizing
results from logic programming to set based logic programming and does so
without requiring the programmer to arrange the atoms in his programs under
the assumption that their senses are closed under op+. The miop should be part
of the inference engine, while premises (i.e. atoms) ideally shouldn’t have to
respect anything in the inference engine beyond syntax.

Definition 5. A set based logic program P consists of clauses of the form in
(1). For any given set J ⊆ X, we define GLJ,[[·]],op+,R(P), the Gelfond-Lifschitz
transform of a program P with respect to miop op+ and binary relation R on
2X , in two steps. First we consider all ground instances of clauses C in P . If for
some i, it is not the case that J |=[[·]],op+,R ¬Ci, then the we eliminate clause C.
Otherwise we replace C by the Horn clause

A← B1, . . . , Bn. (6)

The GLJ,[[·]],op+,R(P) consists of EDB(P) together with the set of all Horn
clauses produced by this two step process.

Note that since GLJ,[[·]],op+,R(P) is a Horn set based logic program, the least
model of GLJ,[[·]],op+,R(P) is defined. We can then define the stable model se-
mantics for a set based logic program P over X relative to a miop op+ on X
and binary relation R on 2X .

Definition 6. J is a stable model of P relative to op+ and R iff J is the least
fixed point of TGLJ,[[·]],op+,R(P),op+,R.

We then have the following result.

Theorem 7. Suppose that P is set based logic program over X, op+ is a miop
on X, and R is a binary relation on 2X . Assume J is closed relative to op+,
i.e., op+(J) = J . Then, if J is a supported model of GLJ,[[·]],op+,R(P), then J is
a supported model of P relative to op+ and R.

Corollary 1. If J is a stable model of P relative to op+ and R, then J is a
supported model of P relative to op+ and R.

For programming purposes, we are interested in special cases of the relation
R on 2X associated with a second miop, op−. Here we do not assume that op−

is identical with op+, but op− = op+ is allowed. Specifically, in what we shall
call the strong semantics, we take R1(J,K) iff J ∩ op−(K) = op−(∅). For the
weak semantics, we take R2(J,K) iff op−(K) * J . More formally, we make the
following definition.

Definition 7. Suppose that P set based logic program over X and op+ and
op− are miops on X. Let a ∈ {s, w}.

(I) Given any atom A and set J ⊆ X, then we say J |=a
[[·]],op+,op− A if and only

if op+([[A]]) ⊆ J .
(II)s Given any atom A and set J ⊆ X, then we say J |=s

[[·]],op+,op− ¬A if and
only if op−(A) ∩ J = op−(∅).

(II)w Given any atom A and set J ⊆ X, then we say J |=w
[[·]],op+,op− ¬A if and

only if op−(A) * J .

The two types of satisfaction relations for negative literals immediately yield
two types of supported models based on two types of one-step consequence op-
erators, T sP,op+,op− and TwP,op+,op− , two types of Gelfond-Lifschitz transform,
GLsJ,[[·]],op+,op− and GLwJ,[[·]],op+,op− , and two types of stable model semantics.

Next we give a simple example to show that there is a difference between
s-stable and w-stable models.

Example 4. Suppose that the underlying space X = R2 is the real plane. Our
program will have two atoms {a, b}, {c, d} where a, b, c and d are reals. We let
[a, b] and [c, d] denote the line segments connecting a to b and c to d respec-
tively. We let sense of the these atoms be the corresponding subsets, i.e. we let
[[({a, b}]] = {a, b} and [[{c, d}]] = {c, d}. We let op+ = op− = opconvex. The
consider the following program P.

(1) {a, b} ← ¬{c, d}
(2) {c, d} ← ¬{a, b}

There are four possible candidate for stable models in this case, namely (i) ∅,
(ii) [a, b], (iii) [c, d], and (iv) opconvex{a, b, c, d}. Let us recall that opconvex(X)
is the convex closure of X which, depending on a, b, c, and d may be either a
quadrilateral, triangle, or a line segment.

If we are considering s-stable models where J |=s
[[·]],op+,op− ¬C if and only if

op−(C) ∩ J = op−(∅) = ∅, then the only case where there are stable models if
[a, b] and [c, d] are disjoint in which (ii) case and (iii) are s-stable models.

If we are considering w-stable models where J |=w
[[·]],op+,op− ¬C if and only if

op−(C) * J , then there are no w-stable models if [a, b] = [c, d], (ii) is a w-stable
model if [a, b] * [c, d], (iii) is w-stable model if [c, d] * [a, b] and (ii) and (iii) are
w-stable models if neither [a, b] ⊆ [c, d] nor [c, d] ⊆ [a, b]. 4

In the following subsections, 4.2-4.4, we shall give three examples to show
how the stable models of a given spatial logic program can vary depending on
how we define op+ and op−. We note that in the case where op− = opid and the
sense of any atom A such that ¬A appears in P is a singleton, then there is no
difference between s-stable and w-stable models. Our examples in the next three
subsections will all have this property so that we will not distinguish between
s-stable and w-stable models.

4.2 Separating sets and polymorphism

In this section, we shall give a number of example where set based logic program-
ming yields natural polymorphisms. That is, suppose that that the underlying
space S is the n-dimensional vector space V = Qn with the usual topology.
Let 0 denote the zero vector of V . Suppose A and B are subsets of V . Our
idea is construct a program whose stable models correspond to separating sets
S for A and B, that is sets S such that S is closed relative to op+, A ⊆ S and
S ∩B = op−(∅). We shall see that by picking the miop operators op+ and op−

appropriately we can have a single spatial logic program P whose stable models
have a variety of properties.

Formally, we shall assume that the underlying first order language has con-
stant symbols a for each a ∈ V and it has three unary predicate symbols S, S
and A. Thus the ground atoms of the underlying Herbrand Base are all of the
form S(a), S(a) and A(a) for some a ∈ V . We shall think of the interpretation
space X as the set

X = {S(a) : a ∈ V } ∪ {S(a) : a ∈ V } ∪ {A(a) : a ∈ V }.

The sense of any ground atom S(a), S(a) and A(a) will be just {S(a)}, {S(a)}
and {A(a)} respectively. That is: [[S(a)]] = {S(a)}, [[S(a)]] = {S(a)}, and [[A(a)]] =
{A(a)}. Let op− = opid so that op−(∅) = ∅.

Now let us suppose that we are given three miop operators opS , opS , opA on
V . Then we can define a miop operator op+ on X by the following:

op+(T) = {S(a) : a ∈ opS({y ∈ V : S(y) ∈ T})}∪
{S(a) : a ∈ opS({y ∈ V : S(y) ∈ T})}∪

{A(a) : a ∈ opA({y ∈ V : A(y) ∈ T})}. (7)

The intuition here is that suppose we want for any stable model M of our
program to have the property that VS,M = {a : M |= S(a)} is a subspace of
V . Then we need only take opS = opsubsp because the fact that M is a fixed
point of op+ will automatically ensure that that VS,M is a subspace. Similarly
if we want for any stable model M of our program to have the property that
VS,M = {a : M |= S̄(a)} is a subspace of V , then we need only take opS̄ = opsubsp
because the fact that M is a fixed point of op+ will automatically ensure that
that VS̄,M is a subspace.

Now let us consider the following program P, consisting of five sets of clauses.

(1) S(a)← (for all a ∈ A)
(2) S(b)← (for all b ∈ B)
(3) A(0)← S(x), S(x),¬A(0)
(4) S(x)← ¬S(x)
(5) S(x)← ¬S(x)

We note that when we ground P, the clauses of type (3), (4) and (5) will
generate the following sets of ground clauses.

(3)′ A(0)← S(v), S(v),¬A(0) (for all v ∈ V)
(4)′ S(v)← ¬S(v) (for all v ∈ V)
(5)′ S(v)← ¬S(v) (for all v ∈ V)

Before proceeding we should make an observation about the clauses of type
(3)′ under our assumption that opA = op− = opid. That is, if op− = opid,
then op−([[A(0]])) = {A(0)}. Now if {A(0)} ⊆ M , then it is not the case that
M |=s

[[·]],op+,op− ¬A(0) nor is it the case that M |=w
[[·]],op+,op− ¬A(0). Note that

every clause of ground(P) which has A(0) in the head has ¬A(0) in the body.
We claim that no matter how we define opS and opS , it will be that case
that any s-stable or w-stable model M of P will have {a : A(a) ∈ M} = ∅.
That is, since the only clauses which have an A(v) in the head come from
the clauses of type (3)’, it automatically follows that it must be the case that
{a : A(a) ∈ M} is either equal to opA(∅) = ∅ or opA({A(0)}) = {A(0)}. But
it cannot be that A(0) ∈ M since otherwise all the clauses of type (3)’ will be
eliminated when we take GLsM,[[·]],op+,op−(P) or GLwM,[[·]],op+,op−(P) and hence
there would be no way to generate A(0) by iterating TGLs

M,[[·]],op+,op−
(P),op+,op−

or TGLw
M,[[·]],op+,op−

(P),op+,op− starting at the empty set. Thus it must be that

{a : A(a) ∈ M} = ∅. But then the effect of the clauses of type (3)′ is to say
that it is impossible that both S(v) and S(v) are elements of an a-stable model
M of P for a ∈ {s, w}. Thus the effect of the clauses of type (3)′ is to say that

in any s-stable model or w-stable model M where opA = op− = opid, the sets
{a : S(a) ∈M} and {a : S(a) ∈M} are disjoint.

Next it is easy to see that the clauses of type (4)′ and (5)′ ensure that that
for any s-stable model or w-stable model M of P, it is the case that {a : S(a) ∈
M} ∪ {a : S(a) ∈M} = V . Similarly the clauses of type (1) and type (2) ensure
that A ⊆ {a : S(a) ∈ M} and B ⊆ {a : S(a) ∈ M}. Thus it follows that no
matter how we define opS and opS , a s-stable model or w-stable model M of P
must be of the form

MC = {a : S(a) ∈ C} ∪ {a : S(a) ∈ V − C} (8)

where C ⊆ V , A ⊆ C, opS(C) = C, B ⊆ V −C and opS(V −C) = V −C. Thus
for any s-stable model or w-stable model M of P, the set {a : S(a) ∈ M} is a
separating set for A and B.

This given, it is see that we have the following result which characterizes the
set of a-stable models MC as in (8) for a ∈ {s, w} which can occur as an a-stable
model of P assuming that opA = op− = opid.

Proposition 1. Suppose that opA = op− = opid and a ∈ {s, w}, then the
following hold.

1. If opS = opS = opid, then MC is an a-stable model of P iff A ⊆ C and
B ⊆ V − C.

2. If opS = opc and opS = opint, then MC is an a-stable model of P iff C is a
closed set such that A ⊆ C and B ⊆ V − C.

3. If opS = opint and opS = opc, then MC is an a-stable model of P iff C is
an open set such that A ⊆ C and B ⊆ V − C.

4. If opS = opS = opconv, then MC is an a-stable model of P iff K(C) = C,
K(V − C) = V − C, A ⊆ C and B ⊆ V − C 6.

5. If opS = opsubsp and opS = opid, then MC is an a-stable model of P iff C
is a subspace of V such that A ⊆ C and B ⊆ V − C.

6. If opS = opid and opS = opsubsp, then MC is an a-stable model of P iff
V − C is a subspace of V such that A ⊆ C and B ⊆ V − C.

Now let us suppose that we are given a subspace Y ⊆ X. Then we can modify
the program P to obtain a program R whose a-stable models for a ∈ {s, w}
produce separating sets over Y , i.e. all a-stable models of R are of the form

MC,D = {S(a) : a ∈ C} ∪ {S(a)a ∈ D} ∪ {Y (a) : a ∈ A}

where C ∩D = Y and C ∪D = V . That is, extend the language so that we have
an additional unary predicate symbol Y and assume that [[Y (a)]] = {Y (a)} for
all a ∈ V . Define the miop operator opY = opid. Then we can define a miop
operator op+ on X as by defining op+ so that
6 Recall the classical Convex Separation Theorem of Stone: if A and B are disjoint

convex subsets of V , then there is a set C such that C and V −C are convex subsets
of V such that A ⊆ C and B ⊆ V − C.

op+(T) = {S(a) : a ∈ opS({y ∈ V : S(y) ∈ T})}∪
{S(a) : a ∈ opS({y ∈ V : S(y) ∈ T})}∪
{A(a) : a ∈ opA({y ∈ V : A(y) ∈ T})}∪

{Y (a) : a ∈ opY ({y ∈ V : Y (y) ∈ T})}. (9)

Now let R be the program that results from P by adding the following clauses

(6.1) Y (a)← (for all a ∈ Y)
(7.1) S(x)← Y (s)
(8.1) S(x)← Y (s),

and by replacing clause (3) by

(3.1) A(0)← S(x), S(x),¬Y (x),¬A(0).

Then we can use the same type of analysis that we used for P to prove the
following.

Proposition 2. Suppose that opY = opA = op− = opid and a ∈ {s, w}, then
the following hold.

1. If opS = opS = opid, then MC,D is an a-stable model of R if and only if
A ⊆ C, B ⊆ D, C ∩D = Y , and C ∪D = V .

2. If opS = opc and opS = opint, then MC,D is an a-stable model of R if and
only if C is a closed set and A ⊆ C, B ⊆ D, C ∩D = Y , and C ∪D = V .

3. If opS = opint and opS = opc, then MC,D is an a-stable model of R if and
only if C is an open set and A ⊆ C, B ⊆ D, C ∩D = Y , and C ∪D = V .

4. If opS = opS = opconv, then MC,D is an a-stable model of R if and only if
K(C) = C, K(V −C) = V −C, A ⊆ C, B ⊆ D, C∩D = Y , and C∪D = V .

5. If opS = opsubsp and opS = opid, then MC,D is an a-stable model of R if
and only if C is a subspace of V and A ⊆ C, B ⊆ D, C ∩ D = Y , and
C ∪D = V .

6. If opS = opid and opS = opsubsp, then MC,D is and a-stable model of R
if and only if D is a subspace of V and A ⊆ C, B ⊆ D, C ∩ D = Y , and
C ∪D = V .

4.3 Complementary subspaces

In this example, we modify the previous program so that s-stable models and w-
stable models are determined by a pair of subspaces U and W such that A ⊆ U ,
B ⊆W , and U and V are complementary subspaces of V , that is, U ∩W = {0}
and opsubsp(U∪W) = V . To this end we add two more predicates T, T and define
[[T (v)]] = {T (v)} and [[T (v)]] = {T (v)} for all v ∈ X. Next consider the program
Q which consists of the clauses of P from the previous example enlarged by the
following set of clauses:

(6) T (b)← (for all b ∈ B,)
(7) T (a)← (for all a ∈ A,)
(8) A(0)← T (x), T (x),¬A(0),
(9) T (x)← ¬T (x)
(10) T (x)← ¬T (x).

Then as before we shall assume opA = op− = opid and define

op+(R) = {S(a) : a ∈ opS({y ∈ V : S(y) ∈ R})}∪
{S(a) : a ∈ opS({y ∈ V : S(y) ∈ R})}∪
{T (a) : a ∈ opT ({y ∈ V : T (y) ∈ R})}∪
{T (a) : a ∈ opT ({y ∈ V : T (y) ∈ R})}∪

{A(a) : a ∈ opA({y ∈ V : A(y) ∈ T})}. (10)

Then if we let opS = opT = opsubsp and opS = opT = opid, then we can apply
the reasoning to prove parts 5 and 6 of the Proposition 1 to show every a-stable
model of Q for a ∈ {s, w} relative to op+ must be of the form

MU,W = {S(v) : v ∈ U} ∪ {S(v) : v ∈ V − U}
∪ {T (v) : v ∈W} ∪ {T (v) : v ∈ V −W}.

where U and W are subspaces of V such that A ⊆ U , B ⊆ V − U , A ⊆ V −W ,
and B ⊆ W . Thus we need only add some clauses which ensure that U and W
are complementary subspaces of V . We add three more predicates C, C and the
equality predicate (=), where opC = opsubsp and op= = opC = opid. Now, let
us consider the following clauses (11)-(18):

(11) A(0)← C(x), C(x),¬A(0),
(12) C(x)← ¬C(x),
(13) C(x)← ¬C(x),
(14) A(0)← C(x),¬A(0),
(15) C(x)← S(x),
(16) C(x)← T (x),
(17) = (v, v)← (for all v ∈ V)
(18) A(0)← S(x), T (x),¬(x = 0),¬A(0).

By our previous analysis, clauses (11), (12) and (13) ensure that in a stable
model M the set E = {v ∈ V : C(v) ∈ M} is a subspace and V − E = {v ∈
V : C(v) ∈ M}. Clause (14) then ensures that in a stable model V − E = {v ∈
V : C(v) ∈ M} = ∅ and hence it must be the case that E = {v ∈ V : C(v) ∈
M} = V . However the only way that we can generate in E is via applications
the clauses of the form (15) and (16) so that in a stable model, we must have
opsubsp(U ∪W) = E = V . Finally the clauses of the form (17) and (18) ensure
that U ∩W = {0}.

Thus if we assume opA = op− = opid and

op+(R) = {S(a) : a ∈ opS({y ∈ V : S(y) ∈ R})}∪
{S(a) : a ∈ opS({y ∈ V : S(y) ∈ R})}∪
{T (a) : a ∈ opT ({y ∈ V : T (y) ∈ R})}∪
{T (a) : a ∈ opT ({y ∈ V : T (y) ∈ R})}∪
{C(a) : a ∈ opC({y ∈ V : C(y) ∈ R})}∪
{C(a) : a ∈ opC({y ∈ V : C(y) ∈ R})}∪

{A(a) : a ∈ opA({y ∈ V : A(y) ∈ R})}, (11)

then every s-stable model or w-stable model of Q, must be of the

MU,W,C = {S(v) : v ∈ U} ∪ {S(v) : v ∈ V − U}
∪ {T (v) : v ∈W} ∪ {T (v) : v ∈ V −W}

∪ {C(v) : v ∈ V }.

Thus we have the following result.

Proposition 3. Assume opA = op− = opid and

op+(R) = {S(a) : a ∈ opS({y ∈ V : S(y) ∈ R})}∪
{S(a) : a ∈ opS({y ∈ V : S(y) ∈ R})}∪
{T (a) : a ∈ opT ({y ∈ V : T (y) ∈ R})}∪
{T (a) : a ∈ opT ({y ∈ V : T (y) ∈ R})}∪
{C(a) : a ∈ opC({y ∈ V : C(y) ∈ R})}∪
{C(a) : a ∈ opC({y ∈ V : C(y) ∈ R})}∪

{A(a) : a ∈ opA({y ∈ V : A(y) ∈ R})}. (12)

Then MU,W,C is an a-stable model of the program Q for a ∈ {s, w} if and only
if A ⊆ U , B ⊆W , and U and V are complementary subspaces of V .

4.4 Continuous real functions

One of our original motivations for developing set based logic programming with
miops was to have a framework were one could reason about multiple agents
where any given agent A can pass information to other agents. In particular,
if agent A is operating in a topological space like R and Rn, then he might
want to pass information to another agent B who is operating in a similar space
by taking the current closed or open set M which is a stable model of A’s
set based logic program and sending f(M) to B were f is some continuous
function or an approximation to a continuous function. While the details of
such applications a well beyond the scope of this paper, we end this section

by constructing a set based program whose stable models represent continuous
functions F : [0, 1]→ [0, 1]. This represent a first step in developing a systems of
agents who can pass continuous information or an approximation of continuous
information to each other via a set based logic programming paradigm.

Let R be the real line, equipped with its usual topology. Let R+ be the set
of all positive real numbers. Let ω be the set of all natural numbers. Let Z+ be
the set of all positive integers, that is ω \ {0}.

It is easy to see that there R has a countable base {Ua | a ∈ ω } such that

(a) U0 = R,
(b) for each a > 0, Ua is an open interval (pa, qa) whose endpoints are dyadic

rationals,
(c) the endpoint sequences 〈pa〉a∈ω and 〈qa〉q∈ω are computable,
(d) there is a monotonic function e : Z+ −→ Z+ such that, for each positive

integer m and each a > e(m), the diameter of Ua is less than 2−m, and
(e) for all natural numbers a and b, if Ua ⊆ Ub, then a ≥ b.

For any positive integer n, the product space Rn also possesses such a base,
with the obvious difference that the sets Un for n > 0 are products of open
intervals and that there are 2n of computable sequences of endpoints. Obviously,
such a construction can be relativised to the product spaces [0, 1]n.

Given such a base for the topology of Rn, we will say that a function
f : ω −→ ω is a representing function for a continuous function F : Rn −→ Rn
provided that

1. Um ⊆ Un → Uf(m) ⊆ Uf(n),
2. for all n, F (Un) ⊆ Uf(n), and
3. for all x ∈ Rn and k ∈ ω, there exists an m such that x ∈ Um and Uf(m)

has diameter less than 2−k.

In such a case, we can recover F from f , since, for each x ∈ Rn,

F (x) is the unique member of
⋂

a∈ω,x∈Ua

Uf(a). (13)

In the case of compact space, for instance [0, 1], condition (3) may be replaced
by the existence of a function d : ω → ω, called the modulus of continuity of the
function F , such that for all k, Um has diameter less than 2−d(k) implies Uf(m)

has diameter less than 2−k.
Conversely, given such a base {Ua | a ∈ ω } and an arbitrary function f :

ω −→ ω, it is natural to ask when is it the case that there is a continuous
function F : Rn → Rn such that F (x) is defined by (13). One can show that
f : ω → ω represents a continuous function F if

(a) (∀m,n)(Um ⊂ Un → Uf(m) ⊂ Uf(n)).
(b) (∀k,m)(∃r)(∀t)[(Ut ⊆ [−k, k]n & diam(Ut) < 2−r)→ diam(Uf(t)) < 2−m].

We shall consider a simplified version of this type of phenomenon. For exam-
ple, let

An = {An,k : k = 0, . . . , 2n − 1} ∪ {Bn,k : k = 1, . . . , 2n−1 − 2}. (14)

where

An,k =

[0, 1

2n) if k = 0,
(2n−1

2n , 1] if k = 2n − 1 and
(k

2n ,
k+1
2n) if k = 1, . . . , 2n−1 − 2

and
Bn,k = (

2k + 1
2n+1

,
2k + 3
2n+1

) for k = 0, . . . , 2n−1 − 1.

The significance of the family An is that every x ∈ [0, 1] lies in an open interval
I of diameter 1/2n for some I ∈ An. Now suppose that our representing function
f of a continuous function F : [0, 1] → [0, 1] has the property that if Ua ∈ A2n,
then f(a) = b where b ∈ An. Thus the modulus of continuity function in this
case is given by d(k) = 1

22k+2 . That is, whenever Um has diameter < d(k), there
is a t such that Um ⊆ Ut where Ut ∈ A2k. Hence Uf(m) ⊆ Uf(t) ∈ Ak and
diam(Uf(m)) ≤ diam(Uf(t)) = 2−k. In fact, it easy to see that we can specify F
by merely defining f on the a such that Ua ∈

⋃
n≥1A2n.

This given, we consider the following set based logic program P. The con-
stants of the underlying program will be An,k such that k = 0, . . . , 2n − 1 and
n ≥ 1 and Bn,k such that k = 0, . . . 2n−1−2 for n ≥ 1. Our program will contain
one binary relation symbol f(x, y) and one 0-ary predicate symbol C. The sense
of a ground atom f(Em,k, Fn,l) where E,F ∈ {A,B} will simply be the open set
Em,k×Fn,l contained in [0, 1]×[0, 1]. The sense of C is just {C} so that the under-
lying space X consists of all {C} ∪ {Em,k ×Fn,l : E,F ∈ {A,B} and m, k, n, l ∈
ω}. We will take the miop operator opf = opC = op− = opid. Then we consider
the following propositional set based program P.

(1) C ← f(X,Y),¬C for all X ∈ A2n and Y /∈ An,
(2) C ← f(X,Y), f(X,Z),¬C for all X ∈ A2n and Y, Z ∈ An with n ≥ 1 and
X 6= Y ,
(3) C ← f(X,U), f(Y, V),¬C for all X,Y ∈

⋃
n≥1A2n and U, V ∈

⋃
n≥1An

such that X ⊆ Y but U * V .
(4) f(X,Y)← ¬f(X,U1), . . . ,¬f(X,U2n+2n−1−1) for each n ≥ 1, X ∈ A2n and
Y ∈ An where An − {Y } = {U1, . . . , U2n+2n−1−1} and
(5) C ← ¬f(X,U0), . . . ,¬f(X,U2n+2n−1−1),¬C for each n ≥ 1, X ∈ A2n and
Y ∈ An where An = {U0, . . . , U2n+2n−1−1}.

It is then easy to see by the same type analysis that we used in Example 1,
that C can never be an element of a stable model M for P. It follows that effect
of the clauses in (1), (2), (3) is to ensure that we can think of f as specifying
a function defined on some subset of

⋃
n≥1A2n such that for each n ≥ 1, (i)

X ∈ A2n implies f(X) ∈ An and (ii) if X ⊆ Y , then f(X) ⊆ f(Y). Finally the

clauses of (4) and (5) say that f must be defined on all of
⋃
n≥1A2n. Thus we

have the following.

Proposition 4. The a-stable models of P for a ∈ {s, w} correspond to

f :
⋃
n≥1

An →
⋃
n≥1

An

such that for all n, a ∈ A2n implies f(a) ∈ An and hence all such f define a
continuous functions F : [0, 1] −→ [0, 1] via (13).

We should note that we did not really need to use set based programming in
this case as we could do the same thing in normal logic programming. The reason
for presenting this construction is that by setting it in this framework, we can
reason directly about the approximating interval Ua×Uf(a) for the function F in
this case. Moreover, the framework of representing functions allows us to reason
about continuous transformations between different agents. Of course, in actual
practice, we can only reason about approximations of continuous functions since
continuous functions and/or their representing functions are infinite objects. In
our setting, we can reason about approximations of representing functions by
fixing some n0 and restricting our program clauses so that all indices involved
must be smaller than or equal to n0.

5 Conclusions and Further Work

In this paper, we defined a variant of logic programming, called set based logic
programming, where the atoms have an associated sense which is a subset of a
given space X, The usual one step consequence operator is modified so that it
only produces fixed points of some monotonic idempotent operator op+ on 2X ,
and the satisfaction of negative atoms is determined by either weak or strong
negation relative to a monotonic idempotent operator op− on 2X . We have illus-
trated how such programs embody a natural polymorphism and can be used to
naturally express problems in the various continuous domains. We envision many
other applications of our set based logic programming formalism in such areas
as graphics, image and voice compression, and other domains where there are
natural representation of processes that accept subsets of spaces as inputs and
compute outputs which are also subsets of those spaces. For example, set based
programs with miops can provide a logic-based approach to hybrid dynamical
systems.

This paper is the first of a series of papers that will explore the set based
logic programming paradigm. For example there are a number of concepts from
logic programming such as, well-founded model [VGRS91], stratified programs,
etc. that can be lifted to the present context almost verbatim. Thus one can
develop a rich theory of set based logic programs. Our set based logic programs
share certain features with Constraint Logic Programming [JM94] and the exact
connections need to be explored. Third, one can think about the senses of atoms

as annotations of the kind discussed in [KS92]. While there are various differences
between our approach and [JM94], for instance our use of negation as means to
enforce constraints as in [Nie99], the relationship between these two approaches
should be explored. Fourth, set based logic programming can be studied in the
more general setting of nonmonotonic inductive definitions [Den00] (e.g. iterated
inductive definitions of Feferman [Fef70]).

Finally we note that one there is third type of satisfaction relation for negative
atoms that one might consider in the setting of set based logic programs. That
is, suppose that the set of subsets of X which are closed under op+ gives rise
to a complete lattice L[[·]],op+,X where the meet ∧, and join ∨, of any collection
{Ai : i ∈ Γ} of subsets of L[[·]],op+,X is given by equations

∧{Ai : i ∈ Γ} = op+(
⋂
i∈Γ

Ai) and

∨{Ai : i ∈ Γ} = op+(
⋃
i∈Γ

Ai).

For example, if op+ = opid, then we can just let L[[·]],op+,X = 2X . If X is a
topological space and op+ = opcl, then L[[·]],op+,X is just lattice of closed subsets
of X. If X is a vector space V and op+ = opsubsp, then L[[·]],op+,X is just lattice
of all subspaces of V .

Now assume that the sense of any atom A is closed under op+. Then we can
extend the sense map [[·]] to all sentences via the following definition.

Definition 8. (Senses of closed formulas)

1. [[A ∨B]] = [[A]] ∧ [[B]]

2. [[A ∧B]] = [[A]] ∨ [[B]]

3. [[A→ B]] =
∧
{W ∈ Lop : (W ∨ [[A]]) ≥ [[B]])}

4. [[¬A]] =
∧
{W ∈ Lop : (W ∨ [[A]]) = op(X)}

5. [[∃xA(x)]] =
∨
{[[A(t)]] : t a variable-free term}

6. [[∀xA(x)]] =
∧
{[[A(t)]] : t a variable-free term}

Then one can define a new satisfaction relation |=h
[[·]],op+ by defining

I |=h
[[·]],op+ A ⇐⇒ [[A]] ≤ I.

We can then define a new one-step consequence operator and a new Gelfond-
Lifschitz operator based on this new definition of |=h

[[·]],op+ . We shall show in a
subsequent paper that under certain circumstances, this new satisfaction relation
is closely related to an intuitionistic logic type semantics based on complete
Heyting algebras and Kripke models as described in [TvD88]. However, we should

note that such a definition does not always yield an interesting new semantics
in the most general setting of this paper. That is, suppose that X is a vector
space V and op = opsubsp. Suppose that A is non-trivial subspace of V . Let
a1, a2 · · · be a basis of A. We claim that for any x ∈ V , there is a subspace Wx

such that Wx ∨ A = V and x /∈ W . This is clear if x ∈ A. If x /∈ A, then x is
independent over A so that we can extend x, a1, a2, · · · to a basis of V by adding
say, b1, b2, · · · . Then it is easy to see that if Wx is the subspace generated by
a1 + x, b1, b2, · · · , then Wx ∨ A = V , but x /∈ Wx. In this case, condition (4)
becomes

[[¬A]] =
∧
{W ∈ L[[·]],opsubsp,X

: (W ∨ [[A]]) = opsubsp(X)} = opsubsp(∅) = {0}

where 0 is the zero vector of V . Thus in this case, [[¬A]] = {0} unless A = {0}
in which case [[¬A]] = V which would mean the negation is essentially trivial.

Acknowledgments: The second author has been partly supported by NSF
grants IIS-0097278 and IIS-0325063. The third author has been partly supported
by NSF grants DMS 0400507 and DMS 0654060. The authors wish to thank
David Jakel and Angel Rivera for contributions and valuable discussion, partic-
ularly in regard to the description of the representation of continuous functions
on the real numbers.

References

[ABW88] Apt, K., Blair, H.A., and Walker, A. Towards a theory of Declarative
Knowledge. In Foundations of Deductive Databases and Logic Program-
ming, J. Minker, Ed. Morgan Kaufmann, 89–148, 1988.

[ASP01] Proceedings of the AAAI Spring 2001 Symposium on Answer Set Program-
ming, Stanford, CA, 2001.

[Ba03] Baral, C., Knowledge Representation, Reasoning and Declarative Prob-
lem Solving, Cambridge University Press, 2003.

[BS81] Burris, S. and Sankappanavar, H.P. A Course in Universal Algebra,
Graduate Texts in Mathematics, no. 78, Springer-Verlag, 1981.

[BS89] Batarekh, A. and Subrahmanian, V.S. Topological Model Set Defor-
mations in Logic Programming, Fundamenta Informaticae, Vol. XII, No.
3, pps 357–400, 1989.

[BMR01] Blair, H.A., Marek, V.W. and Remmel, J.B. Spatial Logic Program-
ming, in Proceedings SCI 2001, Orlando, FL, July, 2001.

[Den00] Denecker, M. Extending classical logic with inductive definitions. In
First International Conference on Computational Logic (CL2000). Lecture
Notes in Artificial Intelligence, vol. 1861. Springer, 703–717, 2000.

[Fef70] Feferman, S. Formal theories for transfinite iterations of generalized
inductive definitions and some subsystems of analysis. In Intuitionism
and Proof theory, A. Kino, J. Myhill, and R. Vesley, Eds. North Holland,
303–326, 1970.

[GL02] Gelfond, M. and Leone, N. Logic Programming and Knowledge Repre-
sentation – A-Prolog perspective. Artificial Intelligence 138:3–38, 2002.

[GL88] Gelfond, M. and Lifschitz, V. The stable model semantics for logic
programming. In Proceedings of the International Joint Conference and
Symposium on Logic Programming. MIT Press, 1070–1080, 1988.

[JM94] Jaffar, J. and Maher, M. Constraint logic programming: A survey.
Journal of Logic Programming, 19-20:503–581, 1994.

[Ku66] Kuratowski, K. Topology, Academic Press 1966.
[Li94] V. Lifschitz. Minimal belief and negation as failure. Artificial Intelligence

70:53–72, 1994.
[KS92] Kifer, M. and Subrahmanian, V.S. Theory of generalized annotated

logic programming and its applications. Journal of Logic Programming
12:335–367, 1992.

[Kl67] Kleene, S.C. Introduction to Metamathematics, North-Holland, 1967.
[MT99] Marek, V.W., and Truszczyński, M. Stable Models and an Alternative

Logic Programming Paradigm. The Logic Programming Paradigm, pp.
375–398. Series Artificial Intelligence, Springer-Verlag, 1999.

[Nie99] Niemelä, I. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelli-
gence 25, 3,4, 241–273, 1999

[TvD88] Troelstra, A.S. and van Dalen, D. Constructivism in Mathematics,
volumes I and II, North-Holland, 1988.

[VGRS91] Van Gelder, A., Ross, K., and Schlipf, J. The Well-Founded Semantics
for General Logic Programs. Journal of the ACM 38, 3, 620–650, 1991.

[W99] Weisstein, E.W., et.al. “Lattice.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/Lattice.html

