
Automatic generation of English-language steps in puzzle solving

Hemantha Ponnuru, Raphael Finkel, Victor Marek, and Mirosław Truszczyński
Computer Science Department

University of Kentucky
Lexington, KY 40506fhkponn2,raphael,marek,mirekg@cs.uky.edu

Abstract
This paper shows how to generate an English step-by-
step explanation that describes how an automated rea-
soning system solves a complex constraint program. We
study programs that solve tabular-constraint problems
encoded in Constraint Lingo and then translated into pro-
positional logic with cardinality constraints. We instru-
ment the logic solver so that it generates log files. We
inspect those logs and express reasoning steps in English
by using grammatical information placed in the Con-
straint Lingo program.

Keywords: logic puzzles, logic programming, con-
straint satisfaction, tabular constraint satisfaction

1. Introduction

In declarative programming, programmers build theories
to encode problems and then apply automated reasoning
techniques to generate solutions. The question we study
here is generating explanations of the steps leading to
these solutions and presenting them in human-readable
format. We demonstrate our approach in the setting of
logic-puzzle solving, but it applies equally well to other
applications.

We start with an example1:

Five senior citizens, Alicia, Bert, Cecil, Dexter,
and Edith, became famous for some activity. Their
last names (in no particular order) were Foster,
Garland, Hollis, Izenberg, and Johnston. They
were (in no particular order) 101, 103, 106, 108,
and 111 years old. The activities were going on
a safari, making a sports video, throwing the first

This work was partially supported by NSF grants 0097278 and
0325063.

1Based on the puzzle “100 and then some,” Dell Logic Puzzles June
1999, page 21; used by permission.

pitch at a baseball game, participating in a game
show, and skydiving. Match the first and last
names to the age and activity.

1. Bert, Cecil, and Dexter were male; Alicia
and Edith were female.

2. Izenberg did not go on a safari.

3. Dexter was younger than the one who threw
the first pitch but older than Mr. Foster.

4. Alicia, who was not Hollis, was 111 years
old.

5. Dexter, who is neither Garland nor Hollis,
participated in a game show.

6. Izenberg, who was not 101 years old, par-
ticipated in skydiving.

7. Dexter was younger than Cecil but older
than Izenberg.

To solve a logic puzzle, we (1) encode it in the high-
level language Constraint Lingo [3, 4], (2) mechanically
translate this representation to a theory in propositional
logic with cardinality constraints [1], and (3) compute
models of that theory by means of a search procedure
that relies of unit propagation and branching. Models of
the theory correspond to solutions of the puzzle.

Our computation shows that this logic puzzle has ex-
actly one solution:

first activity age gender last

alicia ashow 111 female garland
bert skydiving 101 male foster
cecil pitch 108 male hollis
dexter safari 106 male johnston
edith video 103 female izenberg

The trace of the search procedure provides a formal
proof that answers are indeed models and that no other
models exist. Our goal is to develop techniques to collect



the trace and transform it into human-readable format.
To this end, we (1) expand Constraint Lingo so the pro-
grammer can embed linguistic information concerning
the puzzle, (2) modify translators from Constraint Lingo
to propositional logic to retain necessary information, (3)
modify the solver to log all propagation and backtracking
steps, (4) develop tools to generate English text from the
Constraint Lingo program and the log.

These steps lead to an explanation of the reasoning
that leads the solver to the solution. An excerpt of that
explanation is shown here. We indent a step deeper than
its predecessor to indicate a new line of reasoning. We
indent a line more shallowly than its predecessor to indi-
cate a conclusion based on all the preceding lines at the
previous indentation level.

(18) Clue 3 tells us Dexter isn’t
101 years old.

We know (step 16) that Senior
Izenberg isn’t 101 years old

(19) Clue 7 tells us Dexter isn’t
103 years old.

(20) Clue 7 tells us Cecil isn’t 106
years old.

We know (step 4) that Alicia is 111
years old.

(21) By elimination, Cecil isn’t 111
years old.

(22) By elimination, Cecil is 108 years
old.

2. Constraint Lingo

We translate puzzles into our Constraint Lingo language
for tabular-constraint problems [3, 4]. This language lets
us capture the constraints without settling on any partic-
ular logic formalism or any coding strategy within that
formalism.

We encode our puzzle by the following Constraint
Lingo code.

CLASS first: alicia bert cecil dexter
edith

CLASS last: foster garland hollis izenberg
johnston

CLASS age: 101 103 106 108 111
CLASS activity: safari video pitch ashow

skydiving
PARTITION gender: male female

AGREE male: bert cecil dexter # clue 1
AGREE female: alicia edith # clue 1

CONFLICT safari izenberg # clue 2

BEFORE age: dexter pitch # clue 3
BEFORE age: foster dexter # clue 3
AGREE male: foster # clue 3

CONFLICT alicia hollis # clue 4
REQUIRED alicia 111 # clue 4
AGREE male: foster # clue 4

CONFLICT dexter garland # clue 5
CONFLICT dexter hollis # clue 5
REQUIRED garland ashow # clue 5

CONFLICT 101 izenberg # clue 6
REQUIRED 101 skydiving # clue 6

BEFORE age: dexter cecil # clue 7
BEFORE age: izenberg dexter # clue 7

This example shows the most important constructs of
Constraint Lingo. Columns are defined byCLASS or
PARTITION; the former implies a used-once constraint,
but the latter does not.Row referencesare members of a
CLASS, such asdexter; they refer to the one row that
contains that member.Constraints involve rows. RE-
QUIRED constrains the rows specified by the given row
references to be the same row.CONFLICT constrains
the rows specified by the given row references to be dis-
tinct rows.AGREE constrains the specified rows to have
the givenPARTITION member in the appropriate col-
umn. (These three constructs allow more than two row
references.)BEFORE constrains the values of a numeric
CLASS (here,age) to have a given order in two specified
rows.

Constraint Lingo includes other constructs not needed
for this example.Columns can also be defined byMAP,
which indicates a relation among rows, which can op-
tionally be constrained to be onto, nonreflexive, symmet-
ric, or asymmetric. For instance, if every senior had a
friend (another senior), we would introduce aMAP col-
umn calledfriend and constrain it to be nonreflexive.
Columns may also be defined byPOWERCLASS, which
constrains its entries to be subsets (not just singletons) of
its members, with cardinality optionally restricted both
above and below. A numeric column may be underspec-
ified, which means it has more members than there are
rows; only some of those members are used in any so-
lution. A numeric column may also be markedcir-
cular, which affects ordering constraints.Row refer-
encescan also be introduced variables, which are con-
strained to refer to exactly one row. Constraint Lingo



also allows set-theoretic combinations of row references.
Cell referencesrefer to a particular column of a speci-
fied row, such asfirst(skydiving). Constraints
includeMATCH, which equates two sets of rows,SAME
andDIFFER, which constrain two rows to agree or dis-
agree on the value of aPARTITION column, andIM-
PLIES, which constrains the specified rows to include a
specifiedPOWERCLASS member in its column.ORDER
constrains the values in a numeric column to satisfy an
additive or multiplicative constraint.DIFFER constrains
two PARTITION columns so that any two rows show
a different combination of members in those columns.
USED bounds above and below the number of times a
PARTITION element is used in its column.DIFFER
constrains twoMAP columns to differ everywhere.AG-
GREGATE constrains either the sum or the product of the
elements in an underspecified numericCLASS column.
SET constrains the values of a cell (given by a cell refer-
ence) or numerically relates the values to two cells.

3. Translation into aspps

We have built translators from Constraint Lingo into sev-
eral logic formalisms. The results presented in this paper
are based on translation into propositional logic with car-
dinality constraints, for which we use theasppssolver
[1]2. At the heart of our translation arecross-column
predicates for every pair of columns, such asfirst -

age(�,�). The translation includes rules that constrain
CLASS columns to use each appropriate member only
once. Each Constraint Lingo constraint translates into
one or more additional rules. For example, our transla-
tion for CONFLICT safari izenberg has one rule.
Its empty head means “must not occur”.

activity_last(safari,izenberg) -> .

As a second example,BEFORE age: dexter
cecil translates into two rules:

age_first(Age, dexter),
age_first(Age1, cecil),
Age >= Age1 -> .

age_first(111, dexter) -> .

The solver uses unit propagation and backtrack to
determine which predicates are true (such asfirst -

age(dexter,106)) and which are false (such as
2The asppssolver has two phases. The first converts rules into

ground instances and applies unit propagation to discover direct conse-
quences. The second hypothesizes truth values and backtracks to find
consistent models. We treat these two phases together for this discus-
sion.

first age(dexter,108)). In general, we could ap-
ply our reasoning explainer to anyasppsprogram. The
solution is the set of true predicates.

4. Recovering the reasons

We analyze the log generated by the solver to reconstruct
its reasoning. Unit propagation derives true predicates in
three ways. (1) The predicate is a fact. The reason is then
just the fact. (2) The predicate is the conclusion (head)
of a rule whose body predicates are all true. The reason
is this rule along with the set of reasons for each of those
body predicates. (3) The rule is a cardinality constraint
with at leastn solutions, and all butn of the predicates
are false. The reason is this rule along with the set of
reasons that those other predicates are false.

Unit propagation derives false predicates in three
ways. (1) The rule has an empty head (it is a failure rule),
and all but one predicate in the body has been shown to
be true. The remaining body predicate must be false; the
reason is this rule along with the set of reasons that the
other predicates are true. (2) The rule has a head that is a
predicate already shown to be false, and all but one pred-
icate in the body has been shown to be true. The remain-
ing body predicate must be false; the reason is this rule
along with the set of reasons that the other body pred-
icates are true and the reason that the head predicate is
false. (3) The rule is a cardinality constraint with at mostn solutions, andn predicates have already been shown to
be true. The remaining predicates are false; the reason is
this rule along with the reasons for each of thosen true
predicates.

Backtracking involves guessing the truth value of a
predicate. Failure returns to the previous guess and de-
rives the opposite of that guess.

5. Translating the reasons into English

Explanations need to say that a cross-column predicate
is true or false. We state the truth ofage first(111,

dexter) as “Dexter was 111 years old”, and the fal-
sity ofactivity age(skydiving,101) as “the senior
who was 101 years old was not recognized for skydiv-
ing.”

In order to do so, we need to know the relationships
among the various columns. In our puzzle, the following
hierarchy applies:

first/last (age activity gender).
That is, a person is identified by a first or last name and
has properties of age, activity, and gender. The program-



mer must indicate the hierarchy as part of the Constraint
Lingo program.

We then translateage first(111,dexter)by say-
ing thatdexter has property111, not the reverse, be-
causefirst is aboveage in the hierarchy. Foractiv-
ity age(skydiving, 101), both activity and
age are subordinate tofirst, so neither is central. We
introduce a reference to the person who has both these
properties, “the senior who.”

Two levels of hierarchy are usually enough. How-
ever, the following is a three-level hierarchy.

town (founded state motel
(street john alice))

This example comes from a puzzle where motels are vis-
ited by John and Alice in some order; each motel is in
a town founded in some year in some state and on some
street. We expressfounded state(1888,tennesee)

by referring to the town that connects them: “the town
that was founded in 1888 is in Tennessee.” We express
john state(7,ohio) by referring to the town and the
motel: “the town in Ohio has the motel that was visited
7th by John.”

Sometimes a class is implied by the puzzle but is not
part of its description. For instance, the “Field Trips”
puzzle3 involves children with teachers who hold ses-
sions on particular days at particular sites, leading to dec-
larations like these:

CLASS child: chester jeanette marvin
CLASS day: monday tuesday wednesday
CLASS teacher: brandon dempsey lewis
CLASS site: cloisters guggenheim liberty

We let the programmer introduce a virtual class into
the hierarchy as a placeholder for a class that could have
been part of the puzzle but isn’t:

child (teacher session (day site)).

The virtual classsession lets us generate state-
ments like “Jeanette attended the session on Wednesday”
and “the child taught by Brandon attended the session at
the Guggenheim Museum.”

In addition, the programmer specifies four grammat-
ical aspects of each class.

Subject: how to express an element (likedexter)
as the subject of a sentence:

first: %M

last: Senior %M

3Dell Logic Puzzles, June 1999, page 15

%M is a format string meaning the member value (such as
dexter) with the first letter capitalized (Dexter). The
format forlast adds an honorific, turning the member
valuejohnston into Senior Johnston.

Predicate: how to express an element (likeage) as
the predicate of a sentence:

last: Senior %M

age: %m years old

activity: %m

gender: %m

Verb: the positive and negative verbs to govern an
element in the predicate:

last: was, wasn’t

age: was, wasn’t

activity: was recognized for,

was not recognized for

gender: is, isn’t

Relative: how to introduce a reference to a class that
connects two other classes:

first: the senior who

last: the senior who
We let the programmer describe proper English ex-

pansions for one-word shorthands:

ashow: participating in a game show
pitch: throwing the first pitch at a

baseball game
video: making a sports video
safari: going on a safari

We omit here the precise format by which the pro-
grammer specifies the hierarchy of classes, the four gram-
matical aspects of each class, and one-word shorthands.

6. Presenting the reasons

We don’t present all the steps that the automatic reason-
ing system takes; instead, we show only positive con-
clusions. However, if a positive conclusion requires as
a reason a negative conclusion, then we show that, too.
Our log lets us build a DAG whose nodes represent con-
clusions and whose edges represent reasons. As we build
that graph, we output an English explanation for each
positive node. This explanation may depend on antece-
dents, positive or negative. If an antecedent has been ex-
plained in an earlier step, we just say “We know (stepn)
that: : :”. We recursively explain other antecedents.

Often a conclusion is based directly on a clue, in
which case we cite that clue. Other conclusions are based
on cardinality constraints, in which case we say “By elim-
ination,: : :”. Still other conclusions are are applications
of transitivity: If Foster is recognized for skydiving, and



the 101-year-old was recognized for skydiving, then Fos-
ter was 101 years old. In such cases we say “To be con-
sistent,: : :”.

When the solver introduces a guess, we say “Assum-
ing : : :”. A guess may lead to failure, which happens
when the solver derives both a fact and its negation. We
then say ”Stepn and stepm contradict each other, so: : :”. Several guesses may be listed in one assumption;
We only list those guessesG that are actually used in
explaining a factF , even though the solver might have
made additional assumptions at the point it got to this
step. Later, if the solver is using a set of guessesG0 � G
and it again provesF , we need not repeat the explana-
tion, even though theasppssolver sometimes does repeat
its reasoning or even discover an independent proof ofF .
Instead, we just refer to the previous step.

7. Discussion

To our knowledge, this work is the first success at gen-
erating natural-language reasoning steps by instrument-
ing a general-purpose solver, although the concept of ex-
plaining reasons has a history reaching back to the Mycin
project [7].

General-purpose solvers don’t follow the same path
that a human would. Theasppssolver does not remem-
ber the facts it has derived, leading it to often rederive
the same fact. Subsequent derivations can be longer or
shorter than the first one. We display the first derivation
and refer back to it if the same fact is needed later. Our
explanations would be shorter if we searched the log for
the most concise derivation for each fact.

Furthermore, the length of explanations indicates that
asppsdoes not find the simplest reasoning path. For in-
stance, the explanation for the 100 puzzle requires about
150 steps. The published explanation is significantly
shorter, partly because it uses shorthands that expand to
several steps.

We see several benefits of our approach. First, it
shows how to explain, in nontechnical language, solving
a logic puzzle.

Second, our results can be generalized to other logic
programs. We only require that the solver log its steps
and that the logic program include comments referring
to clues and showing grammatical relationships. We can
explain how to solve any logic program whose solution
is based on a combination of unit propagation and back-
tracking. We can generate the explanation automatically
(with some grammatical assistance from the program-
mer), and we can do so in the presence of cardinality

constraints.

Third, our work produces convincing arguments sup-
porting the output of the solver. The explanations are
“locally checkable”, in that an interested reader can fol-
low any set of steps, even though few readers would want
to scrutinize the entire explanation.

Fourth, our approach leads to non-textual representa-
tions of the reasoning steps. Our software can present the
steps in a graphical format, which is often more intuitive
than text. The argument takes the form of a tree. Each
node on the path from the root to the leftmost leaf repre-
sents a guess that turns out to be true. Each guess has a
sibling that represents its negation. These siblings always
lead to contradictions. We merge subtrees that prove the
same results in a similar context (that is, under a super-
set of the same assumptions). Generating these trees in a
readable and compact form is challenging.

Fifth, our work with explaining the reasoning in solv-
ing puzzles has led us to betterasppscode for Constraint
Lingo programs. There are occasions whenasppstakes
many steps where a human would take only one. The rea-
son for this discrepancy is that our translation from Con-
straint Lingo is often too “spare”, containing only enough
rules to force a unique, correct answer. Additional rules,
although not necessary for correctness, allow for more
direct solution. For example, Clue 7 tells us that Dexter
was younger than Cecil. We can generate an additional
rule saying that if Dexter was 106, then Cecil must be
108 or 111. When we add such additional rules, we find
thatasppsis able to derive many more facts by unit prop-
agation, leaving fewer cases where it needs to guess. So
inspecting the proofs has led to better translation of Con-
straint Lingo.

Sixth, explanations of models can be quite important.
Although we have focused on the explaining solutions to
logic puzzles, the problem of finding explanations is not
limited to recreational mathematics. We illustrate this
point with two examples from different application do-
mains.

Consider the domain of combinatorial optimization.
As we have pointed out [4], Constraint Lingo lets us rep-
resent complex combinatorial problems such as graph
coloring, vertex cover, and Hamiltonian cycles. Let’s
focus on the Hamiltonian-cycle problem. As the solver
searches for a solution, it performs several types of rea-
soning: (1) guessing that an edge belongs to the putative
cycle, (2) checking that each vertex contributes to two
edges in the cycle, (3) deriving that a given edge must
belong to the cycle because of cardinality constraints, re-
quirements, (4) testing that a cycle has been constructed,



and (5) testing that all vertices are in the cycle. Our tech-
niques can produce an English explanation that describes
the guesses and the graph properties that lead us to the
solution. If the graph represents a communication net-
work or some other real-life entity, we may gain valuable
information about the topology of that network.

Another domain is bounded model checking. We may
want to represent a nondeterministic finite automaton as
an instance and describe the trajectories of that machine
as solutions to a Constraint Lingo program. It is pos-
sible to describe bounded-length trajectories of a non-
deterministic automaton in a logic formalism so that tra-
jectories correspond to solutions [5]. If the solver returns
a path leading to an undesirable state, we may want to
find reasons that lead to such a solution. The reasons
might be particular choices, or they may be consequences
of constraints that describe the machine. The reasons can
help the designer of the machine debug the physical real-
ization of the automaton.

8. Software

The suite of programs for generating, translating, solv-
ing, and explaining Constraint Lingo programs is freely
available at
ftp://ftp.cs.uky.edu/cs/software/cl.tar.gz

This suite contains over 170 sample Constraint Lingo
programs encoding a wide range of logic puzzles. Tar-
geted solvers include not onlyasppsbut alsosmodels[6],
dlv [2], and ECLiPSe [8].

9. References

[1] D. East and M. Truszczyński.aspps— an implemen-
tation of answer-set programming with propositional
schemata. InProceedings of Logic Programming
and Nonmonotonic Reasoning Conference, LPNMR
2001, volume 2173, pages 402–405. Lecture Notes
in Artificial Intelligence, Springer Verlag, 2001.

[2] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scar-
cello. A KR systemdlv: Progress report, compar-
isons and benchmarks. InProceeding of the Sixth
International Conference on Knowledge Representa-
tion and Reasoning (KR ’98), pages 406–417. Mor-
gan Kaufmann, 1998.

[3] R. Finkel, V. Marek, and M. Truszczyński. Tabu-
lar constraint-satisfaction problems and answer-set
programming.AAAI-2001 Spring Symposium Series,
Workshop on Answer Set Programming, 2001.

[4] R. Finkel, V. Marek, and M. Truszczyński. Con-
straint lingo: Towards high-level constraint program-
ming. Software Practice and Experience, to appear,
2004.

[5] K. Heljanko and I. Niemelä. Bounded LTL model
checking with stable models. InProceedings of
the 6th International Conference on Logic Program-
ming and Nonmonotonic Reasoning, Vienna, Aus-
tria, September 17-19, 2001.

[6] I. Niemelä and P. Simons. Extending the smodels
system with cardinality and weight constraints. In
J. Minker, editor,Logic-Based Artificial Intelligence,
pages 491–521. Kluwer Academic Publishers, 2000.

[7] Edward Shortliffe.MYCIN: Computer-Based Medi-
cal Consultations. American Elsevier, 1976.

[8] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe:
A platform for constraint logic programming,
1997. http://www.icparc.ic.ac.uk/
eclipse/reports/eclipse.ps.gz.


