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Abstract. Using the ideas from current investigations in Knowledge Representation
we study the use of a class of logic programs for reasoning about infinite sets. Our
programs reason about the codes for various infinite sets. Depending on the form of
atoms allowed in the bodies of clauses we obtain a variety of completeness results
for various classes of arithmetic sets of integers.
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1. Introduction

The motivation for this paper comes out of recent progress in logical
foundations of Artificial Intelligence. In particular, it is concerned with
recent advances in the area of Knowledge Representation. In the past
few years, there has been significant progress in the theory and practice
of Logic Programming. In particular, a whole new area called Answer
Set Programming (ASP) [4] has arisen which can be viewed as a fu-
sion of Logic Programming with Stable Model Semantics (SLP) and
satisfiability (SAT). Answer Set Programming has emerged as both
a theoretical and practical basis for the development of new genera-
tion of systems that are solidly grounded in the theory of Computer
Science and capable of handling practical search problems arising in
applications. The current generation of ASP systems such as smodels,
dlv, cmodels and ASSAT [34, 39, 20, 3, 28], which uses both the native
techniques of Logic Programming and the technology developed in SAT
[32, 23], carry a lot of promise. Moreover, new types of constraints are
introduced that allow for a more compact representation of problems
[36, 22]. In such systems, the task of the programmer becomes easier
because of the effort spent by the back-end processing engines.

The main purpose of this paper is to develop some extensions of
the current ASP formalism that allows one to reason about infinite
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2 Cenzer et al.

sets. Since one cannot directly represent infinite sets, the key idea is
to use recursion-theoretic techniques to reason about various types of
indices (i.e. codes) of finite, recursive and recursively enumerable (r.e.)
sets. In particular, we develop a new extension of Logic Programming,
called Extended Set Based (ESB) Logic Programming, which allows
constraints expressed in terms of such indices.

These new types of constraints are introduced below. However, we
first recall the basic definitions of answer set programming and some
of its recent extensions such as logic programming with weight and
cardinality constraints [34] and set constraint logic programming [30].

A logic programming clause is a construct of the form

C = p← q1, . . . , qm,not r1, . . . ,not rn

where p, q1, . . . , qm, r1, . . . , rn are atoms. A logic program is a set of logic
programming clauses. The atoms q1, . . . , qm,not r1, . . . ,not rn form the
body of C and the atom p is its head. We say that a set of atoms M
satisfies an atom a if a ∈ M and that M satisfies not a if a /∈ M . We
say that a set of atoms M is a model of a clause C if either M does
not satisfy the body of C or M satisfies the head of C. Finally we say
that M is a model of a program P if M is model of all the clauses in
P .

The clauses C where n = 0 are called Horn clauses. A program
entirely composed of Horn clauses is called a Horn program and a Horn
program always has a least model. It is the intended semantics of such
a program. For programs with bodies containing the negation operator
not, we will use the stable model semantics. Following [21], we define
a stable model of the program as follows. Assume M is a collection
of atoms. The Gelfond-Lifschitz reduct of P by M is a Horn program
arising from P by first eliminating those clauses in P which contain
not r with r ∈M . In the remaining clauses, we drop all negative literals
from the body. The resulting program GLM (P ) is a Horn program. We
call M a stable model of P if M is the least model of GLM (P ). Thus
there are four steps are involved in computation of a stable model.

Step 1. Guess a candidate set of atoms M .

Step 2. Compute the reduced program GLM (P ).

Step 3. Compute the least model N of GLM (P ).

Step 4. Test if M coincides with N .

We note that for a Horn program P , there is a unique stable model,
namely, the least model of P .
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Programming with Infinite Sets 3

It is the general consensus of the Knowledge Representation com-
munity that stable models are the intended models of logic programs.
Once such a consensus emerged, it was natural for both theoreticians
and logicians to study various complexity issues associated with stable
models of logic programs. There has been extensive effort of the com-
munity to investigate both the theoretical issues associated with stable
models and the practical algorithms for processing.

The stable models of logic programs that contain function symbols
can be quite complex. Recall that the least model of a Horn program P
is recursively enumerable in P . Thus the least model of a recursive Horn
program is recursively enumerable. Starting with [2] and continuing
with [5] and [29], a number of results showed that the stable models of
logic programs that allow function symbols can be exceedingly complex,
even in the case where the program has a unique stable model. For
example, Marek, Nerode and Remmel [29] showed that there exist finite
predicate logic programs which have stable models but which have no
hyperarithmetic stable model. While these results may at first glance
appear negative, they had a positive effect in the long run since they
forced researchers and designers to limit themselves to cases where
programs can be actually processed. The effect was that processing
programs (called solvers) tended to focus on finite programs that do
not admit function symbols.

The designers of the solvers have also focused on the issues of both
improving processing of the logic programs (i.e. searching for a stable
model) and improving the use of logic programs as a programming
language. The latter task consists of extending the constructs available
to the programmer to make programming easier and more readable.
For example, various researchers discovered that it was possible to
introduce meaningful extensions to the logic programming syntax and
yet have such extensions be processed in a manner which is entirely
analogous to the processing currently employed in case of logic pro-
grams proper. We shall briefly describe two such extensions which
are particularly relevant to this paper, namely logic programming with
weight and cardinality constraints(CC-logic programs) [36, 35] and set
constraint programming (SC-logic programs) [30].

Let ω denote the set {0, 1, 2, . . .} of natural numbers. Then a car-
dinality constraint atom (CC-atom) is a constraint of the form kXl
where X is a finite set of atoms and k and l are elements of ω ∪ {∞}
such that k ≤ |X| and k ≤ l. The meaning of such an atom is that
a putative model M satisfies kXl, written M |= kXl, if and only if
k ≤ |M ∩ X| ≤ l. CC-atoms are special cases of more general weight
constraint atoms. That is, suppose that we have some weight function
wt on the set of literals over X, then we say that a model M satisfies
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a weight constraint l ≤ X ≤ u if and only if

l ≤ [
∑

p∈M∩X
wt(p) +

∑
p∈X−M

wt(not p)] ≤ u.

Both CC-atoms and weight constraint atoms are special case of set
constraint atoms introduced in [30]. A set constraint atom (SC-atom)
has the form 〈X,F〉 where F ⊆ 2X . Here we say that a set of atoms M
satisfies 〈X,F〉 if and only if M ∩X ∈ F . Some specific set constraints
were investigated in [22]. Many types of constraints can be expressed
in the form 〈X,F〉.

Example 1.1. (Cardinality and Weight Constraint Atoms) A
CC-atom kXl can be expressed as the SC-atom 〈X,Fk,l〉 where Fk,l =
{Y ⊆ X : k ≤ |Y | ≤ l}. Similarly if we have a weight function wt on
literals, the more general weight constraint kXl considered [35] where
a model M satisfies kXl if and only if

k ≤ [
∑

a∈X∩M
wt(a)) +

∑
b∈X−M

wt(not b)] ≤ l

can be expressed as the SC-atom 〈X,F〉 where

F = {Y ⊆ X : k ≤ [
∑
a∈Y

wt(a)) +
∑

b∈X−Y
wt(not b)] ≤ l}.

2

Example 1.2. (SQL Aggregate Atoms) Let X be a finite set of
atoms and let µ : X → R be a function. Each such function µ allows
us to construct a variety of set constraint atoms. For example, to each
Y ⊆ X, we can assign the following functions that are used in SQL
queries: |Y |, sum(Y ) =

∑
y∈Y µ(y), min(Y ) = miny∈Y µ(y), max(Y ) =

maxy∈Y µ(y), avg(Y ), where avg assigns to Y the real number 0 if
Y = ∅ and assigns the real number sum(Y )

|Y | , otherwise. For every two
real numbers a, b such that a ≤ b, we define the following families of
sets:

1. Ca,bX = {Y : a ≤ |Y | ≤ b}

2. Sa,bX = {Y : a ≤ sum(Y ) ≤ b}

3. Maxa,bX = {Y : a ≤ max(Y ) ≤ b}

4. Mina,bX = {Y : a ≤ min(Y ) ≤ b}

5. avga,bX = {Y : a ≤ avg(Y ) ≤ b}
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Programming with Infinite Sets 5

For each family F described in (1)-(5), we obtain a set constraint
〈X,F〉. 2

Example 1.3. (Programs with External Modules) In [19], Eiter,
Gottlob and Veith studied logic programs whose clauses contain mod-
ules in their bodies. Modules are programs π (written in some fixed
programming language) that return subsets of some finite set of atoms
X. Let us define Rπ as the set of those subsets of X that can be
returned by π. Eiter, Gottlob and Veith show how a stable semantics
can be assigned to programs that contain atoms of the form 〈X,Rπ〉
in the body of clauses. The construction of SC-stable models due to
Marek and Remmel [30] described below extends the work of [19] in
that SC-logic programming allows modules to occur both in the heads
and in the bodies of clauses. 2

There are other families of subsets of a set that could be of interest.

Example 1.4. Given a finite set of atoms, let Feven = {Y ⊆ X :
|Y | is even} and Fodd = {Y ⊆ X : |Y | is odd}. Then 〈X,Feven〉 and
〈X,Fodd 〉 are set constraint atoms. 2

Other examples of constraints of interest can be found in [22].
Formally a set-constraint clause (or SC-clause) is an expression of

the form
〈X,F〉 ← 〈X1,F1〉, . . . , 〈Xm,Fm〉

A set-constraint (SC) program is a collection of SC-clauses. It is easy to
see that ordinary logic programming can be reduced to set-constraint
programming. That is, the meaning of atom a is the same as that of
set constraint 〈{a}, {{a}}〉 and the meaning of not a is the same as
〈{a}, {∅}〉. Our definition of stable model is an extension of the version
of the Gelfond-Lifschitz transform introduced by Niemelä, Simons and
Soininen [34] for cardinality constraint programs and we call it the NSS
transform. Again the process of constructing a stable model is based on
some form of “Horn” programs, reduction, and least fixed points of the
one-step provability operators for Horn programs. First, we say that a
family F of subsets of X is upper closed if Y ⊆ Z ⊆ X and Y ∈ F
implies Z ∈ F . We will call a SC-clause Horn if

1. the head of that clause is a single atom (recall that atoms are
represented as set constraints) and

2. whenever 〈Xi,Fi〉 appears in the body, then Fi is an upper closed
family of subsets of Xi.

A set-constraint Horn program P is a SC-program which consist en-
tirely of Horn clauses. There is a natural one-step provability operator
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associated to a SC-Horn program P , TP : 2X → 2X where X is the
underlying set of atoms of the program, defined by TP (S) equals the
set of all p such that there is clause

C = p← 〈X1,F1〉, . . . , 〈Xm,Fm〉 ∈ P

such that S satisfies the body of C. Our definitions ensure that TP
is a monotone operator and hence each SC-Horn program P has a
least model MP . MP can be computed in a manner analogous to the
computation of the least model of a definite Horn program as TP ↑ω
(∅). The NSS transform NSSM (P ) of the set-constraint program P
for a given set of atoms M is defined as follows. First eliminate all
clauses with bodies not satisfied by M . Next, for each remaining clause
〈X,F〉 ← 〈X1,F1〉, . . . , 〈Xm,Fm〉 and each p ∈M ∩X, put the clause

p← 〈X1,F1〉, . . . , 〈Xm,Fm〉

into NSSM (P ). Here Fi is the least family G containing Fi and closed
upwards. Clearly the resulting program NSSM (P ) is a SC-Horn pro-
gram and hence has a least model MNSSM (P ). M is a stable model of
P if M is a model of P and M = MNSSM (P ). It can be shown [34] that
this construction corresponds to the same notion of Gelfond-Lifschitz
stable models when we restrict ourselves to ordinary logic programs.

In this paper we would like to use the mechanism of set-constraints to
reason about infinite sets. The motivation for reasoning about infinite
sets comes from several areas. For example, one may want to reason
about regions in 2-dimensional space, i.e. polygons, circles, or in 3-
dimensional space, i.e. cubes, spheres, etc. In such a situations, one
can specify the region by certain sets of equations. However one might
be interested in the spread of certain diseases or the spread of pests
such as Africanized bees. In that case, one might want to talk about
regions whose boundaries are specified in a more dynamic manner, i.e.
regions whose boundaries are specified as the solutions to ordinary or
partial differential equations or which evolve according some dynamical
system. In the most general case, one can specify some sort of algorithm
which determines which points are in the region or which enumerates
the points in the region. Another example is where one would like a logic
program to reason about the stable models of other logic programs. In
this case, even if the other logic programs were Horn predicate logic
programs, the resulting least models might be infinite r.e. sets. In each
of the cases above, one has no intention of writing out the entire infinite
set. Instead, one use equations, differential equations, programs and/or
algorithms to encode the infinite sets by finite means. That is, one uses
various types of indices or codes to specify the finite sets. As we shall see
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later, if one requires that such codes or indices have a certain number of
effective properties one will still be able to process programs in effective
manner, see Theorem 2.5. Examples of such effective properties include
algorithms which, given the indices e and f of two infinite sets A and
B, would allow one to find the index of A∪B or to decide if A ⊆ B or
A ∩B = ∅.

Our basic idea is as follows. Assume that we have a particular coding
scheme for some family of subsets of a set X. Let F be a finite family
of such codes. We will write Ce for the set with the code e. Then we
can write two types of constraints. One constraint 〈X,F〉⊆ has the
meaning that the putative set of integers M satisfies 〈X,F〉⊆ if and
only if M ∩X ⊇ Ce for some e ∈ F . Similarly, we shall also consider
constraints of the form 〈X,F〉= where we say that M satisfies 〈X,F〉=
if and only if M ∩ X = Ce for some e ∈ F . Observe that constraints
of the form 〈X,F〉⊆ behave like atoms p in that they are preserved
when the set grows while constraints of the form 〈X,F〉= behave like
constraints not p in that they are not always preserved as the set grows.

Now, it is clear that once we introduce these type of constraint
schemes, we can consider various coding schemes for the set of indices.
For example, in this paper, we will consider three such schemes: explicit
indices of finite sets, recursive indices of recursive sets and r.e. indices
of r.e. sets. We shall then define an extended set-based clause C to be
a clause of the form

〈X,A〉∗ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1, C1〉=, . . . , 〈Zl, Cl〉=,

where ∗ is either = or ⊆ and define an extended set based program
(ESB) P to be a set of extended set based clauses.

We should note that our work here is closely related to a number of
other approaches to extend logic programming. Constraint Logic Pro-
gramming [25] allows one to use other modules to reason about various
specialized types of sets and relations. The work of Dovier, Omodeo,
Pontelli and Rossi [9, 16, 17, 18] describe various mechanisms which
extend logic programming and allow one to reason about finite sets.
The work of Eiter, Gottlob and Veith [19] who studied logic programs
whose clauses contain modules in their bodies is another example of
such an extension. In all of these extensions, the goal is to reason
about finite sets so that the various types of additional construction
involve only finite sets and relations. Since the use of function symbols
is convenient in actual programming, various attempts have been made
to re-introduce function symbols, at least partly, into ASP. Let us point
out two such attempts. First, Bonatti [6, 8] introduced a class of normal
programs called finitary programs. These programs do admit function
symbols but put two restrictions on the properties of the dependency
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graph of the program. First, Bonatti requires that every ground atom
transitively depends on only finitely many ground atoms. Second, the
number of negative literals that are on cycles of odd length is finite.
With these restrictions, given a finitary program P and a ground atom
p, one can find a finite set of atoms U(P, p) and a finite ‘relevant’
subprogramR(P, p) so that atoms occurring inR(P, p) are all in U(P, p)
and the basic reasoning questions about P and p can be answered by
asking the same questions about R(P, p) and p. Thus, membership of
p in all stable models of P is equivalent to the membership of p in all
stable models of R(P, p). A similar result holds for the ‘membership in
some’ question. Since R(P, p) is finite, these questions can be answered,
in fact they are in class NP, once the program R(P, p) is an input. The
key property exhibited by finitary programs is that the set U(P, p) is
a splitting set (see [15, 27]). The class of finitary programs has several
other desirable properties. For example, it satisfies a natural type of
compactness condition in that if all finite ground subprograms of a
finitary program P have a stable model, then P has a stable model.
The compactness property does not hold, in general, for normal logic
programs [11]. It is also not the case that one can effectively test
whether a program is finitary. That is, Bonatti noticed that the set
of finitary programs is not recursive.

A radically different proposal has been, actually implemented in the
ASP solver smodels [34, 36]. In this implementation the functions are
stored. This implies that the Herbrand base is, in effect, finite, for
each time we deal with a term f(~a), it is evaluated against the stored
definition of f . Thus the Herbrand base is finite and all stable models
are finite, too.

The outline of the paper is as follows. In Section 2, we shall formally
define extended set based constraints, clauses and programs. We shall
also define the analogue of Horn programs and stable models for ex-
tended set based programs. There are some major differences between
extended set based Horn programs and standard logic programs. For
example, the least model of a Horn program is always computed by
iterating the one step provability operator for at most ω steps while
this is not the case for ESB Horn programs. Also the least model of
a recursive Horn program is always recursively enumerable (r.e.) while
this is not necessarily the case for ESB Horn programs. In Section 3,
we shall study the complexity of the least model M of a recursive ESB
Horn program P with recursive constraints, i.e. all the constraints P
involve either explicit or recursive indices. In general, M can be very
complex. For example, for any arithmetic set A, we shall construct a
recursive ESB Horn program PA with recursive constraints such that
the degree of the least model of PA is A. We also show that the least
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model of a recursive ESB Horn program P with recursive constraints
is always Π1

1 and that there is a recursive ESB Horn program P with
recursive constraints whose least model is Π1

1-complete. Moreover we
show the question of whether ω is the least model of a recursive ESB
Horn program P with recursive constraints is Π1

1-complete, as is the
question of whether a recursive ESB Horn program P with recursive
constraints has a recursive least model.

There is a natural class of ESB programs which we call weakly finite,
whose stable models are much better behaved. Roughly, an ESB pro-
gram P is weakly finite if there are only finitely many heads of clauses
of P that involve recursive or r.e. indices. In Section 2, we show that
a recursive weakly finite ESB Horn program always has an r.e. least
model. Moreover, we shall describe a class of recursive weakly finite ESB
programs called effectively decidable where one can effectively compute
an r.e. index of the least model from a recursive index of the program. In
Section 4, we study the complexity of the question of when a recursive
weakly finite ESB program has a recursive stable model. For example,
we show that the predicate that a recursive weakly finite ESB with
recursive constraints has a recursive stable model is Σ0

3-complete. In
Section 5, we state our conclusions and directions for further research.

2. ESB Constraints, Clauses and Programs

In this section, we shall give the formal definitions of ESB constraints,
clauses, programs and define the analogue of Horn programs and stable
models for ESB programs. To describe our constraints, we first need
to describe three types of indices (i.e. codes) for subsets of the natural
numbers.
(1) Explicit indices of finite sets. For each finite set F ⊆ ω, we shall
define the explicit index of F as follows. The explicit index of the empty
set is 0 and the explicit index of {x1 < . . . < xn} is 2x1 + · · ·+ 2xn . We
shall let Fn denote the finite set whose index is n.
(2) Recursive indices of recursive sets. Let φ0, φ1, . . . , be an ef-
fective list of all partial recursive functions. By a recursive index of a
recursive set R, we mean an e such that φe is the characteristic function
of R. If φe is a total {0, 1}-valued function, then Re will denote the set
{x ∈ ω : φe(x) = 1}.
(3) R.e. indices of r.e. sets. By a r.e. index of a r.e. set W , we mean
an e such that W equals the domain of φe, that is, We = {x ∈ ω :
φe(x) converges}.

No matter what type of indices we use, we shall always consider two
types of constraints based on X and a finite set of indices F , namely,
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〈X,F〉= and 〈X,F〉⊆. For any subset M ⊆ ω, we shall say that M is
a model of 〈X,F〉=, written M |= 〈X,F〉=, if there exists an e ∈ F
such that M ∩X equals that set with index e. Similarly, we shall say
that M is a model of 〈X,F〉⊆, written M |= 〈X,F〉⊆, if there exists
an e ∈ F such that M ∩ X contains the set with index e. One could
consider more general constraints where we allow F to be an infinite
set as well. We restrict ourselves to consider only constraints where F
is a finite set of indices since these are the only types of constraints
which have the possibility of being effectively processed.

Let us fix a recursive pairing function, say [x, y] = 1
2((x + y)2 +

3x + y) from ω × ω to ω. For any sequence a1, . . . , an, with n ≥ 2,
we define the code c(a1, . . . , an) by the usual inductive procedure of
defining c(a1, a2) = [a1, a2] and c(a1, . . . , an) = [a1, c(a2, . . . , an)] if n ≥
3. The explicit index ind(a1, . . . , an) of the sequence ~s = (a1, . . . , an)
is defined by induction. If n = 2, then ind(a1, a2) = [2, [a1, a2]] and if
n ≥ 3, then ind(a1, . . . , an) = [n, c(a1, . . . , an)].

In this paper, we shall consider three different types of constraints.

(A) Finite constraints. Here we assume that we are given an explicit
index x of a finite set X and a finite family F of explicit indices of
finite subsets of X. Throughout this paper we shall identify the finite
constraints 〈X,F〉= and 〈X,F〉⊆ with their codes, ind(0, 0, x, n) and
ind(0, 1, x, n) respectively where F = Fn, that is the nth finite set (see
above). Here the first coordinate 0 tells us that the constraint is finite,
the second coordinate is 0 or 1 depending on whether the constraint
is 〈X,F〉= or 〈X,F〉⊆, and the third and fourth coordinates are the
codes of X and F respectively.

(B) Recursive constraints. Here we assume that we are given a
recursive index x of a recursive set X and a finite family R of recursive
indices of recursive subsets of X. Again we shall identify the recursive
constraints 〈X,R〉= and 〈X,R〉⊆ with their codes, ind(1, 0, x, n) and
ind(1, 1, x, n) respectively, where R = Fn. Here the first coordinate 1
tells us that the constraint is recursive, the second coordinate is 0 or
1 depending on whether the constraint is 〈X,R〉= or 〈X,R〉⊆, and the
third and fourth coordinates are the codes of X and R respectively.

(C) R.e. constraints. Here we are given a r.e. index x of a r.e. set
X and a finite family W of r.e. indices of r.e. subsets of X. Again we
identify the finite constraints 〈X,W〉= and 〈X,W〉⊆ with their codes,
ind(2, 0, x, n) and ind(2, 1, x, n) respectively, where W = Fn. The first
coordinate 2 tells us that the constraint is r.e., the second coordinate
is 0 or 1 depending on whether the constraint is 〈X,W〉= or 〈X,W〉⊆,
and the third and fourth coordinates are the codes of X and W.
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An extended set-based clause is defined to be a clause of the form

〈X,A〉∗ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1, C1〉=, . . . , 〈Zl, Cl〉=, (1)

where ∗ is either = or ⊆. We shall refer to 〈X,A〉∗ as the head of C,
written head(C), and 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1, C1〉=, . . . , 〈Zl, Cl〉=
as the body of C, written body(C). Here either k or l may be 0. M is
said to be a model of C if either M does not model every constraint in
body(C) or M |= head(C).

Again we shall talk about three different types of clauses.
(a) Finite clauses. These are clauses in which all of the constraints
are finite constraints.
(b) Recursive clauses. These are clauses where all the constraints
appearing in the clause are finite or recursive constraints and at least
one constraint is a recursive constraint.
(c) R.e. clauses: These are clauses where all the constraints appearing
in the clause are finite, recursive or r.e. constraints and there is at least
one r.e. constraint.

An extended set-based (ESB) program P is a set of clauses of the
form of (1). We say that an ESB program P is recursive, if the set of
codes of the clauses of P is a recursive set. Here the code of a clause
C of the form of (1) is ind(c, e1, . . . , ek, f1, . . . , fl) where c is the code
of 〈X,A〉∗, ei are the codes of 〈Yi,Bi〉⊆ for i = 1, . . . , k and fj are the
codes of 〈Zj , Cj〉= for j = 1, . . . , l.

Given a program P , we let Fin(P ) (Rec(P ), RE(P )) denote the
set of all finite (recursive, r.e.) clauses in P . It is easy to see from our
coding of clauses that if P is a recursive ESB program, then Fin(P ),
Rec(P ) and RE(P ) are also recursive ESB programs.

Definition 2.1. Let P be a recursive ESB program.

1. We say that P is recursive with finite constraints if P = Fin(P ).
(Note if P = Fin(P ), then all the constraints only involve finite
sets.)

2. We say that P is recursive with recursive constraints if P = Fin(P )∪
Rec(P ) and Rec(P ) 6= ∅.

3. We say that P is recursive with r.e. constraints if RE(P ) 6= ∅.

4. We say that P is weakly finite with recursive constraints if P is
recursive with recursive constraints and the set of heads of clauses
in Rec(P ) is finite.
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12 Cenzer et al.

5. We say that P is weakly finite with r.e. constraints if P is recursive
with r.e. constraints and the set of heads of clauses in Rec(P ) ∪
RE(P ) is finite.

Next we define the analogue of Horn programs for ESB programs.
A (ESB) Horn program P is a set of clauses of the form

〈X,A〉⊆ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆. (2)

where A is a singleton, that is A consists of a single index. We define
the one-step provability operator, TP : 2ω → 2ω, so that for any S ⊆ ω,
TP (S) is the union of the set of all De such that there exists a clause
C ∈ P such that S |= body(C), head(C) = 〈X,A〉⊆ and A = {e} where
De = Fe if head(C) is a finite constraint, De = Re if head(C) is a
recursive constraint, and De is We if head(C) is an r.e. constraint. It is
easy to see that TP is a monotone operator and hence there is a least
fixed point of TP which we denote by NP . Moreover it is easy to check
that NP is a model of P .

If P is an ESB Horn program in which the body of every clause
consists of finite constraints, then one can easily prove that the least
fixed point of TP is reached in ω-steps, that is, NP = TP ↑ω (∅).
However, if we allow clauses whose bodies contain either recursive or
r.e. constraints, then we can no longer guarantee that we reach the least
fixed point of TP in ω steps. Here is an example.

Example 2.2. Let en be the explicit index of the set {n} for all n ≥ 0,
let w be a recursive index of ω and f be a recursive index of the set of
even numbers E. Consider the following program.

〈{0}, {e0}〉⊆ ←
〈{2x+ 2}, {e2x+2}〉⊆ ← 〈{2x}, {e2x}〉⊆ (for every number x)

〈ω, {w}〉⊆ ← 〈E, {f}〉⊆

Clearly ω is the least model of P but it takes ω + 1 steps to reach
the fixed point. That is, it is easy to check that TP ↑ω= E and that
TP ↑ω+1= ω.

Lemma 2.3. If P is a recursive ESB Horn Program with finite con-
straints, then the least fixed point of the one step provability operator
TP is r.e..

Proof. Suppose that W is an r.e. set and W is the domain of the total
recursive function φ. For all s ≥ 0, we let Ws equal the set of all n ≤ s
such that φ(n) converges in s or fewer steps. It is then easy to see that
since P is recursive and all the constraints involved in clauses of P are
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finite, that we can uniformly compute the r.e. index of the set As of all
x such that there exists a clause

C = 〈X,A〉⊆ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆,

such that Ws satisfies the body of C and x ∈ Fe where A = {e}. Thus
TP (Ws) = As and A0, A1, . . . is an effective sequence of increasing r.e.
sets. It follows that we can effectively compute A =

⋃
s≥0As = TP (W )

from any r.e. index of W . It then easily follows by induction that we
can uniformly compute an r.e. index Un = TnP (∅) for each n ≥ 0. Thus
the least model of P , U =

⋃
n≥0 Un = TP ↑ω (∅), is r.e..

As evidenced by the work in [9, 16, 17, 18], one can extend the syntax
of logic programming to reason about finite sets directly. ESB programs
with finite constraints is clearly another way to extend the syntax of
logic programming to reason about finite sets directly. However, there is
a difference between our approach to reasoning about finite sets and the
approach in [9, 16, 17, 18], namely, we reason about finite sets by dealing
with their codes (indices) and not their explicit representations. This
does not allow us to use the set constructors to develop data structures
as is possible in the language log [17], but because we reason about
indices of sets, it is easy to extend our formalism to allow other types
of indices such as recursive and r.e. indices. Theorem 2.5 below provides
at least one set of conditions on the set of indices of sets that we employ
which ensures that we can effectively compute with weakly finite ESB
Horn programs as opposed to just computing with ESB Horn programs
with finite constraints. However, before stating such conditions, we first
prove a basic result on the complexity of the least models of recursive
weakly finite ESB Horn programs with recursive or r.e. constraints.

Theorem 2.4. (a) If P is a weakly finite ESB Horn program with
recursive constraints such that Fin(P ) is recursive, then the least
fixed point of the one step provability operator TP is r.e.

(b) If P is a weakly finite ESB Horn program with r.e. constraints such
that Fin(P ) is recursive, then the least fixed point of the one step
provability operator TP is r.e.

Proof. To prove part (a), we will present an informal program which
constructs the least fixed point in a finite number of steps.
Step (1). First take Fin(P ) and construct the least fixed point which
we will call U0. Since Fin(P ) is recursive, U0 is r.e., by Lemma 2.3. Next
consider the set T1 = U0 ∪ S0 where S0 is the union of the set of all Ce
such that there exists a clause C ∈ Rec(P ) such that U0 |= body(C)
and head(C) = 〈X,F〉⊆ where F = {e} and Ce = Fe if head(C) is a
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14 Cenzer et al.

finite constraint and Ce = Re if head(C) is a recursive constraint. Even
though we cannot find S0 recursively, our hypothesis ensures that S0

is a finite union of finite or recursive sets and hence is a recursive set.
Thus T1 is an r.e. set. Now if S0 = ∅, then we halt and return T1; T1 is
the least fixed point of P . Otherwise go onto step (2).

We now present the description of Step n+ 1, for n ≥ 1. Assume that
Tn is the result of step n.
Step (n+ 1). Consider the set Un = TFin(P ) ↑ω (Tn). It is easy to see
that that since Tn is r.e., Un is r.e. Next consider the set Tn+1 = Un∪Sn
where Sn is the union of the set of all ce such that there exists a clause
C ∈ Rec(P ) such that Un |= body(C) and head(C) = 〈X,F〉⊆ where
F = {e} and Ce = Fe if head(C) is a finite constraint and Ce = Re if
head(C) is a recursive constraint. Again, even though we cannot find
Sn recursively, our hypothesis ensures that Sn is a finite union of finite
or recursive sets and hence is a recursive set. Thus Tn+1 is an r.e. set.
Now if Sn = ∅, then we halt and return Tn+1; Tn+1 is the least fixed
point of P . Otherwise go onto step (n+ 2).

Since the set of all head(C) such C ∈ Rec(P ) is finite, it easily follows
that this process must stop after a finite number of steps and hence the
least model of P is r.e..

The proof of part (b) is similar to the proof of part (a).

We note that there is an alternative way to obtain the least model of
weakly finite ESB program with recursive or r.e. constraints. Namely,
if P is a recursive weakly finite program with either recursive or r.e.
constraints, let H(P ) denote the set of all head(C) where C ∈ Rec(P )∪
RE(P ). By definition, H(P ) is a finite set consisting of constraints of
the form CX,e = 〈X,A〉⊆ where A = {e}. In such a situation, we let
SCX,e = Fe if e is an explicit index of a finite set, SCX,e = Re if e is a
recursive index and SCX,e = We if e is an r.e. index. If S ⊆ H(P ), then
let US =

⋃
CX,e∈S SCX,e . Then it is clear from our proof of Theorem 2.4

that the least model M of P is of the form

M = TFin(P ) ↑ω (US)

for some S ⊆ H(P ). This point of view allows us to specify some simple
conditions which ensure that we can effectively compute the least fixed
point of the operator TP of a weakly finite program P with recursive
constraints or r.e. constraints. That is, suppose that P is a weakly
finite recursive program P with recursive or r.e constraints. Then for
each subset S of H(P ), we let MS = TFin(P ) ↑ω (US). It is easy to see
that MS is r.e. for all S ⊆ H(P ). Then we say that P is effectively
decidable if there is an algorithm which given any constraint 〈X,F〉⊆
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Programming with Infinite Sets 15

that appears in the body of some clause in Rec(P ) or RE(P ) and any
subset S ⊆ H(P ), we can effectively decide if MS |= 〈X,F〉⊆. Note that
if we consider the informal algorithm to compute the least fixed point
in parts (a) and (b) of Theorem 2.4, then it is easy to see that if P is
effectively decidable, then we have an effective procedure to compute
the index of the sets S0, S1, . . . that appear in the computation which,
in turn, means that we have an effective procedure to compute the
indices of T0, T1, . . .. Effective decidability does not allows us to decide
whether a given Si = ∅, but this does not matter since even if Si = ∅,
we can still effectively compute an r.e. index for Ti. Now, if |H(P )| = n,
then it must be the case that Tn is the least model of P . Thus we have
the following.

Theorem 2.5. (a) If P is a recursive ESB Horn Program with finite
constraints, then we can effectively compute an r.e. index of the
least fixed point of the one step provability operator TP from a
recursive index of P .

(b) If P is a weakly finite recursive ESB Horn program with recur-
sive constraints and P is effectively decidable, then we can effec-
tively compute an r.e. index of the least fixed point of the one step
provability operator TP from recursive index of P .

(c) If P is a weakly finite recursive ESB Horn program with r.e. con-
straints and P is effectively decidable, then we can effectively com-
pute an r.e. index of the least fixed point of the one step provability
operator TP from a recursive index of P .

The hypothesis that the P is a weakly finite Horn program with recur-
sive or r.e. constraints is absolutely necessary for the proof of Theorem
2.4 as our next example will show.

Example 2.6. Suppose that we are given a sequence of pairwise dis-
joint infinite recursive sets Y,X0, A0, X1, A1, . . .. Let

Y = {y0 < y1 < . . .},
Xe = {x0,e < x1,e < . . .} for each e ∈ ω and
Ae = {a0,e < a1,e < . . .} for each e ∈ ω.

For all k ≥ 0, we shall let Xe,≥k = {xk,e < xk+1,e < · · ·}.
Given an atom a, the finite set constraint 〈{a}, {n}〉⊆ where Fn =

{a} is satisfied by a model M iff a ∈ M so that the set constraint
〈{a}, {n}〉⊆ acts like a atom in a normal logic program. Thus we shall
abbreviate that finite set constraint 〈{a}, {n}〉⊆ by the atom a.
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16 Cenzer et al.

Let W s
e denote the finite set of elements z such that φe(z) converges

in s or fewer steps. Now consider the following program.

(1) xn,e ← a[n,s],e for all n such that n ∈W s
e −W s−1

e .

(2) a[n,s],e ← for all n such that n ∈W s
e −W s−1

e .

(Note the set of clauses in (1) and (2) are recursive since the condition
that n ∈ W s

e −W s−1
e is a recursive condition. Moreover the effect of

these clauses is to ensure that {xn,e : n ∈We} is contained in the least
model of P for every e. We will ensure that these are the only clauses
in P with an xn,e contained in the head of the clause so that the least
model of P restricted to Xe will be precisely {xn,e : n ∈We}.)
(3) ye ← 〈Xe, {nk}〉⊆ for all k ≥ 0 where nk is a recursive index of
Xe,≥k. (Note that the net effect of these clauses is to ensure that ye
is in the least model of P if and only if Xe,≥k ⊆ M ∩ Xe for some k,
which happens if and only if We is cofinite.)

It is now easy to see that P is a recursive ESB Horn program such that
the least model of P equals {ye : We is cofinite} ∪ {xn,e : n ∈ We}.
However it is known [37] that the set {e : We is cofinite} is a complete
Σ0

3 set so that M is a complete Σ0
3 set and hence is certainly not r.e. 2

We are in a position to define the analogue of a stable model for
ESB programs.

Definition 2.7. Suppose that M is a model of an ESB program P .

1. We define the analogue of the NSS-transform by defining the clauses
in NSSM (P ) corresponding to each clause C ∈ P of the form (1),
as follows. NSSM (C) is nil if M does not satisfy the body of C.
If M does satisfy the body of C, then since M is a model of P , it
must also be a model of the head of C, 〈X,A〉∗ where ∗ is either =
or ⊆. If ∗ =⊆, there must be an explicit (recursive, r.e.) index e in
A such that M ∩X contains the set with index e and for each such
e, NSSM (C, e) is the clause

〈X, {e}〉⊆ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1, C1〉⊆, . . . , 〈Zl, Cl〉⊆. (3)

Similarly, if ∗ is =, there must be an index e such that M ∩X is
the set coded by e and again for each such e, NSSM (C, e) is the
clause

〈X, {e}〉⊆ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1, C1〉⊆, . . . , 〈Zl, Cl〉⊆. (4)

Then NSSM (P ) = {NSSM (C, e) : C ∈ P} will be an ESB Horn
program.
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2. We then say that M is a stable model of P if M is a model of P
and M equals the least model of NSSM (P ).

We will now give an example that illustrates the use of our ESB
programs. In this example, we show how an ESB program can be used
to reason about certain subspaces of an n-dimensional vector space Vn,
over rational numbers.

Example 2.8. Suppose that V∞ is an infinite dimensional vector space
over the rational numbers Q. We can think of V∞ as the set of all
finite sequences 〈a1, . . . , an〉 where ai ∈ Q and an 6= 0 and, under
a suitable coding, we can consider V∞ to be a recursive subset of
the natural numbers N . Now suppose that we are given a finite or
recursive independent set I ⊆ V∞ with at least 6 elements and we
wish to write a ESB Horn program whose stable models are precisely
the set of all three dimensional subspaces of V∞ that are generated by
three elements subsets of I. Given any finite set of elements a1, . . . , ak
of V∞, let {a1, . . . , ak}∗ denote the subspace generated by a1, . . . , an.
Note that we can find a recursive index Ra1,...,ak for {a1, . . . , ak}∗ from
a1, . . . , an. Moreover for each finite set S ⊆ V∞, we let eS denote the
explicit index of the set S. If S is a singleton, say S = {v}, we shall
simply write v for the set constraint 〈S, {eS}〉⊆. We shall let α denote
the explicit index of the empty set and β denote the recursive index
of V∞. Then we consider the ESB program P which consists of the
following sets of clauses.

Ab1,b2,b3 : 〈V∞, {Rb1,b2,b3}〉⊆ ← b1, b2, b3
for all three element subsets {b1, b2, b3} of I.

Bb1,b2,b3,b4 : 〈V∞, {β}〉⊆ ← b1, b2, b3, b4
for all four element subsets {b1, b2, b3, b4} of I.

Cb1,b2,b3 : 〈{b1, b2, b3}, {e{b1,b2,b3}}〉⊆ ← 〈I/{b1, b2, b3}, {α}〉=
for all three element subsets {b1, b2, b3} of I.

Note that if I is finite, then P will be a finite ESB program.
Now consider a set M ⊆ V∞ which is a model of P . If M ∩ I =

{b1, b2, b3} for some three element subset of I, then M satisfies the body
of Ab1,b2,b3 . It follows that M must also satisfy the head of Ab1,b2,b3 so
that M must contain {b1, b2, b3}∗. Then in this case NSSM (P ) consists
of the following two clauses,

〈V∞, {Rb1,b2,b3}〉⊆ ← b1, b2, b3

〈{b1, b2, b3}, {e{b1,b2,b3}}〉⊆ ← 〈I/{b1, b2, b3}, {α}〉⊆
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18 Cenzer et al.

and it is easy to see that the least model of these two clauses is
{b1, b2, b3}∗ so that M is a stable model of P if and only if M =
{b1, b2, b3}∗.

If |M ∩I| ≥ 4, then M satisfies the body of one of clauses Bb1,b2,b3,b4
for some 4 element subset {b1, b2, b3, b4} of I. But then since M is a
model of P , M must satisfy the body of the Bb1,b2,b3,b4 which implies
that M = V∞. Thus in this case, M does not satisfy any of the clauses
of the form Cb1,b2,b3 and hence NSSM (P ) consists of all clauses of the
form Ab1,b2,b3 and Bb1,...,b4 . It is then easy to see that the least model
of NSS(P ) is empty so that M is not stable.

If |M∩I| ≤ 2, then M satisfies the body of one of clauses Cb1,b2,b3 for
some 3 element subset {b1, b2, b3} of I. But then sinceM is a model of P ,
M must satisfy the body of the Cb1,b2,b3 which implies that {b1, b2, b3} ⊆
M which is a contradiction.

Thus the only stable models of P are of the form {b1, b2, b3}∗ for
some three element subset of I. 2

3. The complexity of the least model of a recursive ESB
Horn program

There are many complexity issues that need to be explored with respect
of ESB programs. In this section, we shall study the complexity of the
least model of a recursive ESB Horn program. The arithmetic hierarchy
is defined as usual so that the recursive sets are both Σ0

0 and Π0
0, a Σ0

n+1

set is obtained by existential number quantification over a Π0
n set, and

a Π0
n+1 set is the complement of a Σ0

n+1 set. In particular, a set of
natural numbers is Σ0

1 if and only if it is an r.e. set. We say that a
subset A of ω is ∆0

n is A is both Σ0
n and Π0

n.
Our next two results will show that if we remove the assumption of

weakly finite in the premises of Theorem 2.4, then the least model of an
ESB Horn program is no longer restricted to appear in a certain level
of the arithmetic hierarchy.

Theorem 3.1. For any arithmetic set A, there is a recursive ESB Horn
program PA with recursive constraints such that the Turing degree of
the least model M of PA is equal to the degree of A.

Proof. Let A be an arithmetic set. Then there is a recursive predicate
R(i, x1, . . . , xn) such that

i ∈ A ⇐⇒ (Q1x1)(Q2x2) . . . (Qnxn)(R(i, x1, . . . , xn)) (5)
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where each Qi is either ∀ or ∃. For any 1 ≤ k < n, let Xi,x1,...,xk =
{[k + 2, i, x1, . . . , xk, x] : x ∈ ω}. Clearly, Xi,x1,...,xk is a recursive set.
We then let ei,x1,...,xk be a recursive index for Xi,x1,...,xk . In addition for
any n ∈ ω, we let fn be an explicit index for the set {n} and we shall
abbreviate the set constraint 〈{n}, {fn}〉⊆ by the atom n.

Now consider the ESB Horn program P = PA, consisting of the
following n+2 groups of clauses, created in reverse order. Let M = MP

denote the least model of PA.

Cn+1: For all i, x1, . . . , xn such that R(i, x1, . . . , xn), put in the clause

[n+ 1, i, x1, . . . , xn]← .

(This will be the only group of clauses whose head will involve elements
of the form [n + 1, z], so that M will contain [n + 1, z] if and only if
z = [i, x1, . . . , xn] and R(i, x1, . . . , xn) holds.)

Now assume by induction that we have defined the set of clauses
Cn+1,Cn, . . . ,Ck+1 so that [k + 1, i, x1, . . . , xk] ∈M if and only if

(Qk+1xk+1) . . . (Qnxn)(R(i, x1, . . . , xk, xk+1, . . . , xn))

holds. (Note that for k = n, the sequence of quantifiers will be empty.)
Then we define the clauses in Ck as follows.

Ck: There are two cases.
Case 1k. Qk = ∀. In this case, we add for all i, x1, . . . , xk the clause

[k, i, x1, . . . , xk−1]← 〈Xi,x1,...,xk−1
, {ei,x1,...,xk−1

}〉⊆

(Again we shall ensure that these are the only clauses that involve
elements of the form [k, z] in the head, so that M will satisfy

〈Xi,x1,...,xk−1
, {ei,x1,...,xk−1

}〉⊆

only if for all x ∈ ω, [k + 1, i, x1, . . . , xk−1, x] ∈ M . By our induction
hypothesis, this happens if and only if

(∀xk)(Qk+1xk+1) . . . (Qnxn)(R(i, x1, . . . , xn−1, xn)).

Thus in this case, M will contain [k, z] if and only if z = [i, x1, . . . , xn−1]
and (∀xk)(Qk+1xk+1) . . . (Qnxn)(R(i, x1, . . . , xn−1, xn)) holds.)

Case 2k. Qk = ∃. In this case, we add, for all x ∈ ω, the clause

[k, i, x1, . . . , xk−1]← [k + 1, i, x1, . . . , xk1 , x]
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(Again we shall ensure that these are the only clauses that involve ele-
ments of the form [k, z] in the head. Now by our induction hypothesis,
M contains [k + 1, i, x1, . . . , xk1 , x] if and only if

(Qk+1xk+1) . . . (Qnxn)(R(i, x1, . . . , xk−1, x, xk+1, . . . , xn)).

Thus in this case, M will contain [k, z] if and only if z = [i, x1, . . . , xk−1]
and

(∃xk)(Qk+1xk+1) . . . (Qnxn)(R(i, x1, . . . , xk−1, xk, . . . , xn)).

Clearly PA is an ESB Horn program with recursive constraints. It
follows by induction that the least model M of PA will equal

{[i, 1] : (Q1x1) . . . (Qnxn)(R(i, x1, . . . , xn))}∪⋃n
k=1{[k + 1, x1, . . . , xk] : (Qk+1xk+1) . . . (Qnxn)(R(i, x1, . . . , xn))}.

Clearly {[i, 1] : (Q1x1) . . . (Qnxn)(R(i, x1, . . . , xn))} is Turing equiva-
lent to A. Moreover, one can show that for any degree δ that contains
an arithmetic set, there is a set A of degree δ and a recursive predicate
R such that
(i) i ∈ A ⇐⇒ (Q1x1)(Q2x2) . . . (Qnxn)(R(i, x1, . . . , xn)) and
(ii) {(x1, . . . , xk−1) : (Qkxk) . . . (Qnxn)(R(i, x1, . . . , xn))} is Turing re-
ducible to A for all 2 ≤ k ≤ n. Thus for such A, the least model MP

of PA will be Turing equivalent to A.
The only remaining thing to check is that PA is a recursive program.

We note that for all i, x1, . . . , xk, we can use the S-m-n Theorem to
uniformly compute recursive indices ei,x1,...,xk for the set Xi,x1,...,xk .
Thus it is easy to see that PA is a recursive program.

More generally, our next result will show that various questions
about the least model of an arbitrary recursive ESB Horn program
are Π1

1 hard. Note that Theorem 2.4 allowed us to prove that the least
model of a ESB Horn Program is r.e. if we impose significant limitations
on ESB Horn program P , i.e. that FIN(P ) is recursive and P is weakly
finite. Our next result we show that in general, the least model of an
ESB recursive Horn program can be very complex.

Theorem 3.2. Let R be a recursive set and let P be a recursive ESB
Horn program.

(a) The least model M of P is a Π1
1 set and there is a recursive ESB

Horn program P ∗ whose least model M∗ is Π1
1-complete.

(b) The predicate “R is the least fixed point of P” is Π1
1-complete.

(c) The predicate “P has a recursive stable model” is Π1
1-complete.
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Proof. Before we can give our proof, we must first establish some no-
tation for trees. Let ω<ω denote the set of finite strings of natural
numbers, let ∅ denote the empty string and let σ ≺ τ denote that σ
is an initial segment of τ . A subset T of ω<ω is a tree if ∅ ∈ T and
whenever τ ∈ T and σ ≺ τ , then σ ∈ T . An infinite sequence X ∈ ωω is
said to be a path through the tree T if (X(0), X(1), . . . , X(n− 1)) ∈ T
for all n. Let Te denote the e-th primitive recursive tree as defined in
[13]. It is well-known that {e : there is no infinite path through Te} is a
complete Π1

1 set, see [24]. For any finite string σ = (σ1, . . . , σn), we will
write [σ] for the code [n, σ1, . . . , σn]. We let 0 = [∅] be the code of the
empty sequence ∅. For any finite string σ = (σ1, . . . , σn), we let σ_i
denote the string (σ1, . . . , σn, i). In what follows, we shall abbreviate
the finite constraint 〈{n}, {fn}〉⊆ where fn is the explicit index of {n}
by simply writing the atom n.
Proof of part (a). Given a recursive ESB Horn program P , there is a Π0

1

monotone operator Γ such that the least model M of P is the closure of
Γ started on the empty set, which is automatically Π1

1 by the classical
result of Spector [38].

For the completeness, we will define a recursive ESB Horn program
P with recursive restraints and least fixed point M such that

[e, [∅]] ∈M ⇐⇒ Te has no infinite path.

Let Rf(e,σ) denote the recursive set {[e, [σ_i]] : i ∈ ω}. The program
P has the following two sets of clauses.

(1) [e, [σ]]← for all σ /∈ Te and

(2) [e, [σ]]← 〈ω, {f(e, σ)}〉⊆ for all e ∈ ω and σ ∈ ω<ω.

Now consider the one-step provability operator TP for P . We define
TαP for all ordinal α > 0 by defining T 1

P (S) = TP (S), Tα+1
P (S) =

TP (TαP (S)) when α+ 1 is a successor ordinal and T λP (S) =
⋃
α<λ T

α
P (S)

for λ a limit ordinal. Then the least model M of P equal T βP (∅) for
some ordinal β ≥ 1. One can easily prove by ordinal induction that
if σ is a node on an infinite path through Te, then [e, [σ]] is not in
TαP (∅) for all α ≤ β. Hence if Te has an infinite path, then [e, [∅]] /∈M .
On the other hand, suppose that [e, [∅]] /∈ M . It can not be the case
that for all i, [e, [(i)]] ∈ M since otherwise there exists some ordinal
αi such that [e, [(i)]] ∈ TαiP (∅) and hence if γ = sup{αi : i ∈ ω}, then
it would be the case that [e, [∅]] ∈ T γ+1

P . Thus it follows that there
exists an i0 such that [e, [(i0)] /∈M and hence (i0) ∈ Te. Then one can
use the same argument to show that there must be some i1 such that
[e, [(i0, i1)]] /∈ M and hence (i0, i1) ∈ Te. Continuing by recursion in
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this way, we can construct an infinite path (i0, i1, . . .) through Te.

Proofs of parts (b) and (c). We will define a recursive function h and
recursive ESB Horn programs Ph(e) with recursive constraints such that
ω is the least model Me of Ph(e) if Te has no infinite path and such
that Me is not recursive if Te has an infinite path. Let W be a non-
recursive r.e. set and let g be a one-to-one recursive function such that
W = {g(0), g(1), . . .} is the range of g. Let Rf2(e,σ) denote the recursive
set {5[σ_i] : i < ω}. There are five sets of clauses in Ph(e).

1. 2[i,g(i)] ← for all i ∈ ω.

2. 3x ← 2[y,x] for all x, y ∈ ω.

3. 5[σ] ← for all σ /∈ Te.

4. 5[σ] ← 〈ω, {f2(e, σ)}〉⊆ for all σ ∈ ω<ω.

5. m← 5[∅] for all m ∈ ω.

Note the set of clauses of type of (1) are in Ph(e) are recursive since g
is a total recursive function. The set of clauses of type (3) are recursive
since Te is a primitive recursive tree. Finally the set of clauses of type
(2), (4) and (5) are recursive. Thus Ph(e) is a recursive ESB Horn
program with recursive restraints for all e.

If Te has an infinite path X, then we can argue as in part (a), that
5[∅] /∈ M , and hence 3a ∈ Me ⇐⇒ a ∈ W . Thus in such a case,
Me is not recursive. If Te has no infinite path, then 5[∅] ∈ Me and
then the clauses of type (5) ensure that Me = ω. Thus ω is the least
model of Ph(e) if and only if Te has no infinite path which proves (b).
Furthermore, Me is recursive iff Te has no infinite path, which proves
(c).

4. The complexity of recursive weakly finite ESB programs

As we saw in Section 2, a recursive weakly finite ESB Horn program P
with recursive or r.e. constraints always has least model which is r.e..
Hence the least models of recursive weakly finite ESB Horn programs
are much better behaved than the least models of arbitrary recursive
ESB Horn programs. In this section, we shall study the complexity
of the following question: “When does a recursive weakly finite ESB
program have a recursive stable model”. For example, we shall show
that the predicate that a recursive weakly finite ESB Horn program
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with recursive constraints has a recursive least model is Σ0
3-complete.

That is, the set S of all e such that e is a recursive index of a recursive
weakly finite ESB Horn program P with recursive constraints where
the least model NP of P is recursive is a complete Σ0

3 set. Similarly,
we shall show the set T of all e such e is a recursive index of a weakly
finite ESB program P with recursive constraints which has a recursive
stable model is Σ0

3-complete.
The first step in analyzing the complexity of the question of when a

recursive weakly finite ESB program P has a recursive stable model is
to analyze the complexity of predicates of the form M |= D where D is
a constraint, a clause or a program. Our next three lemmas are proved
by carefully writing out the definitions of the predicates involved. We
will just give the proofs in a few cases. Note that a predicate involving
finite, recursive, or r.e. sets is really a predicate on the indices for those
sets. In particular, suppose a recursive set M has some recursive index
m where φm is a total recursive function. For a clause C, when we
say that the predicate “M |= C” is recursive, Σ0

1, etc., we mean that
there is a recursive (Σ0

1, etc.) relation R such that if m is a recursive
index of a recursive set M and c is the index of a clause C, then
M |= C ⇐⇒ R(m, c). Similarly for a recursive ESB program P , when
we say that “M |= P” is Σ0

k, we mean that there is a Σ0
k relation R such

that, if m is a recursive index of the recursive set M and i is a recursive
index of the program P , then M |= P ⇐⇒ R(m, i). In particular, if
either m or i is not the index of a total recursive function, then R(m, i)
may be either true or false. It is important to note that we assume that
for all clauses 〈X,R〉∗, that for each e ∈ R, Re ⊂ X (and similarly
for finite or r.e. constraints); otherwise, P is not a program and the
question of whether M |= P does not apply.

We will say that e is a recursive index of a recursive ESB program
if Re is an ESB program. Note that predicate “e is a recursive in-
dex of an ESB program” is Π0

2 since we need only check that φe is
a total {0, 1}-valued function which is Π0

2 and that for all x ∈ Re,
x is the code of clause of the proper form. It follows that the {e :
e is a recursive index of an ESB program} is a Π0

2 set. We will say that
e is a recursive index of a weakly finite program if e = [s, t] where s is
an explicit index of a finite set of constraints and t is a recursive index
of a recursive ESB program such that for all clauses C ∈ Pt such that
C involves either recursive or r.e. constraints, head(C) ∈ Fs. Again
it is easy to see that the set of indices of recursive weakly finite ESB
programs is Π0

2. By the same type of reasoning, it is easy to see that
for each of the following types of programs, the set of e such that e is a
recursive index of an ESB program of this type is also Π0

2: (1) programs
with finite constraints, (2) Horn programs with finite constraints, (3)
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weakly finite programs with recursive constraints, (4) weakly finite
Horn programs with recursive constraints, (5) weakly finite programs
with r.e. constraints, and (6) weakly finite Horn programs with r.e.
constraints.

Lemma 4.1. Suppose that M is a recursive set, V is an r.e. set,
〈X,F〉= and 〈X,F〉⊆ are finite constraints, 〈Y,R〉= and 〈Y,R〉⊆ are
recursive constraints, and 〈Z,W〉= and 〈Z,W〉⊆ are r.e. constraints.

(a) The predicate M |= 〈X,F〉⊆ and the predicate M |= 〈X,F〉= are
both recursive. The predicate V |= 〈X,F〉⊆ is Σ0

1. The predicate
V |= 〈X,F〉= is ∆0

2, in fact, it is the difference of two Σ0
1 predicates.

(b) The predicates M |= 〈Y,R〉= and M |= 〈Y,R〉⊆ are both Π0
1. The

predicates V |= 〈Y,R〉= and V |= 〈Y,R〉⊆ are both Π0
2.

(c) The predicate M |= 〈Z,W〉⊆ is Π0
1. The predicates M |= 〈Z,W〉=,

V |= 〈Z,W〉=, and V |= 〈Z,W〉⊆ are all Π0
2.

Proof. Let M be a recursive set with index m, i.e. the characteristic
function of M is φm. Let V be an r.e. set such that V = Wa = dom(φa).

(a) Let X be a finite set with explicit index x and let F = {e0, . . . , en−1}
be a finite family of explicit indices of finite subsets of X. Then

M |= 〈X,F〉⊆ ⇐⇒ (∃i < n)(∀u)[u ∈ Fei → u ∈ Rm & u ∈ Fx]

and

M |= 〈X,F〉= ⇐⇒ (∃i < n)(∀u)[u ∈ Fei ⇐⇒ u ∈ Rm & u ∈ Fx].

From the index ei, we can extract a list of the elements of Fei , so that
the universal quantifier (∀u) is bounded, which makes both predicates
recursive.

For V , note that

V |= 〈X,F〉⊆ ⇐⇒ (∃i < n)(∀u)[u ∈ Fei → u ∈Wa & u ∈ Fx]

and

V |= 〈X,F〉= ⇐⇒ (∃i < n)(∀u)[u ∈ Fei ⇐⇒ u ∈Wa & u ∈ Fx].

Here the quantifier (∀u) is still bounded, but the predicate “u ∈ Wa

is Σ0
1 so the predicate [u ∈ Fei → u ∈ Wa & u ∈ Fx] is Σ0

1 and the
predicate [u ∈ Fei ⇐⇒ u ∈ Wa & u ∈ Fx] is the conjunction of Σ0

1

and Π0
1 predicate.
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For (b), let Y be a recursive set with recursive index y and let
F = {e0, . . . , en−1} be a finite family of recursive indices of subsets
of Y . The analysis in this case is similar to part (a) except that the
quantifier (∀u) is now unbounded.
For example, in the predicate

M |= 〈Y,R〉⊆ ⇐⇒ (∃i < n)(∀u)[u ∈ Rei → u ∈ Rm & u ∈ Ry].

the (∀u) quantifier is unbounded so this is Π0
1. Similarly, the predicate

V |= 〈Y,R〉⊆ ⇐⇒ (∃i < n)(∀u)[u ∈ Rei → u ∈Wa & u ∈ Ry]

is Π0
2.

(c) Let Z be an r.e. set with r.e. index z and letW = {e0, . . . , en−1}
be a finite family of r.e. indices of subsets of Z. Note that by assump-
tion, Wei ⊆Wz for all i < n, so that the predicate

M |= 〈Z,W〉⊆ ⇐⇒ (∃i < n)(∀u)[u ∈Wei → u ∈ Rm & u ∈Wz]

is equivalent to M |= 〈Z,W〉⊆ ⇐⇒ (∃i < n)(∀u)[u ∈Wei → u ∈ Rm],
which is Π0

1. However the predicate

M |= 〈Z,F〉= ⇐⇒ (∃i < n)(∀u)[u ∈Wei ⇐⇒ u ∈ Rm & u ∈Wz].

will be Π0
2. It is also easy to see that the predicates V |= 〈Z,W〉⊆ and

V |= 〈Z,W〉⊆ are Π0
2.

The following lemmas are now immediate.

Lemma 4.2. Let M be a recursive set, let V be an r.e. set, and let C
be a clause of the form (1).

(a) If C is a finite clause, then the predicate M |= C is recursive and
the predicate V |= C is ∆0

2.

(b) If C is a recursive clause, then the predicate M |= C is ∆0
2 and the

predicate V |= C is ∆0
3.

(c) If C is an r.e. clause, then the predicate M |= C is ∆0
3 and V |= C

is ∆0
3.

(d) Let C be an r.e. clause. Then

(i) If C has r.e. equality constraints in the head but not the body,
then the predicate M |= C is Π0

2,

(ii) If C has r.e. equality constraints in the body but not the head,
then the predicate M |= C is Σ0

2, and
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(iii) If C does not have any r.e. equality constraints, then the pred-
icate M |= C is a ∆0

2. In particular, if C is a Horn clause, then
M |= C is a ∆0

2 predicate.

Recall that m is a recursive index of a recursive ESB program P
is φm is a total recursive function and the set of codes of clauses in
P equals Rm. Similarly, we say that e is an r.e. index of a r.e. ESB
program P if the set of codes of clauses in P equals We.

Lemma 4.3. Let M be a recursive set and let V be a r.e. set.

(a) If P is a recursive or r.e. ESB program with finite constraints, then
M |= P is a Π0

1 predicate and V |= P is a Π0
2 predicate.

(b) If P is a recursive ESB program with recursive constraints, then
M |= P is a Π0

2 predicate and V |= P is a Π0
3 predicate.

(c) If P is a recursive ESB program with r.e. constraints, then the
predicate M |= P is Π0

3 and the predicate V |= P is Π0
3.

(d) If P is a recursive ESB program with r.e. constraints and there is
no clause C in P which has an r.e. equality constraint in the body,
then the predicate M |= P is Π0

2. In particular, if P is a recursive
Horn ESB program with r.e. constraints, then M |= P is a Π0

2

predicate.

Proof. The proof relies on the results of Lemma 4.2. We shall shall
only give the proof of the first part of (a) as the proof of the rest of the
parts is similar. Suppose that m is the recursive index of a recursive
ESB program with finite constraints. For any x ∈ P , let C(x) equal
the clause coded by x. Then

M |= P ⇐⇒ (∀x)(φm(x) = 1→M |= C(x)).

Since M |= C(x) is a recursive predicate, it follows that M |= P is
Π0

1. Similarly, if e is an r.e. index for a r.e. ESB program with finite
constraints, then

M |= P ⇐⇒ (∀x)(x /∈We ∨M |= C(x)).

Since x /∈We is Π0
1, it is still the case that M |= P is Π0

1.

To give a more refined analysis for recursive weakly finite programs,
let us say that a Horn program P with recursive or r.e. constraints is
n-weakly finite if there are n different heads of clauses in P−Fin(P ).
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Lemma 4.4. Let P be an n-weakly finite Horn program with recursive
or r.e. constraints and with least model M . Let a1, . . . , an be the finite
list of indices a such that there is a clause C in P with recursive or
r.e. constraints and head(C) = 〈X, {a}〉⊆. Let TFin(P ) be the one-step
provability operator for Fin(P ). For any subset F of {a1, . . . , an}, let
WF = ∪{Xa : a ∈ F}, where Xa = Fa if 〈X, {a}〉 is a finite constraint,
Xa = Ra if 〈X, {a}〉 is a recursive constraint and Xa = Wa if 〈X, {a}〉
is an r.e. constraint. Let MF = TFin(P ) ↑ω (WF ). Then

(i) M = TFin(P ) ↑ω (WF ), where F = {ai : Xai ⊂M} and,

(ii) if F has minimal cardinality among those subsets of {a1, . . . , an}
such that M = MF , then for any G ⊂ F , ¬(MG |= P ).

Proof. (i) Since WF ⊂ M and M is closed under TFin(P ), it follows
that MF = TFin(P ) ↑ω (WF ) ⊆ M . On the other hand, we claim that
MF = TFin(P ) ↑ω (WF ) |= P . To see this, let C = H ← B be any clause
of P such that MF |= B. If C ∈ Fin(P ), then MF |= H since MF is
closed under TFin(P ). If C /∈ Fin(P ), then M |= B since MF ⊆ M

and MF |= B. But then H must equal 〈X, {a}〉⊆ for some a ∈ F and
hence MF |= H. Thus M ⊆MF since M is the least model of P . Hence
M = MF as claimed.

(ii) This is immediate from our definitions.

One can then use Lemmas 4.2 and 4.3 to prove the following.

Theorem 4.5. Let M be a recursive set and let V be a r.e. set.

(a) If P is a recursive or r.e. ESB Horn program with finite constraints,
then the predicates “M is the least model of P” and “V is the least
model of P” are both Π0

2.

(b) If P is a recursive or r.e. weakly finite ESB Horn program with
recursive constraints or with r.e. constraints, then the predicate “M
is the least model of P” is Σ0

3 and the predicate “V is the least model
of P” is a difference of Σ0

3 sets.

Proof. Let MP denote the unique least model of P .
(a) It follows from our remarks above that MP = TP ↑ω (∅) and hence
we can find an r.e. index for MP uniformly from a recursive or r.e.
index for P . That is, there is a recursive function ψ such that, given a
primitive recursive index e for P , produces an r.e. index ψ(e) for MP .
Thus to check that the recursive set M is the least model of P , we need
only check whether M = Wψ(e) which is a Π0

2 predicate.

(b) Let {a1, . . . , an} be the finite list from Lemma 4.4. Then, by Lemma
4.4, MP is the least model of P if and only if there exists a finite
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F ⊆ {a1, . . . , an} such that M = MF , MF |= P and, for all G ⊂ F ,
¬(MG |= P ). Since Fin(P ) is a recursive or r.e. ESB Horn program,
we can uniformly find an r.e. index eF of MF from F for all F ⊆
{a1, . . . , an}. Now the predicates M = MF and V = MF are Π0

2. Since
M is a recursive set, V is an r.e. set and each MG is a r.e. set, it follows
from Lemma 4.3 that M |= P is Π0

2, V |= P is Π0
3, and ¬(MG |= P ) is

Σ0
3. Thus the predicate M is the least model of P is Σ0

3 and the the V is
the least model of P is the conjunction of a Σ0

3 and a Π0
3 predicate.

Theorem 4.6. (a) If P is a recursive or r.e. ESB Horn program with
finite constraints, then the predicate “the least model of P is recur-
sive” is Σ0

3.

(b) If P is a recursive or r.e. weakly finite ESB Horn program with
recursive constraints or with r.e. constraints, then the predicate “the
least model of P is recursive” is Σ0

3.

Proof. (a) Let us suppose that P is a recursive or r.e. ESB Horn pro-
gram with finite constraints. Note that P has a recursive stable model if
and only there exists an m such that φm is a total {0, 1}-valued function
and Rm is the least model of P . The result immediately follows since the
predicates “φm is a total {0,1}-valued function” is Π0

2 and the predicate
“Rm is the least model of P” is Π0

2 by part (a) of Theorem 4.5.

(b) The proof of part (b) is similar except that we use the results of
part (b) of Theorem 4.5.

Theorem 4.7. (a) The set T0 of all e such that e is a recursive index
of a recursive ESB Horn program P with finite constraints such
that the least model of P is recursive is a complete Σ0

3 set.

(b) The set T1 of all e such that e is a recursive index of a recursive
weakly finite ESB Horn program with recursive (r.e) constraints
such that the least model of P is recursive is a complete Σ0

3 set.

(c) The set T2 of all e such that e is a r.e. index of a recursive ESB
Horn program P with finite constraints such that the least model of
P is recursive is a complete Σ0

3 set.

(d) The set T3 of all e such that e is a r.e. index of a recursive weakly
finite ESB Horn program with recursive (r.e) constraints such that
the least model of P is recursive is a complete Σ0

3 set.

Proof. By Theorem 4.6, Ti is Σ0
3 for i = 0, 1, 2, 3. For the completeness,

will give a reduction of the well-known Σ0
3-complete set Rec = {e :

We is recursive} to each Ti. That is, for T0 and T1, we will define a
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recursive function f such that for all e, f(e) is the recursive index of a
recursive weakly finite ESB Horn program Pf(e) with finite constraints
such that the least model of Pf(e) is Turing equivalent to {2a : a ∈We}.
Then clearly We is recursive if and only if Pf(e) has a recursive least
model so that Rec is one-to-one reducible to both T0 and T1 and hence
both T0 and T1 are Σ0

3-complete.
Let We,s be the uniformly computable finite set of elements which

are enumerated into We by stage s. The program Pf(e) has two classes
of clauses.

(1) 2[2, a, s] + 1← for all a and s such that a ∈We,s.
(2) 2a← 2[2, a, s] + 1 for all a and s.

It is easy to see that Pf(e) is a recursive ESB Horn program and that the
least model Me of Pf(e) equals {2a : a ∈We}∪{2[2, a, s]+1 : a ∈We,s}.
Hence Me is recursive if and only if We is recursive. Thus f shows
that T0 is Σ0

3 complete. Since for all e, Pf(e) is also a recursive weakly
finite ESB Horn program with finite (and hence recursive and r.e.)
constraints, it also follows that T1 is Σ0

3-complete.
It is also clear that there is a recursive function g such that g(e) is an

r.e. index of Pf(e). Thus g shows that T2 and T3 are Σ0
3-complete.

For general ESB programs, we have the following.

Theorem 4.8. Let M be a recursive set.

(a) If P is a recursive ESB program with finite constraints, then the
predicate “M is a stable model of P” is Π0

2.

(b) If P is a recursive weakly finite ESB program with recursive con-
straints or P is a recursive weakly finite ESB program with r.e.
constraints which has no clause C with an r.e. equality constraint
in the body, then the predicate “M is a stable model of P” is Σ0

3.

(c) If P is a recursive weakly finite ESB program with r.e. constraints,
then the predicate “M is a stable model of P” is a difference of Σ0

3

predicates.

Proof. By definition, M is a stable model of P if and only if M |= P and
M is the least model of NSSM (P ). First observe by Lemma 4.3 that
the predicate M |= P is Π0

1 if P is a recursive ESB program with finite
constraints, is Π0

2 if P is a recursive weakly finite program with recursive
constraints or P is a recursive weakly finite ESB program with r.e.
constraints which has no clause C ∈ P with an r.e. equality constraint
in the body, and is Π0

3 if P is a recursive weakly finite program with
r.e. constraints. Thus to complete our analysis of the complexity of
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M being a stable model, we need only analyze the complexity of the
program NSSM (P ).

Recall that for each clause C in P , we eliminate C if M does not
satisfy the body of C. If M |= body(C) and head(C) = 〈X,F〉⊆, then
for each e ∈ F such that set coded by index e is contained in M ∩X,
we add a clause

〈X, {e}〉⊆ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1, C1〉⊆, . . . , 〈Zl, Cl〉⊆. (6)

Similarly, if M |= body(C) and head(C) = 〈X,F〉=, then for each e ∈ F
such that set coded by index e equals M ∩X, we add a clause

〈X, {e}〉⊆ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1, C1〉⊆, . . . , 〈Zl, Cl〉⊆. (7)

It easily follows that if M is recursive and P has only finite con-
straints, then NSSM (P ) is r.e.. Similarly, if P is a recursive weakly
finite program with recursive or r.e. constraints, then NSSM (Fin(P )
is r.e.

If C is clause with recursive constraints, then the questions of whether
Re = M ∩ X or Re ⊆ M ∩ X are Π0

1. If C is a clause with r.e. con-
straints, then the questions of whether We = M ∩X or We ⊆ M ∩X
is Π0

2. Thus if P is a recursive weakly finite recursive program, let
〈X1,F1〉∗1 , . . . , 〈Xn,Fn〉∗n be the finite set of heads of clauses 〈X,F〉
such that there is a clause C in P which contain recursive or r.e.
constraints and head(C) = 〈X,F〉∗ where ∗ is either = or ⊆. By our
conventions, we can effectively find 〈X1,F1〉∗1 , . . . , 〈Xn,Fn〉∗n from the
recursive index of P . Now if 〈Xi,F1〉∗i is a finite constraint, then we
can effectively find all constraints 〈Xi, {e}〉⊆ that could be generated by
the head 〈Xi,F1〉∗i in the construction of NSSM (P ). Now if 〈Xi,F1〉∗i
is a recursive or r.e. constraint, then set of all constraints 〈Xi, {e}〉⊆
that could be generated by the head 〈Xi,F1〉∗i in the construction
of NSSM (P ) is defined by a Π0

2 predicate. Now if P is a recursive
weakly finite program with recursive constraints or P is a recursive
weakly finite ESB program with r.e. constraints which has no clause
C ∈ P with an r.e. equality constraint in the body, then the predicate
M |= body(C) is Π0

1 by Lemma 4.1. It then follows that the set D
consisting of all constraints of the form 〈Xi, {e}〉⊆ that are generated
by the head of some clause CinP −Fin(P ) such that M |= body(C) is
a Σ0

3 set. Finally, if P is a weakly finite program with r.e. constraints,
then the predicate M |= body(C) is Π0

2 by Lemma 4.1. so that it still
follows that the set D consisting of all constraints of the form 〈Xi, {e}〉⊆
that are generated by the head of some clause C ∈ P − Fin(P ) such
that M |= body(C), is a Σ0

3 set.
(a) Since NSSM (P ) is a r.e. ESB Horn program, the question of whether
M is the least model of NSSM (P ) is Π0

2 by Theorem 4.5.
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(b) Suppose that P is a recursive weakly finite program with recursive
constraints or that P is a recursive weakly finite ESB program with r.e.
constraints which has no clause C ∈ P with an r.e. equality constraint
in the body. Let 〈X1,F1〉∗1 , . . . , 〈Xn,Fn〉∗n be the finite set of heads of
clauses 〈X,F〉 such that there is a clause C in P which contain recursive
or r.e. constraints and head(C) = 〈X,F〉∗ where ∗ is either = or ⊆. By
our conventions, we can effectively find 〈X1,F1〉∗1 , . . . , 〈Xn,Fn〉∗n from
the recursive index of P . By our comments above, NSSM (Fin(P ))
is r.e.. Let TNSSM (Fin(P )) be the one-step provability operator cor-
responding to the program NSSM (Fin(P )). Let D consisting of all
constraints of the form 〈Xi, {e}〉⊆ that are generated by the head of
some clause C with recursive or r.e. constraints. Let F = {a1, . . . , an}
denote the set of all e such that there there exists an i such that
〈Xi, {e}〉⊆ ∈ D and let De denote the set whose index is e. D and F
are finite sets but they are only Σ0

3 definable. Moreover, for any given
i, it may be the case that there are infinitely many clauses C in P with
head(C) = 〈Xi,Fi〉∗i , so that NSSM (P ) is not necessarily a recursive
program. Nevertheless, it still follows as in the proof of Theorem 4.5
that the least fixed point of NSSM (P ) is of the form

MF = TNNSM (Fin(P )(
⋃
ai∈F

Dai)

for some F ⊆ {a1, . . . , an} where MF |= NSSM (P ) and, for all G ⊂ F ,
¬(MG |= NSSM (P )). Note than since NSSM (Fin(P )) is r.e., we can
find an r.e. index eF for MF uniformly in F . Now the predicate MF =
M is Π0

2. It follows that M is stable model of P if and only if

1. M |= P ,

2. there is an x such that the finite set Fx with explicit index x
satisfies

a) Fx ⊆ D,

b) MFx = M ,

c) M |= NSSM (P ), and

d) For all G ⊂ Fx, ¬(MG |= NSS(P )).

In this case M |= P is a Π0
2 predicate. Now Fx ⊆ D is a Σ0

3 predicate
and MFx = M is a Π0

2 predicates. Thus we only have consider the
complexity of the predicates M |= NSSM (P ) and MG |= NSSM (P )
for G ⊆ {a1, . . . , an}. For any clause C such that M |= body(C), it is
automatic that M is a model of every clause of NSSM (P ) generated
by C. Thus M automatically models NSSM (P ). Finally, neg(MG |=
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NNSM (P )) holds if and only if there exists a clause C ∈ P such that
M |= body(C), MG |= body(C), and either
(i) head(C) = 〈X,F〉⊆, there is an e ∈ F such that (De ⊆ M ∩ X),
and De 6⊆MG ∩X) or
(ii) head(C) = 〈X,F〉=, there is an e ∈ F such that (De = M ∩ X)
and De 6⊆MG ∩X).
The predicates M |= body(C) and MG |= body(C) are at worst Π0

2.
Similarly the predicates (De ⊆ M ∩ X) and (De = M ∩ X) are Π0

2.
Finally the predicate De 6⊆ MG ∩ X) are all Σ0

2. Thus the predi-
cate neg(MG |= NNSM (P )) is Σ0

3 and, hence, the predicate “M is
a recursive stable model of P” is Σ0

3.

(c) In this case we can use the same analysis as in part (b). The only
difference is that M |= P is a Π0

3 predicate so that “M is a stable model
of P” is the conjunction of a Π0

3 predicate and Σ0
3 predicate.

The following result immediately follows from Theorem 4.7 and
Theorem 4.8.

Theorem 4.9. 1. The set of all e such that e is a recursive index of
a recursive weakly finite ESB program P with recursive constraints
and P has a recursive stable model is Σ0

3-complete.

2. The set of all e such that e is a recursive index of a recursive
weakly finite ESB program P with r.e. constraints such that there
is no clause C in P such that C has an r.e. equality constraint in
the body and P has a recursive stable model is Σ0

3-complete.

5. Conclusions and Further Research

In this paper we defined a natural extension, which we called Extended
Set Based (ESB) Logic Programming, of the Set Constraints Logic
Programming paradigm introduced by Marek and Remmel [30] in which
we could reason about infinite sets. In particular, we considered two
basic types of constraints, 〈X,F〉⊆ and 〈X,F〉= where F is a finite set
of indices of subsets of X. We then considered three types of constraints
depending on what type of indices were used, (i) finite constraints where
X is a finite set and F is a finite set of explicit indices of finite subsets
of X, (ii) recursive constraints where X is recursive set and F is a
finite set of recursive indices of recursive subsets of X, and (iii) r.e.
constraints where X is an r.e. set and F is finite set of r.e. indices of
r.e. subsets of X. An ESB program is a set of clauses of the form

〈X,A〉∗ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1, C1〉=, . . . , 〈Zl, Cl〉=,
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where ∗ is either = or ⊆.
We then defined natural analogues of Horn programs and stable

models for ESB programs. We analyzed the question of when the least
model of a recursive ESB Horn program with either finite, recursive or
r.e. constraints is recursive. We showed that the question of whether a
recursive ESB Horn program has a recursive least model is Σ0

3-complete.
We also introduced the notion of weakly finite ESB programs which are
ESB programs in which the set of heads of clauses that involve either
recursive or r.e. constraints is finite and studied the question of when
such programs have recursive stable models. We showed, for example,
that the question of whether a recursive weakly finite ESB program
with recursive constraints has a stable model is also Σ0

3-complete.
Our paper represents one way that one can use Logic Programming

to reason about infinite sets. The current developments in Compu-
tational Knowledge Representation and in particular the research of
[36, 30] raises our hopes that with an appropriately chosen extension
of Logic Programming, we will be able to effectively reason about
stable models of programs involving constraints of the form 〈X,A〉⊆
and 〈X,A〉= for at least some classes of indices. It should be observed
that we are not the only ones interested in the issue of reasoning about
infinite sets. For instance, in database community, using entirely differ-
ent means (quantifier elimination), researchers have shown that one can
reduce some queries about infinite sets to queries about finite databases
[26]. We believe that more attempts to reason about infinite sets will
be made, and and that it will become an important area of Computer
Science investigations.

Our formalism allows for reasoning about infinite sets within the
broader ASP approach [31, 33]. To make this approach applicable
to specific problems requires the ability to find effective indexing of
infinite sets. For example, if one wants to analyze voice signals, one
would consider sets of points in Euclidean space and graphs of func-
tions in such a space. For various problems in graphics, one may need
to develop techniques to approximate the sets occurring in practical
applications by means of finite sets or finite sets of equations which
are easily manipulated. If one would like to cascade programs, i.e.
use the output of programs as inputs to other programs, one might
want to “approximate” the infinite stable models of a program. In such
situation, we might try to have the stable models of a given program P
be approximated by finite models of a (simpler) program P ′. In general,
one needs a way of representing objects or sets by indices which are eas-
ily manipulated and for which there are efficient algorithms on indices
to make decisions about the various relations on the underlying objects
or sets. We have defined one class of programs which involve indices
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of infinite sets, effectively decidable weakly finite recursive ESB Horn
programs with recursive or r.e. constraints, where one can effectively
find an r.e. index of the least model from the index of the program. One
can define other abstract sets conditions which allow one to effectively
compute with programs involving infinite sets. However, more research
needs to be done on effective indexing problems in real application
areas if our formalism is to be applicable.
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15. P. Cholewiński. Stratified Default Theories. Proceedings of Computer Sci-
ence Logic Conference, CSL’94. Lecture Notes in Computer Science 933,
pages 456-470, Springer-Verlag, 1995.

16. A. Dovier, E.G. Omodeo, E. Pontelli, G. Rossi. A Logic Programming
Language with Finite Sets. Proceedings of 8th International Conference
on Logic Programming pages 111-124, MIT Press, 1991.

17. A. Dovier, E.G. Omodeo, E. Pontelli, G. Rossi. flogg: a language for
programming in logic with finite sets. Journal of Logic Programming 28(1):
1-44, 1996.

18. A. Dovier, E. Pontelli, G. Rossi. Checked Intensional sets in CLP. Proceed-
ings of International Conference on Logic Programming, Lecture Notes on
Computer Science 2916, pages 284-299, Springer-Verlag, 2003.

19. T. Eiter, G. Gottlob and H. Veith. Modular Logic Programs and Gen-
eral Quantifiers. Proceedings of the 4th International Conference on Logic
Programming and Nonmonotonic Reasoning, Lecture Notes in Computer
Science 1265, pages 290–309, Springer-Verlag, 1997.

20. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System
dlv: Progress Report, Comparisons, and Benchmarks. In Proceedings of
Sixth International Conference on Principles of Knowledge Representation
and Reasoning (KR-98), pages 406–417, Morgan Kaufmann, 1998.

21. M. Gelfond and V. Lifschitz. The stable semantics for logic programs.
Proceedings of 5th International Conference on Logic Programming pages
1070–1080, MIT Press, 1988.

22. M. Gelfond and N. Leone. Logic Programming and Knowledge Repre-
sentation – A-Prolog perspective. Artificial Intelligence Journal 138:3–38,
2002.

23. E. Goldberg, Y. Novikov. BerkMin: a Fast and Robust SAT-Solver. Pro-
ceedings of Conference on Design, Automation and Test in Europe, pages
142–149, 2002.

24. P. G. Hinman. Recursion-Theoretic Hierarchies. Springer-Verlag, 1978.
25. J. Jaffar and M. Maher. Constraint logic programming: A survey.

Journal of Logic Programming, 19-20:503–581, 1994.
26. G.M. Kuper, L. Libkin and J. Paradaens. Constraint Databases, Springer-

Verlag, 2000.
27. V. Lifschitz and H. Turner. Splitting a Logic Program. Proceedings of

International Conference on Logic Programming, ICLP’94, pages 23–37,
1994.

amai05.tex; 17/03/2005; 13:52; p.35



36 Cenzer et al.

28. F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program
by SAT solvers. Proceedings of 18th National Conference on Artificial
Intelligence, pages 112–117, Morgan Kaufmann, 2002.

29. W. Marek, A. Nerode, and J. B. Remmel. The stable models of predicate
logic programs. Journal of Logic Programming, 21(3):129–154, 1994.

30. V.W. Marek and J.B. Remmel. Set Constraints in Logic Programming.
Proceedings of 7th International Conference on Logic Programming and
Nonmonotonic Reasoning, Lecture Notes in Computer Science 2923, pages
167–179. Springer-Verlag, 2004.

31. V.W. Marek and M. Truszczynski. Stable models and an alternative logic
programming paradigm. In: The Logic Programming paradigm, pages 375–
398, Springer-Verlag, 1999.

32. M.W. Moskewicz, C.F. Magidan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient SAT solver. Proceedings of Design Automation
Conference pages 530–535. 2001.
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