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Department of Computer Science

University of Kentucky

Lexington, KY 40506-0046

USA

April 11, 2006

Abstract

In this paper we study fixpoints of operators on lattices and bilattices in a systematic
and principled way. The key concept is that of an approximating operator, a monotone
operator on the product bilattice, which gives approximate information on the original op-
erator in an intuitive and well-defined way. With any given approximating operator our
theory associates several different types of fixpoints, including the Kripke-Kleene fixpoint,
stable fixpoints and the well-founded fixpoint, and relates them to fixpoints of operators
being approximated. Compared to our earlier work on approximation theory, the contri-
bution of this paper is that we provide an alternative, more intuitive and better motivated
construction of the well-founded and stable fixpoints. In addition, we study the space of
approximating operators by means of a precision ordering and show that each lattice oper-
ator O has a unique most precise — we call it ultimate — approximation. We demonstrate
that fixpoints of this ultimate approximation provide useful insights into fixpoints of the
operator O. We then discuss applications of these results in logic programming.

1 Introduction

This paper presents a fixpoint theory of lattice operators. It has its origin and applications
in knowledge representation and declarative programming, and is particularly useful in the
study of semantics of nonmonotonic logics. It casts major nonmonotonic modes of reasoning
in an abstract algebraic framework, reveals constructive principles behind them, and provides
a clear understanding of how nonmonotonic logics are related to each other. Our theory can

∗This is a full version of the extended abstract published in the Proceedings of KR’2002 as [DMT02].
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also be viewed as an extension of Tarski’s least-fixpoint theory of monotone lattice operators
[Tar55] to the case of arbitrary ones, computing fixpoints by iterated induction [Acz77], rather
than monotone induction.

It is well known that semantic objects such as interpretations and possible-world structures
form complete lattices. A theory in a nonmonotonic logic determines a characteristic operator
on the complete lattice of semantic objects appropriate for the logic. That operator formalizes a
view of the theory as a device for revising interpretations. A semantics of the theory is defined
by the set of fixpoints of its characteristic operator, or by some subset of these fixpoints.
Arguably, the most representative example of a characteristic operator is the operator TP

associated with a normal logic program P and defined on the lattice of interpretations [vEK76].
We study it in Section 6, where we show how techniques and results of our paper apply to logic
programming. Other noteworthy examples of characteristic operators include the operators
DT [DMT99] associated with a modal theory T [DMT99] (implicitly defined in [Moo84]), and
E∆, associated with a default theory ∆ [DMT99], both defined on the lattice of possible-world
structures.

Consequently, an abstract framework of lattices and operators on lattices has emerged as
an effective tool in investigations of nonmonotonic reasoning. This algebraic approach can be
traced back to studies of semantics of logic programs [vEK76, AvE82, Fit85, Prz90, Van93] and
of applications of lattices and bilattices in knowledge representation [Gin88]. Fitting used this
approach to characterize all major 2-, 3- and 4-valued semantics of logic programs, specifically,
supported-model semantics [Cla78], stable-model semantics [GL88], Kripke-Kleene semantics
[Fit85, Kun87] and well-founded semantics [VRS91], in terms of fixpoints of operators on
the bilattice of 4-valued interpretations [Fit02]. Similar methods were used in [Lif90, BS91,
DMT99] to study the semantics of default logic [Rei80] and autoepistemic logic [Moo84].

In [DMT00a], we studied fixpoint principles behind semantics of these logics in a more
abstract algebraic setting of arbitrary complete lattices. To get information on fixpoints of an
operator O on a complete lattice L, we introduced and studied the notion of an approximating
operator for O. Approximating operators are operators on the product bilattice L2. They
are designed to approximate the behavior of O. Using purely algebraic techniques, given an
approximating operator A for O, we introduced the stable operator and the concepts of the
Kripke-Kleene, well-founded and stable fixpoints of A. We also showed how these fixpoints
provide information about fixpoints of the operator O.

We discussed two key applications of the theory of approximating operators and their fix-
points. First, we showed that it generalizes the results on semantics of logic programs described
in [Fit02]. Specifically, we observed that the 4-valued immediate consequence operator TP of a
logic program is an approximating operator for the 2-valued immediate consequence operator
TP and showed that all the semantics considered by Fitting can be derived from TP by means
of general algebraic constructions described in [DMT00a].

We used the same algebraic principles also for default and autoepistemic logics. In [DMT00b,
DMT03], for a given default or autoepistemic theory we defined its characteristic approximat-
ing operator on the bilattice of possible-world structures. By applying our theory of fixpoints
of approximating operators, we obtained families of different semantics for both logics, includ-
ing all major known semantics for these logics and, in addition, some new ones. However,
the approximation theory did more than just provide a uniform approach to existing and new
semantics for default and autoepistemic logics. It also provided insights into fundamental
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relations between them. We showed that a default theory ∆ and the autoepistemic theory
π(∆), obtained by applying Konolige’s interpretation of defaults as modal formulas [Kon88],
have identical characteristic operators. Consequently, there is a one-to-one correspondence
between families of fixpoint semantics of default and autoepistemic logics and, under this cor-
respondence, Konolige’s interpretation is equivalence preserving. Different semantics formalize
different “dialects” of default or autoepistemic reasoning. These dialects can be aligned so
that formalizations of nonmonotonic reasoning in default and autoepistemic logics coincide.
In other words, Konolige’s mapping establishes a perfect match between default and autoepis-
temic logics, once proper semantics on each side are identified and correctly aligned. Our paper
[DMT03] provides a detailed study and discussion of the relationship between the two logics.

These results demonstrate that the algebraic framework developed in [DMT00a] is an ef-
fective tool in studies of semantics of knowledge representation formalisms. However, there are
at least two directions in which the theory of [DMT00a] can be improved.

First, one should explore the issue of motivations and intuitions behind the approximation
theory as presented in [DMT00a]. The problem is that only a fraction of the lattice L2 (of
pairs of elements of L) has a natural interpretation as approximations. Specifically, we regard
a pair (x, y) ∈ L2 as an approximation to all those elements z ∈ L for which x ≤ z ≤ y. That
is, x is a lower estimate and y is an upper estimate for each such z. The problem is that
this interpretation makes sense only for consistent pairs (x, y), that is, pairs such that x ≤ y.
Inconsistent pairs lack such semantic intuitions1. In Section 3, we show that as far as stable and
well-founded fixpoints are concerned, the theory developed in [DMT00a] can be reformulated
in an equivalent way in terms of the so called consistent approximating operators concerned
with consistent pairs only. Not only this result completes the theory from [DMT00a] but it
also provides a more natural setting for the study of the precision of approximating operators,
the main focus of the remaining part of this paper.

Second, the use of the theory developed in [DMT00a] in studies of fixpoints of a lattice
operator O : L→ L requires that one is given some approximating operator A : L2 → L2 for O.
In the context of logic programming and default and autoepistemic logic, this approximating
operator turns up rather naturally, by using a 4-valued truth evaluation scheme rather than
the 2-valued one. There is no a priori reason that such natural approximations will emerge in
other applications. Given an operator O : L→ L, the theory described in [DMT00a] does not
provide any principled way for selection of an approximating operator. Thus, the following
questions arise:

• Does every lattice operator has an approximation?

• If an operator has several different approximations, how do their fixpoints relate to each
other?

• What criteria to use to discriminate between approximations? Is there a natural way to
(partially) order approximations? In particular, does there exist a best approximation?

In order to turn approximation theory into a full-fledged algebraic fixpoint theory, these ques-
tions need to be resolved. This is the other major goal of this paper. To this end, we will

1It is important to note, though, that under other interpretations of bilattice elements, for instance, when
they represent information coming from multiple sources, inconsistent bilattice elements can be given a natural
intuitive account [Fit91].
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study the family of all approximations of a lattice operator and introduce the notion of the
precision of an approximation. We will show that more precise approximations have more
precise Kripke-Kleene and well-founded fixpoints, and have more stable models. We will show
that the family of approximations of each lattice operator O contains a unique most precise
approximation of O. We will call it the ultimate approximation of O. Since the ultimate ap-
proximation is determined by O, it is well suited for investigations of fixpoints of O and yields
concepts of ultimate stable fixpoints, the ultimate Kripke-Kleene fixpoint and the ultimate
well-founded fixpoint. To define these fixpoints we only need to know O. There is no need to
specify any particular approximating operator.

The two goals outlined above form the core of our paper. To show the applicability of the
concept of an ultimate approximation we investigate the consequences of our expanded theory
in logic programming. We compare our new ultimate semantics of logic programs with the
corresponding “standard” semantics. In particular, we show that the ultimate Kripke-Kleene
and the ultimate well-founded semantics are more precise and have more attractive properties
from the logic perspective than the standard Kripke-Kleene and well-founded semantics. The
higher accuracy comes, however, at a cost. We show that ultimate semantics are in general
computationally more complex. However, we demonstrate that for wide classes of programs,
including programs likely to occur in practice, the complexity of main computational problems
remains the same as in the case of corresponding standard semantics.

In summary, our contributions are as follows. We demonstrate that the theory of approxi-
mating operators can be developed entirely in terms of consistent approximations. Within that
context, we develop a principled way of deriving an approximation to a lattice operator. In this
way, we obtain concepts of Kripke-Kleene fixpoint, well-founded fixpoint and stable fixpoints
that are determined by the operator O and not by the choice of an approximation. In the
specific context of logic programming with negation we obtain new semantics with desirable
logical properties and possible computational applications.

2 Preliminaries

In this section we recall basic algebraic concepts underlying our work. We assume that the
reader is familiar with the concept of a partially ordered set (poset). For a poset 〈L,≤〉 and
a set of elements X ⊆ L, by

∨

X and
∧

X we denote the least upper bound and the greatest
lower bound of X in L, respectively. We note that, in general, these bounds are not guaranteed
to exist. We also recall that posets are, by definition, nonempty.

A lattice is a poset 〈L,≤〉 such that every pair of elements x, y ∈ L has a unique greatest
lower bound and least upper bound, denoted x ∧ y and x ∨ y, respectively2. A lattice is
complete if every subset has a greatest lower bound and a least upper bound. If S is a subset
of a complete lattice L, we denote the least upper bound and the greatest lower bound of S
by

∨

S and
∧

S, respectively. It is clear that a complete lattice has a least and a greatest
element, denoted ⊥ and ⊤, respectively.

Let L be a poset. For any two elements x, y ∈ L, we define [x, y] = {z ∈ L : x ≤ z ≤ y}.
We note that this set is non-empty if and only if x ≤ y. If L is a complete lattice and x ≤ y,

2Throughout the paper, whenever the ordering relation ≤ of a poset (lattice) is clear from the context, we
drop it from the notation.
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then [x, y] forms a complete lattice, too (under the ordering relation obtained by restricting
the relation ≤ on L to [x, y]).

Let L be a poset. By an operator on L we mean any function O : L→ L. For an operator
O on L and for a subset S ⊆ L, we define O(S) = {O(x) : x ∈ S}. An operator O on a poset
L is monotone if for every x, y ∈ L such that x ≤ y, O(x) ≤ O(y). An operator O on a poset
L is increasing if for every x ∈ L, x ≤ O(x).

Let O be an operator on a poset L. An element x of an operator O is a pre-fixpoint of O
if O(x) ≤ x; x is a post-fixpoint of O if O(x) ≥ x; x is a fixpoint of O if O(x) = x. If the set of
fixpoints of O has a least element, we call this element the least fixpoint of O and denote it by
lfp(O).

One of the most fundamental results used in studies of semantics of logics and programming
languages is a theorem of Tarski and Knaster on fixpoints of monotone operators on complete
lattices [Tar55]. Among other things, it is concerned with the existence of the least fixpoint
and the least pre-fixpoint of such operators. We recall here this fragment of the Tarski-Knaster
result.

Theorem 2.1 Let L be a complete lattice and let O be a monotone operator on L. Then O
has a least fixpoint and a least pre-fixpoint, and these two elements of L coincide. That is, we
have lfp(O) =

∧

{x ∈ L : O(x) ≤ x}.

In this paper, we need a generalization of Theorem 2.1 to a broader class of algebraic
structures: chain-complete posets. A chain C in a poset L is a linearly ordered subset of L.
A poset L is chain-complete if it contains a least element ⊥ and if every chain C of elements
of L has a least upper bound. Clearly, each complete lattice is a chain-complete poset. The
converse, in general, does not hold. Chain-complete posets are discussed in detail in [Mar76].

The Tarski-Knaster result (to be precise, the fragment we stated above) holds also in the
context of chain-complete posets. Let O be a monotone operator on a chain-complete poset
L. Let us define a sequence of elements of L by transfinite induction as follows:

1. c0 = ⊥

2. cα+1 = O(cα)

3. cα =
∨

{cβ : β < α}, for a limit ordinal α.

One can show that this sequence is well defined, that it has in L a least upper bound, and that
this least upper bound is the least fixpoint and the least pre-fixpoint of O. The argument can
be summarized in the following constructive generalization of Theorem 2.1.

Theorem 2.2 ([Mar76]) Let L be a chain-complete poset and let O be a monotone operator
on L. Then the sequence {cα}α∈Ord has a least upper bound and it is the least fixpoint and the
least pre-fixpoint of O.

Let L be a complete lattice. By the product bilattice [Gin88] of L we mean the set L2 = L×L
with the following two orderings ≤p and ≤:

1. (x, y) ≤p (x′, y′) if x ≤ x′ and y′ ≤ y

2. (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′.
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Both orderings are complete lattice orderings in L2. In this paper we are mostly concerned
with the ordering ≤p.

An element (x, y) ∈ L2 is consistent if x ≤ y. We can think of a consistent element (x, y) ∈
L2 as an approximation to every z ∈ L such that x ≤ z ≤ y. With this interpretation in mind,
the ordering ≤p, when restricted to consistent elements, can be viewed as a precision ordering.
Consistent pairs that are “higher” in the ordering ≤p provide tighter approximations. Maximal
consistent elements with respect to ≤p are pairs of the form (x, x). We call approximations
of the form (x, x) — exact. We note that the consistent elements of L2 are exactly those for
which [x, y] is non-empty.

The approximation interpretation of bilattice elements and the corresponding intuition of
the precision ordering guide our work here. This is the reason why we depart from the more
common notation for the bilattice orderings, ≤k and ≤t, respectively [Fit91]. As an aside,
we note that elements of bilattices can be given several alternative interpretations [Fit91], in
which they describe “degree of belief” and “degree of doubt” (“evidence for” and “against”)
or represent information coming from multiple agents (sources).

For a pair (x, y) ∈ L2, we define its projections as:

(x, y)1 = x and (x, y)2 = y.

Given a set C ⊆ L2, we define two subsets of L, C1 = {z1 : z ∈ C} and C2 = {z2 : z ∈ C} as
the projections of C on the first and the second coordinate, respectively. When an operator A
maps the bilattice L2 into L2 we simplify notation and denote the first projection of the value
of the operator A on the pair (x, y) by A(x, y)1 instead of more formal (A(x, y))1. Likewise,
we write A(x, y)2 instead of (A(x, y))2.

An operator A : L2 → A2 induces two families of operators from L to L as follows. Given
an element b ∈ A, we define the operator A(·, b)1 as follows. To every element a ∈ L, the
operator A(·, b)1 assigns the value A(a, b)1. Analogously, with a fixed a ∈ L, we define the
operator A(a, ·)2 as the operator that assigns the value A(a, b)2 to every element b ∈ L.

We denote the set of all consistent pairs in L2 by Lc. The set 〈Lc,≤p〉 is not a lattice. In
particular, a pair of different exact elements has no upper bound in Lc. In fact, exact pairs
are maximal elements in Lc.

The structure 〈Lc,≤p〉 is, however, a chain-complete poset. Indeed, the element (⊥,⊤) is
the least element in Lc and the following straightforward result shows that every chain in Lc

has a least upper bound in Lc.

Proposition 2.3 Let L be a complete lattice and let C be a chain in Lc (ordered by the relation
≤p). Let C1, C2 be the projections of C. Then:

1.
∨

C1 ≤p

∧

C2

2. The least upper bound of C exists, and is equal to (
∨

C1,
∧

C2).

3 Consistent approximations

In this section we develop a new formalization of the approximation theory based on the
structure Lc rather than on L2. In Section 4, we will show that this new approach is equivalent
to the original one as long as we are interested in consistent fixpoints only.
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An operator A : Lc → Lc is a consistent approximating operator if it is ≤p-monotone and
for every x ∈ L, A(x, x)1 = A(x, x)2, that is, A assigns exact pairs to exact pairs. To simplify
the notation, in the next two sections we will use the term approximating operator rather than
consistent approximating operator.

We denote the set of all consistent approximating operators on Lc by Appx (Lc). Let
A ∈ Appx (Lc). Since A is ≤p-monotone and Lc is chain-complete, A has a least fixpoint,
called the Kripke-Kleene fixpoint of A (k(A), in symbols)3. Directly from the definition it
follows that k(A) approximates all fixpoints of A. That is, for every fixpoint (x, y) of A we
have k(A) ≤p (x, y).

An operator A ∈ Appx (Lc) approximates an operator O : L → L (is an approximation of
O) if for every x ∈ L, A(x, x)1 = O(x) = A(x, x)2. It is easy to see that when A approximates
O, then for each (x, y) ∈ Lc and for each z ∈ [x, y], A(x, y)1 ≤ O(z) ≤ A(x, y)2. That is,
O([x, y]) ⊆ [A(x, y)1, A(x, y)2]. We denote the set of all consistent approximations of O by
Appx c(O).

Properties of the fixpoints of an operator O can be studied by considering fixpoints of
approximations of O. Indeed, we have the following two simple results.

Proposition 3.1 If O is an operator on a complete lattice L and A is an approximation of
O, then x ∈ L is a fixpoint of O if and only if (x, x) is a fixpoint of A.

Corollary 3.2 If O is an operator on a complete lattice L and A is an approximation of O,
then for every fixpoint x of O, k(A)1 ≤ x ≤ k(A)2 (that is, k(A) approximates x).

In applications, we are usually not interested in all fixpoints of the operator O. For instance,
if O is a monotone operator on L, it is common to focus attention on the least fixpoint of O, as
it can be given an effective characterization and captures intuitions behind inductive definitions
and computational processes. In the case of operators determined by theories in nonmonotonic
logics, we are often interested in fixpoints that satisfy some minimality condition. While the
Kripke-Kleene fixpoint of an approximating operator ofO approximates all fixpoints of O, when
we are interested in special classes of fixpoints only, better approximations are possible. Below,
based on constructiveness and minimality principles developed in knowledge representation
and logic programming, we identify an important class of stable fixpoints of an operator O and
introduce techniques to obtain more refined approximations of these fixpoints.

An operator A from Appx (Lc) provides means to revise consistent approximations: given
a pair (a, b) ∈ Lc, A(a, b) can be viewed as a revision of (a, b). Of particular interest are those
pairs whose revisions are at least as accurate. We call an approximation (a, b) A-reliable if
it is a post-fixpoint of A, that is, if (a, b) ≤p A(a, b). When A is an approximating operator
for a lattice operator O, then A-reliable pairs (a, b) are especially useful for studying fixpoints
of O. Indeed, as we will show below in Proposition 3.5, such pairs represent intervals where
O behaves in a local way: for each z ∈ [a, b], O(z) ∈ [a, b]. Consequently, we can obtain a
tighter bound on the fixpoints of O in [a, b], simply by the iterated application of A on (a, b).
By the ≤p-monotonicity of A, A(a, b) is also A-reliable and approximates all fixpoints of O in
[a, b]. Iterating the operator A over (a, b) yields a (transfinite) sequence (a, b) ≤p A

1(a, b) ≤p

. . . ≤p A
α(a, b) ≤p . . . of approximations of increasing precision approximating the fixpoints

3We use the term Kripke-Kleene fixpoint to acknowledge an analogy with a Kripke-Kleene model of a logic
program (a least fixpoint of a 3-valued van Emden-Kowalski operator).
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of O in [a, b]. In particular, (⊥,⊤) is A-reliable and approximates all fixpoints of O. The
corresponding increasing sequence of approximations generates the least fixpoint k(A) of A,
which is a better approximation to the fixpoints of O than (⊥,⊤).

Proposition 3.3 Let L be a complete lattice and A ∈ Appx (Lc). If (a, b) ∈ Lc is A-reliable
then, for every x ∈ [⊥, b], A(x, b)1 ∈ [⊥, b] and, for every x ∈ [a,⊤], A(a, x)2 ∈ [a,⊤].

Proof: Let x ∈ [⊥, b]. Then (x, b) ≤p (b, b). By the ≤p-monotonicity of A,

A(x, b)1 ≤ A(b, b)1 = A(b, b)2 ≤ A(a, b)2 ≤ b.

The last inequality follows from the fact that (a, b) is A-reliable. The second part of the
assertion can be proved in a similar manner. 2

Proposition 3.3 implies that for every A-reliable pair (a, b), the restrictions of A(·, b)1 to
[⊥, b] and A(a, ·)2 to [a,⊤] are in fact operators on [⊥, b] and [a,⊤], respectively. Moreover,
they are ≤-monotone operators on the posets 〈[⊥, b],≤〉 and 〈[a,⊤],≤〉. Since 〈[⊥, b],≤〉 and
〈[a,⊤],≤〉 are complete lattices, the operators A(·, b)1 and A(a, ·)2 have least fixpoints in the
lattices 〈[⊥, b],≤〉 and 〈[a,⊤],≤〉, respectively. We define:

bA↓ = lfp(A(·, b)1) and aA↑ = lfp(A(a, ·)2).

We call the mapping (a, b) 7→ (bA↓, aA↑), the stable revision operator for A. When A is clear
from the context, we will drop the reference to A from the notation.

The stable revision operator for A provides a different (but related) way to revise A-reliable
approximations than that given by A. However, there is a caveat. The image (bA↓, aA↑) of
(a, b) under the stable operator does not have, in general, to be a refinement of (a, b).

We will now discuss intuitions behind the definition of the stable revision operator for A.
First, we motivate the computation of b↓. Our goal here is to produce a lower bound to all
fixpoints of O that are smaller than or equal to b. To this end, we use the approximating
operator A. Clearly, b0 = ⊥ provides such a bound. By ≤p-monotonicity of A, the operator
A(·, b)1 is ≤-monotone. Thus, for every fixpoint x ∈ [⊥, b] of O

b1 = A(⊥, b)1 ≤ A(x, b)1 ≤ A(x, x)1 = O(x) = x.

and every fixpoint x ∈ [⊥, b] of O belongs, in fact, to the interval [b1, b]. A similar reasoning
shows that b2 = A(b1, b)1 is a further improvement on the bound for all fixpoints x ∈ [⊥, b]
of O. Continuing this construction we find that the limit b↓ is also a bound. This argument
provides a proof of the following result.

Proposition 3.4 Let A be an approximating operator for an operator O and let (a, b) be A-
reliable. For every fixpoint c of O, if c ≤ b then b↓ ≤ c.

The new upper bound a↑ is computed to reflect a different intuitive requirement. In the
computation of the new upper bound, we are not concerned with preserving all fixpoints greater
than a because in this way, we could never eliminate non-minimal fixpoints. On the contrary,
we want to select a new upper bound that is as small (tight) as possible. However, any new
upper bound b′ associated to a should at least satisfy the requirement that the interval [a, b′]
be closed under application of O. This is the case, in particular, when (a, b′) is reliable. Indeed,
we have the following simple proposition.
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Proposition 3.5 Let A be an approximating operator for an operator O and let (a, b) be A-
reliable. For every x ∈ [a, b], O(x) ∈ [a, b]. In other words, [a, b] is closed under O.

Proof: Since (a, b) ≤p A(a, b), we have a ≤ A(a, b)1. Next, since (a, b) ≤p (x, x), A(a, b)1 ≤
A(x, x)1 = O(x). The inequality O(x) ≤ b can be argued in the same way. 2

Interestingly, the set of elements b′ of L such that (a, b′) is reliable, has a least element and
it is easy to show that this element is lfp(A(a, ·)2) = a↑. We select this element as the new
upper estimate produced by the stable operator when applied to (a, b).

We now study the properties of the stable revision operator.

Proposition 3.6 Let A ∈ Appx (Lc). For every A-reliable pair (a, b), b↓ ≤ b, a ≤ a↑ ≤ b, and
the pair (b↓, a↑) is consistent.

Proof: Inequalities b↓ ≤ b and a ≤ a↑ follow directly from the definition of the stable revision
operator.

By A-reliability of (a, b), we also have that A(a, b)2 ≤ b. Since a ≤ b, b is in the domain of
the operator A(a, ·)2 and, moreover, it is a pre-fixpoint of this operator. Thus, since a↑ is the
least pre-fixpoint of A(a, ·)2, a

↑ ≤ b.
In particular, we have that a↑ is in the domain of the operator A(·, b)1. By the ≤p-

monotonicity of A we obtain:

A(a↑, b)1 ≤ A(a↑, a↑)1 = A(a↑, a↑)2 ≤ A(a, a↑)2 = a↑. (1)

It follows that a↑ is a pre-fixpoint of the operator A(·, b)1. Thus, b↓ = lfp(A(·, b)1) ≤ a↑ and
so, (b↓, a↑) is consistent. 2

The notion of A-reliability is not strong enough to guarantee desirable properties of the
stable revision operator. For instance, if (a, b) ∈ Lc is A-reliable, it is not true in general
that (a, b) ≤p (b↓, a↑). There is, however, a class of A-reliable pairs for which this property
holds. An A-reliable approximation (a, b) is A-prudent if a ≤ b↓. Proposition 3.4 implies that
if (a, b) is A-prudent, then [a, b] is guaranteed to contain all fixpoints of the lattice operator O
approximated by A that belong to [⊥, b]. In particular, it contains all minimal fixpoints that
belong to [⊥, b]. We will now prove several basic properties of A-prudent approximations.

Proposition 3.7 Let L be a complete lattice, A ∈ Appx (Lc) and let (a, b) ∈ Lc be A-prudent.
Then, (b↓, a↑) is A-prudent and (a, b) ≤p (b↓, a↑).

Proof: By Proposition 3.6, we have that b↓ ≤ b and a ≤ a↑. Since (a, b) is A-prudent, it follows
that a ≤ b↓. From Proposition 3.6 it also follows that a↑ ≤ b. Thus, (a, b) ≤p (b↓, a↑).

Next, let us observe that b↓ = A(b↓, b)1 ≤ A(b↓, a↑)1. Similarly, a↑ = A(a, a↑)2 ≥ A(b↓, a↑)2.
Thus, the pair (b↓, a↑) is reliable.

Lastly, we note that for every x ∈ [⊥, a↑], A(x, b)1 ≤ A(x, a↑)1. It follows that each
pre-fixpoint of A(·, a↑)1 is a pre-fixpoint of A(·, b)1. By (1) (cf. the proof of Proposition
3.6), A(a↑, a↑)1 ≤ a↑. Thus, the set of pre-fixpoints of A(·, a↑)1 is non-empty. Consequently,
b↓ = lfp(A(·, b)1) ≤ lfp(A(·, a↑)1) = (a↑)↓ and (b↓, a↑) is A-prudent. 2

We recall that an A-reliable pair (a, b) is revised by an operator A into a more precise
approximation A(a, b). An A-prudent pair (a, b) can be “revised even more” by the stable
revision operator.
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Proposition 3.8 Let A ∈ Appx (Lc). If (a, b) is A-prudent then A(a, b) ≤p (b↓, a↑).

Proof. It is easy to see that A(a, b)1 ≤ A(b↓, b)1 = b↓ and a↑ = A(a, a↑)2 ≤ A(a, b)2. Thus, the
assertion follows. 2

The stable revision operator satisfies a useful monotonicity property.

Proposition 3.9 Let L be a complete lattice, A ∈ Appx (Lc) and let (a, b), (c, d) ∈ Lc. If (a, b)
is A-reliable, (c, d) is A-prudent and if (a, b) ≤p (c, d), then (b↓, a↑) ≤p (d↓, c↑).

Proof: Clearly, we have d↓ ≤ c↑ ≤ d ≤ b. By the ≤p-monotonicity of A, it follows that
A(d↓, b)1 ≤ A(d↓, d)1 = d↓. Thus, d↓ is a pre-fixpoint of A(·, b)1. Since b↓ is the least fixpoint
of lfp(A(·, b)1), it follows that b↓ ≤ d↓.

To prove the assertion, it now suffices to show that c↑ ≤ a↑. Let u = a↑∧d↓. By Proposition
3.7, (c, d) ≤p (d↓, c↑). Since (a, b) ≤p (c, d), it follows that a ≤ d↓. Further, by the A-reliability
of (a, b) and (c, d), we have a ≤ a↑ and d↓ ≤ d (Proposition 3.6). Thus, a ≤ u ≤ a↑ and
u ≤ d↓ ≤ d. Consequently,

A(u, d)1 ≤ A(u, u)1 = A(u, u)2 ≤ A(a, a↑)2 = a↑

and
A(u, d)1 ≤ A(d↓, d)1 = d↓.

It follows that A(u, d)1 ≤ a
↑ ∧ d↓ = u. In particular, u is a pre-fixpoint of A(·, d)1. Since d↓ is

the least fixpoint of A(·, d)1, d
↓ ≤ u. Hence, d↓ ≤ a↑.

We now have a ≤ c ≤ d↓ ≤ a↑ (the first inequality follows from the assumption (a, b) ≤p

(c, d), the second one follows by Proposition 3.7 from the assumption that (c, d) is A-prudent).
Since a ≤ c ≤ a↑, the ≤p-monotonicity of A implies

A(c, a↑)2 ≤ A(a, a↑)2 = a↑.

Hence, a↑ is a pre-fixpoint of A(c, ·)2. Since c↑ is the least fixpoint of A(c, ·)2, it follows that
c↑ ≤ a↑. 2

The next result states that the limit of a chain of A-prudent pairs is A-prudent.

Proposition 3.10 Let L be a complete lattice, A ∈ Appx (Lc) and let C be a chain of A-
prudent pairs from Lc. Then,

∨

C is A-prudent.

Proof: Let C1 = {p1 : p ∈ C} and C2 = {p2 : p ∈ C} be the projections of C. We define
a∞ =

∨

C1 and b∞ =
∧

C2. By Proposition 2.3, (a∞, b∞) is consistent and (a∞, b∞) =
∨

C.
Let (x, y) ∈ C. Then, (x, y) is A-reliable (since it is A-prudent) and (x, y) ≤p (a∞, b∞).
Combining these two observations and using the ≤p-monotonicity of A, we obtain:

(x, y) ≤p A(x, y) ≤p A(a∞, b∞).

By the fact that (x, y) is an arbitrary element in C, we have

(a∞, b∞) =
∨

C ≤p A(a∞, b∞),

and it follows that (a∞, b∞) is A-reliable.
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Let us now consider an element x ∈ C1. Then there is an element y ∈ C2 such that
(x, y) ∈ C. Clearly, b∞ ≤ y and, by the ≤p-monotonicity of A, for every z ≤ b∞

A(z, y)1 ≤ A(z, b∞)1.

Thus, if z ∈ [⊥, b∞] is a pre-fixpoint of the operator A(·, b∞)1, it is also a pre-fixpoint of the
operator A(·, y)1. Moreover, the set of pre-fixpoints of the operator A(·, b∞)1 is nonempty
(since (a∞, b∞) is A-reliable, it is in the domain of the stable revision operator for A and (b∞)↓

is a pre-fixpoint of A(·, b∞)1). Thus,

lfp(A(·, y)1) ≤ lfp(A(·, b∞)1).

Since (x, y) is A-prudent, we have x ≤ y↑ = lfp(A(·, y)1). Thus, x ≤ lfp(A(·, b∞)1). Since x is
an arbitrary element of C1, a

∞ ≤ lfp(A(·, b∞)1). It follows that the pair (a∞, b∞) is A-prudent.
2

The following theorem summarizes the results on the properties of the stable revision
operator.

Theorem 3.11 Let L be a complete lattice, A ∈ Appx (Lc). The set of A-prudent elements
of Lc is a chain-complete poset under the precision order ≤p, with least element (⊥,⊤). The
stable revision operator is a well-defined, increasing and monotone operator in this poset.

It follows that the stable revision operator has fixpoints and a least fixpoint. Let L be a
complete lattice and let A ∈ Appx (Lc). We say that (x, y) ∈ Lc is a stable fixpoint of A if (x, y)
is A-reliable (hence, it belongs to the domain of the stable revision operator) and if (x, y) is
a fixpoint of the stable revision operator (that is, x = y↓ and y = x↑). We note that a stable
fixpoint of A is A-prudent. Moreover, as we show next, stable fixpoints of an approximating
operator A are, in particular, fixpoints of A.

Proposition 3.12 Let L be a complete lattice and let A ∈ Appx (Lc). If (x, y) is a stable
fixpoint of A then (x, y) is a fixpoint of A.

Proof: Since (x, y) is stable, x = lfp(A(·, y)1). In particular, x = A(x, y)1. Similarly, y =
A(x, y)2. Thus, A(x, y) = (x, y). 2

Let O be an operator on a complete lattice L and let A ∈ Appx c(O). We say that x
is an A-stable fixpoint of O if (x, x) is a stable fixpoint of A. The notation is justified as,
by Proposition 3.12 and our earlier remarks, every A-stable fixpoint of O is, in particular,
a fixpoint of O. The following proposition gives several simple characterizations of A-stable
fixpoints of O.

Proposition 3.13 Let A be an approximating operator for an operator O on a complete lattice
L and let x ∈ L. The following conditions are equivalent:

1. x is an A-stable fixpoint of O

2. x is a fixpoint of O and x = x↓

3. x is a fixpoint of O and x ≤ x↓

11



4. x is a fixpoint of O and (x, x) is A-prudent.

Proof: We note that each of these conditions guarantees that x is a fixpoint of O and (x, x) a
fixpoint of A. Therefore, in each case (x, x) is A-reliable and hence, x↓ is well-defined.
(1)⇒(2) If x is an A-stable fixpoint of O then it is a fixpoint of O. Moreover, (x, x) is a stable
fixpoint of A and, consequently, x = x↓.
(2)⇒(3) This implication is straightforward.
(3)⇒(4) Since x is a fixpoint of O, (x, x) = (O(x), O(x)) = A(x, x). Hence, (x, x) is A-reliable.
Moreover, we have x ≤ x↓. Consequently, (x, x) is A-prudent.
(4)⇒(1) By Theorem 3.11, (x, x) is a fixpoint of a stable revision operator for A. Since (x, x)
is A-prudent and the stable revision operator for A is increasing on the set of A-prudent pairs,
(x, x) is a stable fixpoint of A. Thus, x is a A-stable fixpoint of O. 2

The next proposition shows that A-stable fixpoints of O are minimal fixpoints of O.

Proposition 3.14 An A-stable fixpoint x of O is a minimal fixpoint of O. More, generally, a
stable fixpoint (x, y) of A is a minimal fixpoint of A with respect to ordering ≤ of the product
bilattice (the second ordering of the bilattice).

Proof: Let us assume that (x, y) is a stable fixpoint of A and let (x′, y′) ≤ (x, y) be a fixpoint
of A. Since x′ ≤ y′ ≤ y, A(x′, y)1 ≤ A(x′, y′)1 = x′. Thus, x′ is a pre-fixpoint of A(·, y)1.
Since (x, y) is a stable fixpoint of A, x is the least pre-fixpoint of A(·, y)1. Thus, x ≤ x′ and,
consequently, x = x′ (we recall that by our assumption, x′ ≤ x). In a similar way, we argue
that y′ = y. 2

Since A-stable fixpoints are A-prudent, we obtain the following corollary to Proposition
3.9.

Corollary 3.15 Let L be a complete lattice, A ∈ Appx (Lc) and let (c, d) ∈ Lc be a stable
fixpoint of A. If (a, b) ∈ Lc is A-reliable and (a, b) ≤p (c, d) then (b↓, a↑) ≤p (c, d). 2

The stable revision operator is a monotone operator on the chain-complete poset of A-
prudent pairs and has a least fixpoint. Therefore A has a least precise stable fixpoint. We call
this least stable fixpoint the well-founded fixpoint of A and denote it by w(A). This fixpoint is
the limit of the sequence {(aα, bα)}α∈Ord of elements of Lc defined in by transfinite induction:

1. (a0, b0) = (⊥,⊤)

2. aα+1 = (bα)↓ and bα+1 = (aα)↑

3. (aα, bα) =
∨

{(aβ , bβ) : β < α} for limit ordinals α.

The well-founded fixpoint approximates all stable fixpoints of A. In particular, it approx-
imates all A-stable fixpoints of the operator O. That is, for every A-stable fixpoint x of O,
w(A) ≤p (x, x) or, equivalently, w(A)1 ≤ x ≤ w(A)2. Moreover, the well-founded fixpoint is
more precise than the Kripke-Kleene fixpoint.

Proposition 3.16 For any approximating operator A ∈ Appx (Lc), k(A) ≤p w(A).
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Figure 1: Lattice L

Proof: Since k(A) approximates all fixpoints of A and since w(A) is a fixpoint of A (by
Proposition 3.12), the assertion follows. 2

We will now illustrate the concepts of A-reliable and A-prudent approximations and stable
and well-founded fixpoints. We will also demonstrate that not all minimal fixpoints are stable.
Let L be the lattice shown in Figure 1. Let O be an operator in L defined by: O(⊥) = q,O(q) =
q,O(p) = p,O(⊤) = p. It is evident that O has two (minimal) fixpoints: p and q.

We define A(x, y) = (
∧

O([x, y]),
∨

O([x, y])). It is easy to see that A is an approximating
operator for O (we will study this construction in a more general setting later in the paper).
We give the explicit definition of the operator A in Table 1.

(x, y) (⊥,⊤) (⊥, p) (⊥, q) (⊥,⊥) (p,⊤) (p, p) (q,⊤) (q, q) (⊤,⊤)

A(x, y) (⊥,⊤) (⊥,⊤) (q, q) (q, q) (p, p) (p, p) (⊥,⊤) (q, q) (p, p)

Table 1: Operator A.

From Table 1 it is evident that there are five A-reliable pairs in Lc: (⊥,⊤), (⊥, q), (q, q),
(p,⊤) and (p, p). Thus, values x↓ can be computed for x = p, q and ⊤, while values x↑ can be
computed for x = ⊥, p and q. These values are given in two tables in Figure 2.

x p q ⊤

x↓ ⊥ q ⊥

x ⊥ p q

x↑ q p q

Figure 2: Values x↓ and x↑

It follows that there are three A-prudent pairs: (⊥,⊤), (⊥, q) and (q, q). One can also verify
that: (⊤↓,⊥↑) = (⊥, q), (q↓,⊥↑) = (q, q) and (q↓, q↑) = (q, q). Thus, (q, q) is the well-founded
fixpoint of A (we reached (q, q) by iterating the stable revision operator over (⊥,⊤)). Since
the well-founded fixpoint (q, q) is complete, (q, q) is also the unique stable fixpoint of A and q
is the unique A-stable fixpoint of O. We also note that p, the other minimal fixpoint of O, is
not an A-stable fixpoint of O.
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4 Approximations in the bilattice

We will now show that the theory of consistent approximations captures all results of the theory
of approximations in the product bilattice developed in [DMT00a], as long as we restrict our
attention to consistent pairs. We start by recalling some basic concepts defined in [DMT00a].

Let L be a complete lattice. An operator A : L2 → L2 is symmetric if for every (x, y) ∈ L2,
A(x, y)1 = A(y, x)2 (as before, (·)1 and (·)2 are the two projection functions). Further, A
is approximating if A is symmetric and ≤p-monotone4. While it is possible to develop a
generalization of the theory presented in this paper without the symmetry assumption, we
chose to adopt it because the motivating examples, that is, operators occurring in knowledge
representation, are symmetric.

Every approximating operator A on L2 maps exact pairs to exact pairs (indeed, A(x, x) =
(A(x, x)1, A(x, x)2) and, by the symmetry of A, A(x, x)1 = A(x, x)2). If A is an approximating
operator and O is an operator on L such that for every x ∈ L A(x, x) = (O(x), O(x)), then A
is an approximating operator for O. We denote the set of all approximating operators on L2

by Appx (L2) and the set of all approximating operators for an operator O on L by Appx (O).
Let A : L2 → L2 be an approximating operator. It is easy to see that for every y ∈ L, the

operator A(·, y)1 (defined on L) is ≤-monotone. Thus, it has a least fixpoint. For every y ∈ L,
we define CA(y) = lfp(A(·, y)1) or, equivalently (as A is symmetric), CA(y) = lfp(A(y, ·)2). We
call the operator CA(x, y) = (CA(y), CA(x)) the stable operator for A.

In [DMT00a], we proved that all fixpoints of CA are also fixpoints of A and called them
stable fixpoints of A. Furthermore, we proved that CA is ≤p-monotone. Thus, it has a least
fixpoint (with respect to ≤p). We called this fixpoint the well-founded fixpoint of A.

We showed in [DMT00a] that if A : L2 → L2 is an approximating operator then for every
(x, y) ∈ Lc, A(x, y) ∈ Lc. It follows that the restriction of A to Lc is an operator on Lc.
We will denote this operator by Ac. It follows directly from the relevant definitions that if
A : L2 → L2 is an approximating operator, then Ac is a consistent approximating operator
and, since A(x, x) = Ac(x, x), the two operators approximate the same operator on the lattice
L.

We will now establish a correspondence between consistent fixpoints of A and fixpoints of
Ac. We start with a lemma which shows that on Ac-prudent pairs, the stable operator of A
and the stable revision operator of Ac coincide.

Lemma 4.1 Let A be an approximating operator. A consistent pair (x, y) is Ac-prudent if
and only if (x, y) ≤p A(x, y) and x ≤ CA(y). Moreover, if (x, y) is Ac-prudent then CA(x, y) =
(yAc↓, xAc↑).

Proof: Let us assume that (x, y) is Ac-prudent. Then (x, y) is Ac-reliable and, since Ac(x, y) =
A(x, y) for (x, y) ∈ Lc, (x, y) ≤p A(x, y). Further, Ac(·, y)1 is a monotone operator on [⊥, y].
Since for (x, y) ∈ Lc, Ac(x, y) = A(x, y), lfp(Ac(·, y)1) = lfp(A(·, y)1). Thus, x ≤ yAc↓ =
lfp(Ac(·, y)1) = lfp(A(·, y)1) = CA(y).

Conversely, let us assume that (x, y) ≤p A(x, y) and x ≤ CA(y). Since, A(x, y) = Ac(x, y),
it follows that (x, y) is Ac-reliable. Thus, yAc↓ is well defined and, reasoning as before, one can

4In this section we will always use the term consistent approximating operator for approximating operators
on L

c and approximating operator for approximating operators on L
2.
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show that yAc↓ = lfp(Ac(·, y)1) = lfp(A(·, y)1) = CA(y). Thus, x ≤ yAc↓ and, since (x, y) is
Ac-reliable, (x, y) is Ac-prudent.

Next we will prove the second part of the assertion. We proved earlier that if (x, y) is
Ac-prudent, then yAc↓ = CA(y). Let us now observe that, by Ac-reliability of (x, y), Ac(x, ·)2
is a monotone operator on [x,⊤]. Since xAc↑ is a fixpoint of Ac(x, ·)2 (viewed as an operator
on [x,⊤]), (x, xAc↑) is consistent and xAc↑ is a fixpoint of A(x, ·)2. Thus, lfp(A(x, ·)2) ≤ xAc↑

and CA(x) = lfp(A(·, x)1) = lfp(A(x, ·)2) ≤ x
Ac↑.

We will now show that xAc↑ ≤ CA(x). By the ≤p-monotonicity of A and since x ≤ y, for
every u ∈ L, A(u, y)1 ≤ A(u, x)1. In particular, if u is a pre-fixpoint of A(·, x)1 (that is, if
A(u, x)1 ≤ u), u is a pre-fixpoint of A(·, y)1. Thus, CA(x), which is a pre-fixpoint of A(·, x)1
(the least pre-fixpoint, in fact), is a pre-fixpoint of A(·, y)1. Since CA(y) is the least pre-fixpoint
of A(·, y)1, CA(y) ≤ CA(x).

Since (x, y) is Ac-prudent, by the first part of the assertion, x ≤ CA(y) ≤ CA(x). Thus,
(x,CA(x)) is consistent. By the definition of CA(x), CA(x) = A(CA(x), x)1 = A(x,CA(x))2 =
Ac(x,CA(x))2, the last equality follows by the consistency of (x,CA(x)). Thus, CA(x) is a
fixpoint of Ac(x, ·)2 and, consequently, xAc↑ ≤ CA(x). 2

The next theorem summarizes the relationship between consistent fixpoints of an approx-
imating operator A on L2 and fixpoints of a consistent approximating operator Ac on Lc. In
our discussion when we refer to stable fixpoints of an approximating operator, we treat them
according to their definition given in [DMT00a] and reviewed above. Similarly, when we refer
to stable fixpoints of a consistent approximating operator, we understand them according to
their definitions specified in this paper. In addition, with some abuse of notation we write w(A)
and w(Ac) to denote well-founded fixpoints of A and Ac, even though formally the definitions
are different.

Theorem 4.2 Let L be a complete lattice and let A : L2 → L2 be an approximating operator.
Then,

1. A consistent pair (x, y) is a fixpoint of A if and only if (x, y) is a fixpoint of Ac.

2. The least fixpoints of A and Ac coincide. In other words, k(A) = k(Ac).

3. A consistent pair (x, y) is a stable fixpoint of A if and only if it is a stable fixpoint of Ac.

4. The well-founded fixpoints of A and Ac coincide. In other words, w(A) = w(Ac).

Proof: It is a straightforward consequence of the definitions that the set of consistent fixpoints
of A and the set of fixpoints of Ac (which are consistent by definition) coincide. It follows that
lfp(A) ≤p lfp(Ac). Since the set of consistent pairs, Lc forms an initial segment of 〈L2,≤p〉,
lfp(A) is consistent. Consequently, the least fixpoints of A and Ac coincide as well (we recall
that we refer to these least fixpoints as Kripke-Kleene fixpoints). Thus, the assertions (1) and
(2) follow.
(3) If a consistent pair (x, y) is a stable fixpoint of A, x = CA(y). By Lemma 4.1, (x, y) is
Ac-prudent and a fixpoint of the stable revision operator of Ac. Conversely, if (x, y) is a stable
fixpoint of Ac, then it is Ac-prudent and, by Lemma 4.1, it is a stable fixpoint of A.
(4) Clearly, w(Ac) is consistent and so, by (3), it is a stable fixpoint of A. Since w(A) is a
least stable fixpoint of A, w(A) ≤p w(Ac). Consequently, w(A) is consistent. Again by (3),
w(A) is a stable fixpoint of Ac. Therefore, w(Ac) ≤p w(A). Thus, w(Ac) = w(A). 2
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It follows from the results presented so far that the concept of a consistent stable fixpoint
of an approximating operator can be given an equivalent characterization in terms of the
definition of a stable fixpoint of the consistent restriction of A, the operator Ac. We will
now study the converse problem: can stable fixpoints of a consistent approximating operator
(including its well-founded fixpoint) be studied and characterized in the setting of the theory
of approximating operators developed in [DMT00a]? To resolve this question we will show that
every consistent approximating operatorA can be viewed as a restriction of some approximating
operator B to Lc.

Let A ∈ Appx (Lc). We say that an operator B on L2 extends A if A = Bc, that is, if A is
the restriction of B to Lc. We will now study two fundamental questions concerning consistent
approximating operators: given a consistent approximating operator A, (1) can A be extended
to an approximating operator on the bilattice, and (2) is the extension unique?

We will start by constructing, given a consistent approximating operator C on Lc, two
operators C+ and C− on L2, and by showing that each of them is an approximating operator
that extends C. To this end, for an element (x, y) ∈ L2 we define

Cons(x, y) = {(a, b) ∈ Lc : (a, b) ≤p (x, y)}.

Next, for every (x, y) ∈ L2, we define C+(x, y) = (C+(x, y)1, C
+(x, y)2) as follows:

C+(x, y)1 =

{

C(x, y)1 if x ≤ y
∧

{C(a, b)2 : (a, b) ∈ Cons(y, x)} otherwise.

We complete the definition by setting C+(x, y)2 = C+(y, x)1.
Similarly, we define an operator C− on L2 as follows:

C−(x, y)2 =

{

C(x, y)2 if x ≤ y
∨

{C(a, b)1 : (a, b) ∈ Cons(y, x)} otherwise.

As before, we complete the definition by setting C−(x, y)1 = C−(y, x)2. We have the following
result.

Theorem 4.3 Let C : Lc → Lc be a consistent approximating operator. The operators C−

and C+ are approximating operators on L2 and each of them extends C.

Proof: We will prove the result for the operator C+ only. The case of the operator C− can be
established by a similar argument.

It follows directly from the definition that C+ is symmetric. We will now show that C+ is
≤p-monotone. Let (x, y), (x′, y′) be two elements of L2 such that (x, y) ≤p (x′, y′). Since C+ is
symmetric, to prove ≤p-monotonicity of C+ it is enough to show that C+(x, y)1 ≤ C

+(x′, y′)1.
To this end, we will consider the following three cases.
Case 1. Both pairs (x, y) and (x′, y′) are consistent. In this case,

C+(x, y)1 = C(x, y)1 ≤ C(x′, y′)1 = C+(x′, y′)1.

Case 2. The pair (x, y) is consistent and the pair (x′, y′) is inconsistent. Let (a, b) ∈
Cons(y′, x′). Then, since (x, y) ≤p (x′, y′),

a ≤ y′ ≤ y and x ≤ x′ ≤ b.
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Since x ≤ y and a ≤ b, it follows that a ∨ x ≤ y and a ∨ x ≤ b. Thus,

(x, y) ≤p (a ∨ x, a ∨ x) and (a, b) ≤p (a ∨ x, a ∨ x).

Consequently,

C+(x, y)1 = C(x, y)1 ≤ C(x ∨ a, x ∨ a)1 = C(x ∨ a, x ∨ a)2 ≤ C(a, b)2.

Thus, since (a, b) is an arbitrary element of Cons(y′, x′), we have

C+(x, y)1 ≤
∧

{C(a, b)2 : (a, b) ∈ Cons(y′, x′)} = C+(x′, y′)1.

Case 3. Both pairs (x, y) and (x′, y′) are inconsistent. Since (x, y) ≤p (x′, y′), we have
(y′, x′) ≤p (y, x). Thus, Cons(y′, x′) ⊆ Cons(y, x) and

C+(x, y)1 =
∧

{C(a, b)2 : (a, b) ∈ Cons(y, x)}

≤
∧

{C(a, b)2 : (a, b) ∈ Cons(y′, x′)} = C+(x′, y′)1.

The cases (1) - (3) exhaust all possibilities for pairs (x, y) and (x′, y′), where (x, y) ≤p

(x′, y′). Thus, C+ is ≤p-monotone. To complete the proof, it remains to show that C+

extends C. Let (x, y) ∈ Lc. By the definition of C+, we have C(x, y)1 = C+(x, y)1. Next, we
observe that (x, y) is the greatest element in Cons(x, y). By ≤p-monotonicity of C,

C+(y, x)1 =
∧

{C(a, b)2 : (a, b) ∈ Cons(x, y)} = C(x, y)2.

Thus, C+(x, y)2 = C+(y, x)1 = C(x, y)2 and consequently, for every (x, y) ∈ Lc, C+(x, y) =
(C+(x, y)1, C

+(x, y)2) = (C(x, y)1, C(x, y)2) = C(x, y). 2

The two approximating operators C− and C+ are not arbitrary. They provide boundaries
for the space of approximating operators extending a consistent approximating operator C
with respect to the second ordering in the product bilattice L2, that is, the componentwise
extension of the lattice ordering ≤ to L2 (cf. Section 2). By somewhat abusing the notation,
we use the same symbol, ≤, to denote this ordering of L2. We now have the following result.

Theorem 4.4 If C is a consistent approximating operator and A is an approximating operator
extending C, then for each (x, y) ∈ L2, C−(x, y)1 ≤ A(x, y)1 ≤ C+(x, y)1 and C−(x, y)2 ≤
A(x, y)2 ≤ C+(x, y)2. In other words, in the notation introduced above: C−(x, y) ≤ A(x, y) ≤
C+(x, y).

Proof: If x ≤ y, the assertion follows from the fact that C−, C+ and A all extend C and,
consequently, they all coincide on (x, y). If x ≥ y then, by symmetry, C−, C+ and A all
coincide on (x, y) and the assertion follows in this case, as well.

To complete the proof, let us consider a pair (x, y) ∈ L2 such that neither x ≤ y nor x ≥ y
holds. Let (a, b) ∈ Cons(y, x). Since (a, b) ≤p (y, x) and A is symmetric and ≤p-monotone, we
have:

A(x, y)1 = A(y, x)2 ≤ A(a, b)2 = C+(a, b)2
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(the last equality follows by the fact that A and C+ coincide on consistent pairs). Since (a, b)
is an arbitrary element of Cons(y, x), we obtain

A(x, y)1 ≤
∧

{C+(a, b)2 : (a, b) ∈ Cons(y, x)} = C+(x, y)1.

The inequality C−(x, y)1 ≤ A(x, y)1 can be proved in the same way.
The inequalities involving A(x, y)2 follow directly from those of A(x, y)1 and the symmetry

of C−, A and C+. 2

We now turn to the question of the uniqueness of the extension. Theorem 4.4 and its proof
imply the following result.

Corollary 4.5 Let C ∈ Appx (Lc). If C− = C+ then there is only one approximating operator
in Appx (L2) that extends C. In particular, if the ordering ≤ on L is linear, then C− = C+

and C has a unique extension to an approximating operator in Appx (L2).

Corollary 4.5 exhibits conditions under which a consistent approximating operator admits
a unique extension to an approximating operator. In general, however, the extension is not
unique. Let L be the four-element lattice shown in Figure 1. We define an operator on Lc as
follows:

C(x, y) =

{

(⊥,⊤) if x < y
(x, x) if x = y

It is evident that the operator C is ≤p-monotone and exact. Thus, C is a consistent approxi-
mating operator on Lc.

We will show that the operators C− and C+ do not coincide. To this end, we will compute
C−(p, q) and C+(p, q). First, we observe that Cons(q, p) = {(⊥,⊤), (⊥, p), (q,⊤)}. By the
definition,

C−(p, q)2 = C(⊥,⊤)1 ∨ C(⊥, p)1 ∨ C(q,⊤)1 = ⊥.

Similarly, C−(p, q)1 = C−(q, p)2 = ⊥. Thus, C−(p, q) = (⊥,⊥). In the same way,

C+(p, q)1 = C(⊥,⊤)2 ∧ C(⊥, p)2 ∧ C(q,⊤)2 = ⊤

and C+(p, q)2 = ⊤. Thus, C+(p, q) = (⊤,⊤) and, consequently, C−(p, q) 6= C+(p, q).
Lack of uniqueness of an extension is not a problem as long as we are interested in con-

sistent fixpoints and stable fixpoints. Since for every two extensions A and B of a consistent
approximating operator C, A and B coincide on Lc (Ac = Bc = C), Theorem 4.2 implies that
consistent fixpoints (including the Kripke-Kleene fixpoints) and consistent stable fixpoints (in-
cluding the well-founded fixpoints) of A and B coincide. Thus, the choice of a particular
extending approximating operator is not essential, as long as we limit our interest to con-
sistent fixpoints. In other words, it follows from Theorems 4.2 and 4.3 that the theories of
fixpoints and stable fixpoints developed in this paper and in [DMT00a] are equivalent for the
most interesting and important case when consistency of fixpoints is required. Consequently,
they are equivalent in their ability to approximate fixpoints of lattice operators.

We end this section with a reflection on differences between the two approaches to the theory
of approximating operators. When considering consistent approximations, that is, operators
defined on Lc only, we introduce one revision operator to compute a suitable upper bound from
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a given lower bound, and another revision operator, with different underlying intuitions, to
compute a suitable lower bounds from a given upper bound. These two operators are partial,
that is, defined on only some pairs in Lc. Consequently, proofs often require tedious analysis
concerning whether a revision of an approximation is well-defined, or whether it is consistent.
The strength of this approach is that all notions have a compelling intuitive appeal.

When we consider approximating operators defined on the bilattice L2, all technical diffi-
culties mentioned above disappear. We define a single stable operator and use it when revising
both the lower and the upper bounds of the present approximation. As a result the whole
theory and, in particular, proofs, get significantly simpler. However, on the intuitive level, this
theory gives little insight. It does not explain what motivates the way the stable operator is
defined.

The existence of two equivalent theories providing trade-offs between mathematical elegance
and intuitive appeal is useful — it allows us to proceed on an intuitive level, knowing that
a natural and elegant mathematical constructions can be provided in a properly constructed
superstructure.

5 Ultimate approximations

In this section we will study ways to order approximations. To this end, we will again restrict
our attention to consistent approximations only. Let A,B ∈ Appx (Lc). We say that A is less
precise than B (A ≤p B, in symbols) if for each pair (x, y) ∈ Lc, A(x, y) ≤p B(x, y). It is easy
to see that if A ≤p B then they approximate the same operator O on the lattice L.

Lemma 5.1 Let L be a complete lattice and A,B ∈ Appx (Lc). If A ≤p B and (a, b) ∈ Lc is
A-prudent then (a, b) is B-prudent and (bA↓, aA↑) ≤p (bB↓, aB↑).

Proof: Clearly, (a, b) ≤p A(a, b) ≤p B(a, b) (the first inequality follows by A-reliability of
(a, b)). Thus, (a, b) is B-reliable.

Since (a, b) is both A- and B-reliable, the least fixpoints bA↓ and bB↓ are well-defined. For
each x ∈ L such that x ≤ b, if x is a pre-fixpoint of B(·, b)1, then A(x, b)1 ≤ B(x, b)1 ≤ x.
Consequently, x is a pre-fixpoint of A(·, b)1. It follows that bA↓ ≤ bB↓. Since a ≤ bA↓, a ≤ bB↓.
Thus (a, b) is B-prudent.

In a similar way one can prove that aB↑ ≤ aA↑. We already proved above that bA↓ ≤ bB↓.
Thus, it follows that (bA↓, aA↑) ≤p (bB↓, aB↑). 2

More precise approximations have more precise Kripke-Kleene and well-founded fixpoints.

Theorem 5.2 Let L be a complete lattice and let A,B ∈ Appx (Lc). If A ≤p B then k(A) ≤p

k(B) and w(A) ≤p w(B).

Proof: Since A ≤p B,
A(k(B)) ≤p B(k(B)) = k(B).

Therefore, k(B) is a pre-fixpoint of A. Since k(A) is the least pre-fixpoint of A, it follows that
k(A) ≤p k(B).

To prove the second part of the assertion, let us consider the sequences {(aα
A, b

α
A)}α∈Ord and

{(aα
B, b

α
B)}α∈Ord used to define he well-founded fixpoints of A and B, respectively. To prove

the assertion, it suffices to show that for every ordinal α, (aα
A, b

α
A) ≤p (aα

B, b
α
B).
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Clearly, (a0
A, b

0
A) ≤p (a0

B, b
0
B). Let us assume that α = β + 1 and that (aβ

A, b
β
A) ≤p (aβ

B, b
β
B).

By Proposition 3.9,

((bβA)B↓, (aβ
A)B↑) ≤p ((bβB)B↓, (aβ

B)B↑) = (aα
B, b

α
B).

Since (aβ
A, b

β
A) is A-prudent, Lemma 5.1 entails that it is B-prudent and

(aα
A, b

α
A) = ((bβA)A↓, (aβ

A)A↑) ≤p ((bβA)B↓, (aβ
A)B↑).

The case of the limit ordinal α is straightforward. 2

The next result shows that as the precision of an approximation grows, all exact fixpoints
and exact stable fixpoints are preserved.

Theorem 5.3 Let L be a complete lattice and let A,B ∈ Appx (Lc). If A ≤p B then every
exact fixpoint of A is an exact fixpoint of B, and every exact stable fixpoint of A is an exact
stable fixpoint of B.

Proof: Since for every x ∈ L, A(x, x) = B(x, x), the first part of the assertion follows. Let
us now assume that (x, x) is an exact stable fixpoint of A. In particular, it follows that (x, x)
is a fixpoint of A and is A-prudent. By Lemma 5.1, (x, x) is B-prudent. Consequently, by
Proposition 3.13(4), x is a B-stable fixpoint of O. 2

Corollary 5.4 Let L be a complete lattice and let A,B ∈ Appx c(O). If A ≤p B. Then every
A-stable fixpoint of O is a B-stable fixpoint of O.

Non-exact fixpoints are not preserved, in general. For instance, let us consider two con-
sistent approximations A and B such that A ≤p B. Let us also assume that w(A) <p w(B).
That is, A has a strictly less precise well-founded fixpoint than B. Then, clearly, w(A) is no
longer a stable fixpoint of B.

We note that a well-founded fixpoint of an approximation yields a bound on its exact
stable fixpoints. It is worth noting that more precise approximations yield a larger set of exact
stable fixpoints (Theorem 5.3) and, at the same time, more precise bounds on this set in terms
of the well-founded fixpoint (Theorem 5.2). Moreover, the well-founded fixpoint of a more
precise operator also provides correct approximations for exact stable fixpoints of a less precise
operator.

It is an important question whether there exists an ultimate approximation of O, that
is, a consistent approximation most precise with respect to the ordering ≤p. This ultimate
approximation, if existed, would have a most precise Kripke-Kleene and well-founded fixpoints
and a largest set of exact stable fixpoints. Such ultimate approximation, being a distinguished
object in the collection of all approximations of O can be viewed as determined by O itself.
Consequently, fixpoints of the ultimate approximation of O (including stable, Kripke-Kleene
and well-founded fixpoints) could be regarded as determined by O and would be associated
with it. We will show that the answer to this key question is positive. That is, we will show
that for every operator O on a complete lattice, the set Appx c(O) has the greatest element
with respect to ≤p.

We start by providing a non-constructive argument for the existence of ultimate approx-
imations. Let us note that the set Appx c(O) is not empty. Indeed, let us define AO(x, y) =
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(O(x), O(x)), if x = y, and AO(x, y) = (⊥,⊤), otherwise. It is easy to see that AO ∈ Appx c(O)
and that it is the least precise element in Appx c(O). Next, we observe that Appx c(O) with the
ordering ≤p forms a complete lattice, as the set Appx c(O) is closed under the operations of
taking greatest lower bounds and least upper bounds. It follows that Appx c(O) has a greatest
element (most precise approximation). We call this consistent approximation the (consistent)
ultimate approximation of O and denote it by UO.

We call the Kripke-Kleene and the well-founded fixpoints of UO, the ultimate Kripke-Kleene
and the ultimate well-founded fixpoint of O. We denote them by k(O) and w(O), respectively.
We call an exact stable fixpoint of UO an ultimate stable fixpoint of O. Exact fixpoints of
all consistent approximations are the same and correspond to fixpoints of O. Thus, there is
no need to introduce the concept of an ultimate exact fixpoint of O. We have the following
corollary to Theorems 5.2 and 5.3.

Corollary 5.5 Let O be an operator on a complete lattice L. For every A ∈ Appx c(O) we
have:

1. k(A) ≤p k(O) and w(A) ≤p w(O),

2. For every A-stable fixpoint x of O, x is an ultimate stable fixpoint of O and w(O)1 ≤
x ≤ w(O)2.

We will now provide a constructive characterization of the notion of ultimate approxima-
tion. To state the result, for every x, y ∈ L such that x ≤ y, we define O([x, y]) = {O(z) : z ∈
[x, y]}.

Theorem 5.6 Let O be an operator on a complete lattice L. Then, for every (x, y) ∈ Lc,
UO(x, y) = (

∧

O([x, y]),
∨

O([x, y])).

Proof: We define an operator C : Lc → L2 by setting

C(x, y) = (
∧

O([x, y]),
∨

O([x, y])).

First, let us notice that since
∧

O([x, y]) ≤
∨

O([x, y]), the operator C maps Lc into Lc.
Moreover, it is easy to see that C is ≤p-monotone. Lastly, since O([x, x]) = {O(x)},

∧

O([x, x]) =
∨

O([x, x]) = O(x)

and, consequently, C(x, x) = (O(x), O(x)). Thus, it follows that C is a consistent approxima-
tion of O. Since UO is the most precise approximation, we have C ≤p UO.

On the other hand, let (x, y) ∈ Lc and let z ∈ [x, y]. Then, since UO is an approximat-
ing operator for O, UO(x, y) ≤p (O(z), O(z)). Thus, UO(x, y)1 ≤ O(z) and, consequently,
UO(x, y)1 ≤

∧

O([x, y]). Similarly,
∨

O([x, y]) ≤ UO(x, y)2. Since x ≤ y are arbitrary,
UO ≤p C, as desired. 2

We will now provide characterizations of UO-reliable pairs and of the stable revision oper-
ator for UO.

Theorem 5.7 Let O be an operator on a complete lattice L. Then:
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1. A pair (a, b) ∈ Lc is UO-reliable if and only if O([a, b]) ⊆ [a, b]

2. If (a, b) ∈ Lc is UO-reliable, bUO↓ is the limit of the following sequence: a0 = ⊥, aα+1 =
∧

O([aα, b]) and aα =
∨

{aβ : β < α}, for limit α; and aUO↑ is the least b such that [a, b]
is UO-reliable (or, equivalently, such that O([a, b]) ⊆ [a, b]).

As a consequence to Theorem 5.6 and Proposition 3.13, we obtain the following character-
ization of ultimate stable fixpoints of an operator O.

Corollary 5.8 Let L be a complete lattice. An element x ∈ L is an ultimate stable fixpoint
of an operator O : L→ L if and only if x = lfp(

∧

O([·, x])), where we regard
∧

O([·, x]) as an
operator on [⊥, x].

The following proposition describes the ultimate approximations for monotone and anti-
monotone operators on L.

Proposition 5.9 If O is a monotone operator on a complete lattice L then for every (x, y) ∈
Lc, UO(x, y) = (O(x), O(y)). If O is antimonotone then for every (x, y) ∈ Lc, UO(x, y) =
(O(y), O(x)).

Proof: By Theorem 5.6,

UO(x, y) = (
∧

O([x, y]),
∨

O([x, y])).

Now, it is easy to see that if O is monotone, then
∧

O([x, y]) = O(x) and
∨

O([x, y]) = O(y).
If O is antimonotone, then

∧

O([x, y]) = O(y) and
∨

O([x, y]) = O(x). Thus the proposition
follows. 2

Using Proposition 5.9 we now obtain the following corollary. The first part of the assertion
provides support to our earlier claim that the theory of ultimate approximations generalizes
Tarski’s least-fixpoint theory of monotone lattice operators to the case of arbitrary ones.

Corollary 5.10 Let O be an operator on a complete lattice L. If O is monotone, then the
least fixpoint of O is the ultimate well-founded fixpoint of O and the unique ultimate stable
fixpoint of O. If O is antimonotone, then k(O) = w(O) and every fixpoint of O is an ultimate
stable fixpoint of O.

The ultimate approximation operator for a lattice operator O provides us with the most
precise estimates on fixpoints O. The question arises then about the role of less precise ap-
proximations. We will now argue that in several situations they may be useful. For instance,
it may be the case that computing the well-founded and stable fixpoints of some less precise
approximation, say A, is more tractable than computing their ultimate counterparts. In such
case, in order to compute the ultimate well-founded fixpoint of O we can first compute the
well-founded fixpoint of A. The well-founded fixpoint of A is, in general, less precise than the
ultimate well-founded fixpoint. However, in some cases the two may coincide. Even if they
are not the same, knowing the well-founded fixpoint of A may speed up computation of the
ultimate well-founded fixpoint (as the well-founded fixpoint of A provides some information
about the ultimate well-founded fixpoint). Similarly, if we just want to find a single ultimate
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stable fixpoint of O, we might first try to search for an A-stable fixpoint of O. If we find one,
it is also an ultimate stable fixpoint of O and we are done. Only if A-stable fixpoints do not
exist, we would have to deal with the more complex task of directly computing the ultimate
stable fixpoints of O.

The following result provides some sufficient conditions under which it is enough to consider
a less precise approximation in order to compute ultimate fixpoints of an operator O.

Corollary 5.11 Let A be any element in the family of approximations of a lattice operator O.

1. If k(A) is exact then it is the ultimate Kripke-Kleene, the ultimate well-founded and the
unique ultimate stable fixpoint of O.

2. If w(A) is exact then it is the ultimate well-founded and the unique ultimate stable fixpoint
of O.

The next corollary shows that when different approximations are used to study an operator
O, the results will not be inconsistent with each other.

Corollary 5.12 Let A,B be two approximations of a lattice operator O.

1. k(A) ∨ k(B) is consistent and approximates all fixpoints of O.

2. w(A) ∨ w(B) is consistent.

3. Each of w(A), w(B) and w(A) ∨ w(B) approximates all elements of Lc that are stable
fixpoints of both A and B, and all ultimate stable fixpoints of O.

We end this section with a discussion of the notion of ultimate approximation in the context
of bilattice approximation operators (rather than consistent approximating operators). Let us
consider two approximating operators A and B (defined on L2). We say that B is more precise
than A (A ≤p B, in symbols) if for every consistent pair (x, y), A(x, y) ≤p B(x, y). The
restriction to consistent pairs is essential. Due to symmetry of approximating operators, if
x ≤ y then

A(x, y) ≤p B(x, y) if and only if B(y, x) ≤p A(y, x).

Thus, we cannot require that A(x, y) ≤p B(x, y) hold for every pair (x, y). We also note that
the precision ordering ≤p on Appx (L2) is reflexive and transitive but not antisymmetric. It
is then a pre-order relation and not an order relation, as in the case of the precision ordering
on consistent approximations. This difference is not essential. The pre-order on the set of
approximating operators gives rise to an order relation on the set of equivalence classes of the
relation ≡, defined as follows: an approximating operator A is equivalent to an approximating
operator B (A ≡ B) if and only if Ac = Bc. In fact, the resulting partially ordered set
is isomorphic to the partially ordered set of consistent approximating operators considered
earlier in this section.

Let O : L→ L be an operator on L. We call an operator U on L2 an ultimate approximating
operator for O if U is an approximating operator for O and if for every approximating operator
B for O such that U ≤p B, U c = Bc. It is easy to see that any approximating operator
extending the (consistent) ultimate approximating operator, as defined earlier in the section,
is an ultimate approximating operator. The following result is a straightforward consequence
of the fact that approximating operators are, by definition, symmetric.
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Theorem 5.13 An operator U : L2 → L2 is an ultimate approximating operator for an oper-
ator O : L→ L if and only if U is an extension of the (consistent) ultimate approximation for
O.

Theorem 5.13 implies that ultimate fixpoints and ultimate stable fixpoints can be studied in
the setting of approximating operators by means of algebraic techniques from [DMT00a].

6 Ultimate semantics for logic programming

In this section, we apply ultimate approximations to propositional logic programming. We
derive explicit characterizations of ultimate semantics for logic programs, study their properties
and establish the complexity of decision problems concerned with the existence and computing
of ultimate models.

In order for the paper to be self-contained, we briefly review basic concepts pertaining to
logic programming. A propositional logic program P is a finite set of rules of the form p← B,
where p is a propositional atom called the head of the rule, and B is a finite conjunction of
literals, that is, atoms and their negations. We call this conjunction the body of the rule. We
denote the set of atoms that appear in P by At(P ).

We often write logic programs in their normal form [Cla78, Fit85]. Let P be a logic program
and let p be an atom appearing in P . By BP (p) we mean a disjunction of the bodies of all
rules in P with the head p (when p does not appear as the head of a rule, this disjunction is
empty, and so contradictory). A collection of rules p← BP (p), where p ranges over all atoms
of P , is the normal form of P .

A 2-valued interpretation (or, simply, an interpretation) is a total function from the set of
atoms occurring in a program P to the set of truth values {t, f}. A 3-valued interpretation
is a total function from the atoms to the set {t, f,u}. These truth values are ordered by the
truth order f ≤t u ≤t t and by the precision order u ≤p f, u ≤p t. Both orders have point-wise
extensions to the collection of all 3-valued interpretations.

The complements of the three truth values are defined as f−1 = t, t−1 = f and u−1 = u. A
3-valued interpretation K can be extended, by standard recursion, to all formulas:

vK(ϕ) =















K(ϕ) if ϕ is an atom
min≤t{vK(ψ1), vK(ψ2)} if ϕ = ψ1 ∧ ψ2

max≤t{vK(ψ1), vK(ψ2)} if ϕ = ψ1 ∨ ψ2

vK(ψ)−1 if ϕ = ¬ψ.

We observe that if K is 2-valued, then vK is also 2-valued (and coincides with the standard
extension of K to all formulas in the 2-valued case). We define K |= ϕ if vK(ϕ) = t. The
following proposition is well known.

Proposition 6.1 If K ≤p K
′, then for each formula ϕ, vK(ϕ) ≤p vK′(ϕ).

The collections of 2-valued and 3-valued interpretations can be considered within the lattice-
based framework. Following a common convention, we identify a 2-valued interpretation I with
the set of atoms that are true in I. The set of interpretations, with the order defined by the
inclusion relation, forms a complete lattice. In particular, ∅ and the set of all atoms from P
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are the least and the greatest elements in this lattice. Furthermore, the greatest lower bound
and the least upper bound of a set S of interpretations are given by the intersection

⋂

S and
the union

⋃

S, respectively.
We identify a 3-valued interpretation K with a pair (I, J) of 2-valued interpretations of P ,

where
I = {a : K(a) = t} and J = {a : K(a) = t or u}.

Clearly, I ⊆ J . Moreover, given a pair of 2-valued interpretations (I, J), where I ⊆ J (a
consistent pair (I, J)). One can define

K(a) =







t if a ∈ I
f if a /∈ J
u otherwise.

Thus, each 3-valued interpretation K determines a unique pair (I, J) such that I ⊆ J and
conversely. It follows that the set of 3-valued interpretations can be identified with the set
Lc, where L is the lattice of 2-valued interpretations (with the inclusion as the lattice order).
Moreover, the precision order ⊆p on Lc coincides with the precision order ≤p on 3-valued
interpretations (that is, the point-wise extension of the precision order on the set of truth
values {t, f,u}). Since L is a complete lattice, 〈Lc,⊆p〉 is a chain-complete poset.

Each logic program P determines a special operator on the lattice of interpretations. We
call this operator the immediate consequence operator or the van Emden-Kowalski operator
and denote it by TP [vEK76, AvE82]. For an interpretation I, we define TP (I) as follows:

TP (I) = {p : p← B ∈ P and I |= B}.

All major 2-valued semantics of logic programming, including the supported-model [Cla78,
AvE82] and stable-model semantics [GL88], are defined as classes of fixpoints of the operator
TP .

Some logic programs do not have any 2-valued supported or stable models. To handle such
programs, researchers introduced 3-valued semantics [Fit85, Kun87, VRS91]. These semantics
can be described in terms of fixpoints of the 3-valued immediate consequence operator TP of
P , defined on the poset Lc of 3-valued interpretations [Kun87, Fit85]. For an interpretation
(I, J), where I ⊆ J , we set TP (I, J) = (I ′, J ′), where

I ′ = {p : for some p← B ∈ P, v(I,J)(B) = t}

and
J ′ = {p : for some p← B ∈ P, v(I,J)(B) = t or u}.

It is evident that I ′ ⊆ J ′, that is, TP is indeed an operator on Lc. This definition extends to
programs given in the normal form. If Q is a normal form of a program P , then TQ = TP and
TQ = TP .

It follows directly from the definitions that TP is exact and ⊆p-monotone. Moreover, for
every 2-valued interpretation I, TP (I, I) = (TP (I), TP (I)). Thus, TP is an approximating
operator for TP . Moreover, it turns out that its Kripke-Kleene, supported, well-founded and
stable fixpoints determine precisely the corresponding semantics of the program P [DMT00a].

The operator TP does not depend on TP but on P and there is no algebraic derivation of TP
from TP . We will now consider the ultimate approximation to the operator TP , which can be

25



constructed in a purely algebraic way from TP , following the technique we described in Section
5. We will then introduce the corresponding ultimate semantics and study their properties.

Let P be a logic program. We denote by UP the ultimate approximating operator for the
operator TP . It is an operator on pairs (I, J) of 2-valued interpretations such that I ⊆ J or
equivalently on 3-valued interpretations. By specializing Theorem 5.6 to the operator TP we
obtain that for every two interpretations I and J such that I ⊆ J ,

UP (I, J) = (
⋂

TP ([I, J ]),
⋃

TP ([I, J ])).

Replacing the ultimate approximating operator UO in the definitions of ultimate Kripke-Kleene,
well-founded and stable fixpoints with UP results in the corresponding notions of ultimate
Kripke-Kleene, well-founded and stable models (semantics) of a program P .

The operator UP is defined algebraically in terms of the TP operator. It turns out that this
operator and its ≤p-precise fixpoint were introduced earlier in [Fit94] in a more standard way
using an alternative truth valuation. For any consistent pair (I, J), the supervaluation vsv

(I,J)

is defined as follows [vFr66]:

vsv
(I,J)(ϕ) =







t if for each K ∈ [I, J ], K |= ϕ
f if for each K ∈ [I, J ], K 6|= ϕ
u otherwise.

Clearly, for every atom a, v(I,J)(a) = vsv
(I,J)(a). Furthermore, since each K ∈ [I, J ], viewed

as a 3-valued interpretation, is more precise than (I, J), it follows from Proposition 6.1 that
v(I,J)(ϕ) ≤p vK(ϕ). Consequently, we obtain the following result.

Proposition 6.2 For every consistent pair (I, J) and every formula ϕ, v(I,J)(ϕ) ≤p v
sv
(I,J)(ϕ).

In [Fit94], Fitting used supervaluations to define the following operator ΦP : for every
consistent pair (I, J), ΦP (I, J) = (I ′, J ′), where

I ′ = {a : vsv
(I,J)(BP (a)) = t} and J ′ = {a : vsv

(I,J)(BP (a)) = t or u}.

This operator is the same as the ultimate approximating operator UP . This is proven in the
following proposition.

Proposition 6.3 For every consistent pair (I, J), UP (I, J) = ΦP (I, J).

Proof: For every atom a, a ∈
⋂

TP ([I, J ]) if and only if a ∈ TP (K), for every K ∈ [I, J ].
This is equivalent to the statement that K |= BP (a), for every K ∈ [I, J ] which, in turn, is
equivalent to vsv

(I,J)(BP (a)) = t. Similarly, one can show that a ∈
⋃

TP ([I, J ]) if and only if

vsv
(I,J)(BP (a)) 6= f. 2

We are now in a position to discuss commonsense reasoning intuitions underlying abstract
algebraic concepts of ultimate approximation and its fixpoints. We view consistent pairs (I, J)
of interpretations as approximations of interpretations K such that I ⊆ K ⊆ J . Let K be an
interpretation known to be approximated by the pair (I, J). The interpretation I represents
a lower bound and specifies atoms that are definitely true in K, while J represents an upper
bound and specifies the atoms that are possibly true in K. If an atom p is derived by applying
the operator TP to every interpretation in [I, J ], it can safely be assumed to be true in TP (K).
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Consequently, I ′ =
⋂

TP ([I, J ]) is a safe lower bound for TP (K). Similarly, if p can be derived
by the operator TP from at least one interpretation in [I, J ], it might be true in TP (K). Thus,
the set J ′ =

⋃

TP ([I, J ]), consisting of all such atoms, can be regarded as a safe upper bound
of TP (K). It follows that (I ′, J ′) = UP (I, J) is indeed well-motivated as an approximation of
TP (K).

In the case that interests us most, when K is a fixpoint of TP , it follows that if K is
approximated by (I, J), then it is also approximated by UP (I, J). Good approximations of
K are those consistent pairs (I, J) that are UP -reliable (that is, satisfy (I, J) ≤p UP (I, J)).
On a reliable approximation (I, J), the ultimate approximation acts as a revision operator
which improves the bounds on fixpoints K ∈ [I, J ] by providing a larger conservative estimate
U(I, J)1 and a smaller liberal estimate U(I, J)2. The pair (⊥,⊤) is UP -reliable and certainly
approximates all fixpoints of TP . By iterating UP starting at (⊥,⊤), we obtain the ultimate
Kripke-Kleene model of P as the least fixpoint of UP . This model approximates all fixpoints
of UP and, in particular, all exact fixpoints of UP , that is, fixpoints of TP (Proposition 3.1). It
follows that the ultimate Kripke-Kleene model of P approximates all supported models of P .

Often, however, the Kripke-Kleene model is too weak because we are not interested in all
supported models of P . Let us consider for example the program P0 = {p← p, q ← ¬p}. Its
operator TP0

coincides with the operator O that we discussed in Section 3. It is easy to see that
supported models of P0, that is, the fixpoints of TP0

, are {p} and {q}. In a supported model,
each true atom is supported, that is, each true atom occurs in the head of a rule with a true
body. We note that both models are minimal models. In the model {p}, p is self-supported in
the sense that there is no constructive argument for the truth of atom p: p is derived using
the rule p← p. On the other hand, in the model {q}, p is false by absence of support and q is
true because p is false. The goal underlying the well-founded and stable semantics is to accept
as true only those atoms which have such a constructive argument.

The key concept in approximation theory that we use to formalize this intuition is the stable
revision operator of UP . The stable revision operator revises every UP -reliable approximation
(I, J) by (JUP ↓, IUP ↑). First, we will explain that, under the assumption that J is an upper
bound, that is, all atoms false in J are definitely false, all atoms true in JUP ↓ have a constructive
argument and, so, are definitely true. Second, we will explain why, under the assumption that
I is a lower bound and all atoms in I are definitely true, atoms that are false in IUP ↑ can have
no constructive argument and hence, must be false.

Let (I, J) be a UP -reliable pair. We use J to construct a new lower bound consisting of
atoms that have a constructive argument. Our only basic assumption is that J is an upper
bound and atoms false in J are definitely false. In other words, J specifies atoms that are
possibly true. So, initially we do not preclude any interpretation contained in J . If some atom
p can be derived by applying the operator TP to every element of [⊥, J ] then, arguably, p
should be accepted as definitely true. The set of all these atoms is exactly

⋂

TP ([⊥, J ]). So,
this set can be taken as a safe new lower bound, giving a smaller interval [I1, J ] of possible
interpretations. We now repeat the same process and obtain a new lower bound, say I2,
consisting of those atoms that can be derived from every interpretation in [I1, J ]. It is given
by I2 =

⋂

TP ([I1, J ]). Clearly, I2 improves on I1. We iterate this process until a fixpoint JUP ↓

is reached. This fixpoint consists of all these atoms for which we have a constructive argument
that they are true, given that all atoms not in J are false. Thus, under this assumption, JUP ↓

provides a safe lower bound for the set of atoms the program should specify as true.
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We recall from Proposition 3.4 that each fixpoint K ⊆ J of TP is larger than JUP ↓. Let
us note that one cannot guarantee that JUP ↓ improves the lower bound I. However, if (I, J)
is prudent, then we know that I ⊆ JUP ↓. In the context of the example program P0, one can
verify easily that {p}↓ = ⊥ (that is, (p, p) is not UP -prudent). This shows that if we only
assume that q is false, there is no constructive argument for the truth of p. On the other
hand, we have {q}↓ = {q} (that is, (q, q) is UP -prudent), so assuming that p is false, we find a
constructive argument that q is true.

The reasoning for revising the upper bound is different. The goal now is to discover all the
atoms that, assuming that all the atoms in I are true, cannot possess a constructive argument.
The idea is to identify atoms that can be reached from I in the derivation process. Any atom
that cannot be reached must be false. Certainly, we have that all atoms in I are possibly
true (in fact, they are just true) and since all atoms in TP (I) can be derived from I, they are
possibly true as well. We define J1 = TP (I) = UP (I, I)2. Since (I, J) is UP -reliable, it follows
that I ⊆ J1. To find more possibly true atoms, we apply TP on all interpretations in [I, J1].
Each atom p that can be derived from at least one interpretation J ∈ [I, J1] could be possibly
true. The set J2 of all atoms that can be computed this way is exactly UP (I, J1)2 and we have
that J1 ⊆ J2. We can now iterate this process until the fixpoint IUP ↑ is reached. Since we
have exhausted all possible ways of deriving atoms (starting from I), each atom false in IUP ↑

cannot have a constructive argument and hence is definitely false. Thus, IUP ↑ yields a safe
upper bound. By an argument in Proposition 3.7, the new upper bound can be guaranteed to
be included in J .

Let us apply this method in the example P0. We start without assuming any atoms to be
true, that is, we start from ⊥ = ∅. Applying TP0

on ∅ yields J1 = {q}. Next we apply TP0

on [⊥, {q}] and take the union; this yields J2 = {q}. So we reached a fixpoint already and
discovered that p cannot be reached from ⊥ and hence is definitely false.

What do these intuitions imply for the different types of fixpoints of the stable revision
operator? The ultimate well-founded model is computed starting from (⊥,⊤), without making
any assumptions about what atoms are definitely true or definitely false. All atoms true in
that model have a constructive argument. All atoms false in it have no constructive argument
and may be taken as false. The arguments behind the truth and falsity of atoms in partial
and exact stable models are weaker as they are based on additional assumptions. In a partial
stable model (I, J), atoms in I have a constructive argument, under the assumption that the
atoms in J are the only possible atoms, and atoms not in J cannot possibly have a constructive
argument, given that atoms in I are true. An ultimate stable model I has the property that
it is precisely the set of atoms with a constructive argument, under the assumption that all its
false atoms are definitely false. This discussion demonstrates that abstract algebraic concepts
of ultimate approximations can be given a sound intuitive account.

The TP operator is a lattice operator and determines the family of its approximating
operators. One of these operators, the operator TP , underlies much of the standard theory
of normal logic programs. The operator TP is not the most precise approximation of TP . In
other words, in general it is different than the ultimate approximation of TP , the operator UP .
The operator UP generates the most precise notions of Kripke-Kleene, well-founded and stable
models of P . Exploiting the theory of fixpoints of approximating operators presented above,
we will now study properties of the ultimate semantics (that is, those determined by UP ) and
their relationship to the standard ones (that is, those determined by TP ).
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Theorem 6.4 Let P , P ′ be two programs such that TP = TP ′. Then, the ultimate well-founded
models and ultimate stable models of P and P ′ coincide.

Proof: Theorem 5.6 implies that UP = UP ′ . But then all fixpoints of UP and UP ′ coincide.
Thus, the result follows. 2

This assertion does not hold for the (standard) well-founded and stable models. For in-
stance, let P1 = {p ← p, p ← ¬p} and P2 = {p ←}. Clearly, TP1

= TP2
. However, P2 has a

stable model, {p}, while P1 has no stable models. Furthermore, p is true in the well-founded
model of P2 and unknown in the well-founded model of P1.

As a consequence to Theorem 6.4 we obtain the following corollary. It asserts that applying
equivalence preserving transformations to the bodies of rules preserves all the ultimate versions
of the semantics.

Corollary 6.5 Let P, P ′ be two programs. If for every atom p, the formula BP (p) ↔ BP ′(p)
is a tautology of propositional logic, then the ultimate Kripke-Kleene and well-founded models
and the ultimate stable models of P and P ′ coincide.

This property is not satisfied by the standard versions of the semantics. Let us consider
programs P1 and P2 that we discussed above and observe that BP1

(p)↔ BP2
(p) is a tautology.

At the same time, as we observed earlier, p is unknown in the well-founded model of P1 and is
true in the well-founded model of P2.

The behavior displayed by P1 and P2 is a special case of a more general pattern. Let
r = p ← B be a logic program rule. The complement splitting of r with respect to an atom
q is the set of two rules: p ← B, q and p ← B,¬q. The complement splitting of programs
is an operation consisting of a sequence of complement splittings of rules. If P ′ is the result
of complement splitting applied to a program P then for every atom p, BP (p) is logically
equivalent to BP ′(p).

One can show that if P ′ can be obtained from P by complement splitting, then TP ′ is
equal to or less precise than TP . This implies that P ′ has the same or weaker Kripke-Kleene
and well-founded models as P , and every stable model of P ′ is a stable model of P . Hence,
complement splitting yields programs that are “weaker” than the original ones (under the
semantics induced by TP ). Coming back to our example, one can see that P1 is the result of
applying complement splitting to P2.

Although standard and ultimate semantics differ, they are always consistent with each
other. The following corollary follows directly from Theorem 5.2.

Corollary 6.6 Let P be a logic program.

1. The Kripke-Kleene model of P is the same as or less precise than the ultimate Kripke-
Kleene model of P

2. The well-founded model of P is the same as or less precise than the ultimate well-founded
model of P

3. Every stable model of P is an ultimate stable model of P .

While in general the standard and ultimate semantics differ, in many cases they coincide.
One consequence of Corollary 5.11 is that if the well-founded model of a program is two-valued,
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then it coincides with the ultimate well-founded model. Thus, we have the following result
on the classes of Horn and weakly stratified programs (the class of programs introduced and
studied in [Prz90]):

Corollary 6.7 If a logic program P is a Horn program or a (weakly) stratified program, then
its ultimate well-founded semantics coincides with the standard well-founded semantics.

Another condition implying equality of the standard and ultimate semantics is the mono-
tonicity of the TP operator. The following result is a consequence of Proposition 5.10.

Corollary 6.8 Let P be a program such that TP is a monotone operator. The least Herbrand
model of P is the ultimate well-founded model and the unique ultimate stable model of P .

Again this property is not satisfied by the standard well-founded semantics, as witnessed by
the program P1 = {p ← p, p ← ¬p}. The atom p is unknown in the standard well-founded
semantics of P1 but true in the least Herbrand model of this program (which exists since TP1

is monotone).
We will now study computational aspects of ultimate semantics for logic programs. First,

we recall that ultimate supported models of a program P are precisely complete supported
models of P (Proposition 3.1). Consequently, problems concerning the existence of ultimate
supported models have the same complexity as their counterparts concerning complete sup-
ported models. In particular, it follows from the results of [MT91] that the problem of the
existence of an ultimate supported model of a finite propositional program is NP-complete.

The situation is different for other semantics. We will show that basic computational
problems associated with the exact ultimate stable models, and the ultimate Kripke-Kleene
and well-founded models are more complex. Thus, in general, attractive properties of ultimate
semantics come at a price.

We start the discussion of complexity results with several simple observations and lemmas.
In the remainder of this section, without loss of generality we assume that programs are given
in their normal form.

Let I and J be two interpretations such that I ⊆ J and let ϕ be a DNF formula. By [ϕ]I,J

we denote the formula obtained from ϕ by substituting every atom x such that x /∈ J by f ,
and every atom x such that x ∈ I by t.

Let P be a logic program in the normal form. We define the reduct of P with respect to
interpretations I and J such that I ⊆ J , denoted PI,J , as follows:

PI,J = {p← [BP (p)]I,J : p ∈ At(P )}.

We note that all atoms appearing in formulas [BP (p)]I,J are elements of J \ I (if I = J , the
only symbols appearing in [BP (p)]I,J are f and t). We have the following lemma.

Lemma 6.9 Let P be a logic program in the normal form and let I, J be two interpretations
such that I ⊆ J .

1. An atom p of P belongs to UP (I, J)1 if and only if the formula [BP (p)]I,J is a tautology.

2. An atom p of P belongs to UP (I, J)2 if and only if the formula [BP (p)]I,J is satisfiable.
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Proof: We recall that

UP (I, J)1 =
⋂

TP ([I, J ]) =
⋂

I⊆K⊆J

TP (K).

Thus, an atom p belongs to UP (I, J)1 if and only if for every interpretation M ∈ [∅, J \ I]
(according to our notation, [∅, J \ I] is the collection of all subsets of J \ I), the formula
[BP (p)]I,J is true in M or, equivalently, if and only if the formula [BP (p)]I,J is a tautology.
We also have that

UP (I, J)2 =
⋃

TP ([I, J ]) =
⋃

I⊆K⊆J

TP (K).

It follows that an atom p belongs to UP (I, J)2 if and only if for some interpretation M ∈
[∅, J \ I], the formula [BP (p)]I,J is true in M or, equivalently, if and only if the formula
[BP (p)]I,J is satisfiable. Thus, the assertion follows. 2

Lemma 6.9 implies that the complexity of algorithms to compute UP (I, J) depends on the
complexity of the problems to decide whether a DNF formula is a tautology and whether it is
satisfiable. The first of these problems is co-NP-complete. The second one is in P. Thus, we
get the following corollary.

Corollary 6.10 Let P be a finite propositional logic program and let I, J be two interpretations
such that I ⊆ J . Then, computing UP (I, J)1 can be accomplished by means of polynomial
number of calls to an NP-oracle, with all other tasks taking polynomial time, and computing
UP (I, J)2 can be accomplished in polynomial time.

We will now prove our first complexity result concerning the problem of the existence of
exact ultimate stable models.

Theorem 6.11 The problem “given a finite propositional logic program P , decide whether P
has an exact ultimate stable model” is ΣP

2 -complete.

Proof: By Corollary 5.8, an interpretation J is an ultimate stable model of a program P if and
only if J = lfp(UP (·, J)1). One can compute lfp(UP (·, J)1) by iterating the operator UP (·, J)1
starting with the empty set. At most n iterations, where n is the number of atoms in P ,
are needed. Since the problem of computing UP (I, J)1 can be accomplished in polynomial
time using polynomially many references to an NP-oracle (Corollary 6.10), it follows that the
problem to decide whether P has an exact ultimate stable model is in the class ΣP

2 .
To prove the “hardness” part, we proceed as follows. We start by recalling that the fol-

lowing problem, denoted QBF2, is ΣP
2 -complete: given a DNF formula ϕ with m+n variables

x1, . . . , xm, y1, . . . , yn, decide whether there is a truth assignment I ⊆ {x1, . . . , xm} such that
ϕI is a tautology, where ϕI is the formula obtained by replacing in ϕ all occurrences of atoms
from I with t, and by replacing all occurrences of atoms from {x1, . . . , xm} \ I with f. In
particular, ϕI is a formula containing variables from the set {y1, . . . , yn} only.

We will reduce the problem QBF2 to our problem. For each xi, i = 1, . . . ,m, in ϕ, we
introduce a new propositional variable x′i. We also introduce two new atoms p and q. By ϕ′

we denote the formula obtained from ϕ by replacing literals ¬xi in the disjuncts of ϕ with new
atoms x′i. We define a program P to consist of the following clauses:

31



1. xi ← ¬x
′
i and x′i ← ¬xi, for every i = 1, . . . ,m

2. yi ← ϕ′, for every i = 1, . . . , n

3. p← ϕ′

4. q ← ¬p,¬q.

We will show that there is an interpretation I ⊆ {x1, . . . , xm} such that ϕI is a tautology if
and only if P has an ultimate exact stable model.

For a subset I ⊆ {x1, . . . , xm}, let us define I ′ = I ∪ {x′i : xi /∈ I}. Let us also define
MI = I ′ ∪ {p, y1, . . . , yn}. Clearly, I ⊆ MI and the formula [ϕ′]I′,MI

(we introduced this
notation just before Lemma 6.9) is well defined. We observe that

ϕI = [ϕ′]I′,MI
.

By Lemma 6.9, and since BP (p) = ϕ′, the formula [ϕ′]I′,MI
(or ϕI) is a tautology if and

only if p ∈ UP (I ′,MI)1. Therefore, to complete the proof, we need to show that there is an
interpretation I ⊆ {x1, . . . , xm} such that p ∈ UP (I ′,MI)1 if and only if P has an ultimate
exact stable model.

It is easy to verify that for every I ⊆ {x1, . . . , xm} and for every J ⊆ MI , UP (J,MI)1
satisfies the following properties:

1. UP (J,MI)1 ∩ {x1, . . . , xn, x
′
1, . . . , x

′
n} = I ′

2. UP (J,MI)1 ∩ {y1, . . . , yn, p, q} is either ∅ or {y1, . . . , yn, p}.

The property (2) follows from the fact that the bodies of rules of y1, . . . , yn, p are identical.
Consequently, UP (J,MI)1 is either I ′ or MI . It follows that the monotone operator

UP (·,MI)1 is an operator in [∅,MI ] and hence has a least fixpoint, which is either I ′ or MI .
Let us assume that there is an interpretation I ⊆ {x1, . . . , xm} such that p ∈ UP (I ′,MI)1.

This means that I ′ is not a fixpoint of the operator UP (·,MI)1, hence MI is the least fixpoint.
Since UP approximates TP , MI is then also a fixpoint of TP . By Proposition 3.13, MI is an
ultimate exact stable model of P .

Conversely, let us assume that M is an ultimate exact stable model of P . Then M is a
fixpoint of the operator TP and we have the following four properties.

1. q is false in M (if q is true in M , TP does not derive q)

2. p is true in M (otherwise TP derives q)

3. y1, . . . , yn are true in M (since the rules defining them have the same bodies as p)

4. for each xi, either xi or x′i is true in M .

It follows from these properties that there is I ⊆ {x1, . . . , xm} such that M = MI . This last
identity and our assumption that M is an ultimate exact stable model of P imply that MI is
the least fixpoint of UP (·,MI)1. By the properties of the operator UP (·,MI)1 that we stated
above, p ∈ UP (I ′,MI)1 (if p /∈ UP (I ′,MI)1, then UP (I ′,MI)1 = I ′, a contradiction). 2

Next, we establish the complexity of computing ultimate Kripke-Kleene and well-founded
models.
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Theorem 6.12 Given a finite propositional logic program, one can compute the ultimate well-
founded fixpoint of P as well as the ultimate Kripke-Kleene fixpoint of P using polynomially
many calls to an NP-oracle with all other tasks taking polynomial time. In other words, the
associated decision problems are in the class ∆P

2 .

Proof: If P is a finite propositional program, then it follows directly from the definition of
the ultimate Kripke-Kleene fixpoint of TP (that is, the ultimate Kripke-Kleene model of P )
that it can be computed by means of polynomially many (in the size of P ) evaluations of the
value UP (I, J), where I ⊆ J are interpretations, with all other computational tasks taking
only polynomial amount of time. Thus, the result follows from Corollary 6.10.

To compute the well-founded model we need a polynomial number of iterations of the stable
operator for UP . Each such computation requires a polynomial number of computations of
the form UP (I, J), where I ⊆ J . It follows that to compute the well-founded semantics, the
polynomial number of calls to a procedure computing values of UP suffices. 2

These results show that appealing semantic properties of the ultimate versions of semantics
of logic programs come at a price. In practice, this price is often low. For wide classes of
programs the complexity of computing well-founded or stable semantics does not grow at all.
For instance, it is so for any class of programs for which the (standard) well-founded model
is 2-valued, standard and ultimate versions of the stable and well-founded semantics coincide.
Consequently, the complexity of computing ultimate semantics is the same as computing the
standard semantics. As mentioned above, this holds for the classes of Horn programs and
weakly stratified programs.

Likewise, for any class of programs for which the ultimate approximation UP and the
standard operator TP are identical, all standard and ultimate versions of programs coincide.
Below, we will describe one such a class.

We will also present a broad class of programs where ultimate well-founded and exact
ultimate stable models do not necessarily coincide with their standard counterparts; yet, the
complexity of computation of ultimate well-founded and exact ultimate stable models does not
increase.

The next proposition identifies a class of programs for which the standard and ultimate
approximations are identical.

Proposition 6.13 Let P be a program such that for every pair of atoms p and q, either each
occurrence of q in BP (p) is positive or each occurrence of q in BP (p) is negative. Then UP

and TP are identical.

Proof: For each atom p, the formula BP (p) is a DNF formula satisfying the property that no
atom q occurs both positively and negatively in it. By Proposition 6.3, to prove the assertion it
is enough to show that for each DNF formula ϕ satisfying this property, v(I,J)(ϕ) = vsv

(I,J)(ϕ).

By Proposition 6.2, v(I,J)(ϕ) ≤p v
sv
(I,J)(ϕ). Thus, all we need to show is that if v(I,J)(ϕ) = u

then vsv
(I,J)(ϕ) = u or equivalently, that there exist K,K ′ ∈ [I, J ] such that K |= ϕ and K ′ 6|= ϕ.

We define K = I ∪ {r : r ∈ J and r occurs positively in ϕ} and K ′ = I ∪ {r : r ∈
J and r occurs negatively in ϕ}. Clearly, both K and K ′ belong to [I, J ].

If v(I,J)(ϕ) = u then there is a disjunct B of ϕ such that v(I,J)(B) = u. Let us assume that
B = a1 ∧ . . . ∧ am ∧ ¬b1 ∧ . . . ∧ ¬bn. Since v(I,J)(B) = u, all a1, . . . , am are in J . Moreover,
since all a1, . . . , am occur in B positively, a1, . . . , am are all in K. Hence, K |= ai, for every i,
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1 ≤ i ≤ m. Since, v(I,J)(B) = u, for every i, 1 ≤ i ≤ n, bi /∈ I. Moreover, b1, . . . , bn occur in
B negatively. Thus, none of their occurrences in ϕ is positive and, so, b1, . . . , bn are not in K.
Hence, K |= ¬bi, for every i, 1 ≤ i ≤ n. It follows that K |= B and, consequently, K |= ϕ.

We will now consider the interpretation K ′. Since v(I,J)(ϕ) = u, for every disjunct B of ϕ,
v(I,J)(B) = f or u. Let us observe that (I, J) ⊆p (K ′,K ′). If v(I,J)(B) = f, then by Proposition
6.1, v(K′,K′)(B) = f and, consequently, K ′ |= ¬B. Let us, therefore, assume that v(I,J)(B) = u.
As before let us assume that B = a1 ∧ . . .∧ am ∧¬b1 ∧ . . .∧¬bn. There are two possible cases.
The first case is that for some i, 1 ≤ i ≤ m, ai /∈ I. Since v(I,J)(B) = u, v(I,J)(ai) = u.
Thus, ai ∈ J . But ai occurs in B positively and, consequently, has no negative occurrences
in ϕ. Therefore, by the definition of K ′, ai /∈ K

′. It follows that K ′ |= ¬B. The other case
is that for every i, 1 ≤ i ≤ m, ai ∈ I. Since v(I,J)(B) = u, there is j, 1 ≤ j ≤ n, such that
v(I,J)(¬bj) = u. Thus, bj ∈ J \ I. Moreover, bj occurs in B negatively. By the definition,
bj ∈ K

′. Hence K ′ |= bj and, so, K ′ |= ¬B.
Thus, for every disjunct B of ϕ, K ′ |= ¬B. It follows that K ′ |= ¬ϕ. Since we already

proved that K |= ϕ, we obtain that vsv
(I,J)(ϕ) = u. 2

We will now present a broad class of programs for which the complexity bounds of Theorems
6.11 and 6.12 can be improved. Let k be a fixed integer. We define the class Ek to consist of all
logic programs P such that for every atom p ∈ At(P ) at least one of the following conditions
holds:

1. P contains at most k clauses with p as the head;

2. the body of each clause with the head p consists of at most two elements;

3. the body of each clause with the head p contains at most one positive literal;

4. the body of each clause with the head p contains at most one negative literal.

The program P1 belongs to E2 and is an example of a program where standard well-founded
and stable semantics do not coincide with ultimate versions of these semantics.

Let us recall that the decision whether an atom p ∈ At(P ) belongs to UP (I, J)1 reduces to
the decision whether the formula BPI,J

(p) is a tautology. If P is in the class Ek, this question
can be resolved in polynomial time. Indeed each formula BP (p) is a disjunction of a fixed and
pre-specified number (k, if P ∈ Ek) of conjunctions of literals, a 2-DNF theory, the negation of
a Horn theory, or the negation of a dual Horn theory5. It is well-known that testing whether a
formula in any of the three latter forms is a tautology can be accomplished in polynomial time.
To see that the same holds for formulas that are disjunctions of k conjunctions of literals (where
k is fixed), it is enough to observe that such a formula can be rewritten into an equivalent
CNF formula in time nk (where n is the number of atoms in P ). Since testing whether a CNF
formula is tautology is a polynomial task, our claim follows.

Theorem 6.14 The problem “given a finite propositional logic program from class Ek, decide
whether P has an exact ultimate stable model” is NP-complete.

Proof: Since for every program P ∈ Ek, and for every interpretations I and J such that I ⊆ J ,
UP (I, J) can be computed in polynomial time, it takes polynomial time to verify whether

5A dual Horn theory is a set of clauses with at most one negative literal per clause.
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J = lfp(UP (·, J)1). Thus, the problem in question is in the class NP. To prove completeness, we
observe that the ultimate stable and the standard stable operator of purely negative programs
coincide. Consequently,

1. there is no difference between exact stable models and exact ultimate stable models

2. purely negative programs are in Ek

3. the problem of existence of exact stable models for purely negative programs is NP-
complete [MT91].

Thus, the assertion follows. 2

Theorem 6.15 The problem “given a finite propositional logic program P from class Ek, com-
pute the ultimate well-founded fixpoint of P” is in P.

Proof: For every program P ∈ Ek, and for every interpretations I and J such that I ⊆ J ,
UP (I, J) can be computed in polynomial time. Thus, the assertion follows by Lemma 6.9. 2

7 Conclusions and discussion

In this paper, we extended our algebraic framework [DMT00a, DMT00b] for studying seman-
tics of nonmonotonic reasoning systems. We started by developing a theory of consistent
approximating operators that are defined on the set of consistent elements of the product bi-
lattice. The advantage of the present approach is that it refers exclusively to objects that are
well motivated by commonsense intuitions underlying the concepts of approximation, precision
of an approximation and revision of an approximation. In the same time, this new approach
turns out to be essentially as powerful as the earlier one.

The main contribution of this paper is the notion of an ultimate approximation. In earlier
approaches, to study fixpoints of an operator O one had to select an appropriate approximating
operator. There has been, however, no principled algebraic way to do so. In the present paper,
we found a distinguished element in the space of all consistent approximations and showed
that this particular approximation, the ultimate approximation, is an effective tool in studying
fixpoints of O. In fact, we argued that the Kripke-Kleene, well-founded and stable fixpoints
of the ultimate approximation of an operator O can be regarded as the Kripke-Kleene, well-
founded and stable fixpoints of the operator O itself.

Our framework can be applied to any formalism whose semantics are defined as fixpoints
of some lattice operator O. In this paper, we applied our approach to logic programming and
obtained a family of new semantics generated by the immediate consequence operator: the
ultimate Kripke-Kleene, the ultimate well-founded and the ultimate stable-model semantics.
These semantics are well motivated and have attractive properties. First, they are preserved
when we modify the program, as long as the 2-valued immediate consequence operator stays the
same (a property that does not hold in general for standard semantics). Second, the ultimate
Kripke-Kleene and the ultimate well-founded semantics are stronger, in general, than their
standard counterparts, yet approximate the collection of all fixpoints of O and the collection
of all stable fixpoints of O, respectively. The disadvantage is that the complexity of ultimate
semantics is, in general, higher. Fortunately, as we demonstrated in Section 6, for large classes
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of programs that are likely to arise in practical applications, the complexity of computing
ultimate semantics remains the same as that of their standard counterparts.

The approach developed in this paper can be applied in other settings as well. In [DPBn01],
it was used to define well-founded and stable semantics for an extension of logic programs with
aggregates. An aggregate in this language is an arbitrary second order relation taking set
expressions and lambda expressions as arguments. The framework can also be applied to
default and autoepistemic logics where it results in new (ultimate) semantics with appealing
semantic features.

We end this discussion with a comment on the broader role played by approximation the-
ory. Tarski’s fixpoint theory can be considered as a general method for modeling monotone
constructions and positive inductive definitions. We contend that approximation theory pro-
vides a generalized algebraic account of non-monotone constructions and non-monotone forms
of induction in mathematics such as iterated induction and induction in well-ordered sets.
Some arguments in support of our claim can be found in [Den98, DBM01]. Those papers
present comparative studies of different forms of non-monotone induction and argue that logic
programming with (some form of) the well-founded semantics formalizes this broad class of
constructive techniques to specify (define) concepts.
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