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t. In a previous paper, the authors showed that the me
hanismunderlying Logi
 Programming 
an be extended to handle the situationwhere the atoms are interpreted as subsets of a given spa
e. In a su
hsituation, the atoms of the underlying language 
orresponding to a logi
program P are interpreted as sets, the one step 
onsequen
e operatorapplied to a set S is interpreted as the union of all sets 
orrespondingto atoms whi
h are the heads of 
lauses whose body is satis�ed by S,and the models of the program are interpreted as subsets of the spa
e.It turns out that the operator approa
h to Logi
 Programming 
an betransferred to su
h situations. The 
on
epts of supported and stablemodels of programs also naturally transfer. In this paper, we show thatthis set based formalism for Logi
 Programming naturally supports avariety of options. For example, if the underlying spa
e has a topology,one 
an insist that the basi
 one-step 
onsequen
e operator always pro-du
es a 
losed set or always produ
e an open set. We develop a generalframework for set based programming involving monotone idempotentoperators and demonstrate the utility of this approa
h by giving a spa-tial logi
 program representing two 
ooperating agents in a 
ontinuousenvironment.1 Introdu
tionIn [BMR01℄, the authors developed an extension of the logi
 programming paradigmwhi
h 
an dire
tly reason about regions in spa
e and time as might be required,for example, for appli
ations in graphi
s, image 
ompression, or job s
heduling.Thus instead having the intended underlying universe be the Herbrand base ofthe program, one repla
es the underlying Herbrand universe by some �xed spa
eX and has the atoms of the program spe
ify subsets of X , i.e. elements of theset 2X , the set of all subsets of X .If we re
e
t for a moment on the basi
 aspe
ts of logi
 programming withan Herbrand model interpretation, a slight 
hange in our point of view showsthat interpreting atoms as subsets of the Herbrand base is a natural thing to do.In normal logi
 programming, we determine the truth value of an atom p in anHerbrand interpretation I by de
laring I j= p if and only if p 2 I . However, thisis equivalent to de�ning the sense, �(P ), of a ground atom p to be the set fpgand de
laring that I j= p if and only if �(p) � I . By this simple move, we have



permitted ourselves to interpret the sense of an atom as a subset, rather thanthe literal atom itself.This given, we showed in [BMR01℄ that it is a natural step to take the sense�(p) of ground atom p to be a �xed assigned subset of some nonempty set X andto de�ne a I � X to be a model of p, written I j= P , if and only if �(p) � I . Thistype of model theoreti
 semanti
s makes available, in a natural way, multipletruth values, intensional 
onstru
ts, and interpreted relationships among theelements and subsets of X . Observe that the assignment � of a sense to groundatoms is intrinsi
ally intensional. Interpreted relationships among the elementsand subsets of X allow the programs that use this approa
h, whi
h was 
alledspatial logi
 programing in [BMR01℄, to serve as front-ends for existing systemsand still have a seamless model-theoreti
 semanti
s for the system as a whole.It turns out that if the underlying spa
e X has stru
ture su
h as a topologyor an algebrai
 stru
ture su
h as a group, ring, �eld or ve
tor spa
e, then anumber of natural options present themselves. For example, if we are dealingwith a topologi
al spa
e, one 
an 
ompose the one step 
onsequen
e operator Twith an operator that produ
es, e.g. topologi
al 
losures of sets or interiors ofsets. In su
h a situation, one ensures that the T always produ
es 
losed sets, oralways produ
es open sets. Similarly, if the underling spa
e is a ve
tor spa
e, onemight insist that T always produ
es a subspa
e, or perhaps a 
onvex 
losure.Noti
e that ea
h of the operators: 
losure, interior, span and 
onvex-
losureare monotone idempotent (i.e. op(op(I)) = op(I)) operators. We 
all su
h anoperator a miop (pronoun
ed \my op").One also has a variety of options for how to interpret negation. In normallogi
 programming, a modelM satis�es :p if p =2M . From the set-based point ofview when p is interpreted as a singleton fpg, this would be equivalent to sayingthat M satis�es :p if (i) fpg \M = ;, or (equivalently) (ii) fpg * M . Whenthe sense of p is a set with more than one element it is easy to see that sayingthat M satis�es :p if �(p) \M = ; (a strong negation) is di�erent from sayingthat M satis�es :p if �(p) *M (a weaker negation). There are thus two naturalinterpretations of the negation symbol. Again, when the underlying spa
e hasstru
ture, one 
an get even more subsidiary types of negation by taking M tosatisfy :p if 
l(�(p)) \M = 
l(;), or by taking M to satisfy :p if 
l(�(p)) *Mwhere 
l is some natural miop.The main goal to this paper is extend spatial logi
 programming paradigmlogi
 programming of [BMR01℄ to a full set based logi
 program paradigm withasso
iated miops. The outline of this paper is as follows. In se
tions 2 and 3, weshall brie
y review the spatial logi
 programming paradigm as given in [BMR01℄.In se
tion 4, we shall formulate a general set based logi
 programming formalismwhen the underlying spa
e has natural miops. We shall give several exampleswhere the same program 
an give di�erent results depending on whi
h miopand/or negation operator we use. Finally, in se
tion 5, we shall give an appli-
ation of our formalism to show how one 
an represent and reason about the
oordination of agents in a 
ontinuous spa
e.



2 Spatial Logi
 Programs: syntax and semanti
sBefore giving the general de�nitions of our formalism for set based logi
 pro-gramming with miop operators, we shall �rst re
all the de�nitions of spatiallogi
 programs as developed in [BMR01℄.The syntax of spatial logi
 programs is based on the syntax of the formulasof what we de�ne as spatially augmented �rst-order logi
. Spatial augmentationis an intensional notion. The syntax of spatial programs will essentially be thesyntax of DATALOG programs with negation, but augmented by 
ertain in-tensional 
onne
tives su
h as union and interse
tion that are designed to makeprogramming in a spatial logi
 programming setting easier.The use of intensional 
onne
tives allows for operations on what we 
all thesenses of ground atoms des
ribed in the next se
tion to materially 
ontribute todetermining the models of programs. The expressive power of intensional 
on-ne
tives allows us to 
apture fun
tions and relations intrinsi
 to the domain ofa spatial logi
 program, but independent of the program. It is this feature thatpermits spatial logi
 programs to seamlessly serve as front-ends to other sys-tems. Intensional 
onne
tives 
orrespond to ba
k-end pro
edures and fun
tions.However, it turns out that intensional 
onne
tives 
an be eliminated from pro-grams by using miops. The trade-o� is a matter of expressive 
onvenien
e andnaturalness.De�nition 1. A spatially augmented �rst-order language (spatial lan-guage, for short) L is a quadruple (L;X; �; I), where1) L is a language for �rst-order predi
ate logi
 without fun
tion symbols otherthan 
onstants,2) X is a nonempty (possibly in�nite) set, 
alled the interpretation spa
e,3) � is a mapping from the ground atoms of L to the power set of X , and4) I is a possibly in�nite alphabet of symbols 
alled intensional 
onne
tives.The 
olle
tion is required to 
ontain logi
al intensional 
onne
tives, 
orrespond-ing to the union, interse
tion, and 
omplement operators on 2X as well as the
onstant unary operator that returns X . Ea
h intensional 
onne
tive is equippedwith a �xed interpretation as an operator of some �nite arity on 2X .Although L may have in�nitely many intensional 
onne
tives, we will assumethat in any spatial logi
 program P 
ontains only �nitely many su
h intensional
onne
tives.The mapping �, the interpretation spa
e X , and the interpretations of theintensional 
onne
tives might seem to properly belong in the semanti
s of spa-tially augmented languages. However, these languages are to be thought of ashaving a �xed partial interpretation, and hen
e the interpretation spa
e, senseassignment, and the interpretations of the intensional 
onne
tives should be �xedby the language analogously to �xing the interpretation of the equality symbolin ordinary �rst-order languages as the identity relation.We now de�ne the intensional atoms of L in the usual indu
tive manner.



De�nition 2. 1) An atomi
 formula A of L, the underlying �rst-order language
omponent of L, is an intensional atom, whi
h we 
all a primitive atom. Thepredi
ate symbol of A is the prin
ipal fun
tor of A and2) If '1; : : : ; 'n are intensional atoms and � is an n-ary intensional 
onne
tive,then �('1; : : : ; 'n) is an intensional atom, whose prin
ipal fun
tor is �.The remaining intensional formulas of L are built up from intensional atoms inthe usual way. It should be noted that interse
tion is not representable as familiarBoolean 
onne
tives. This will be
ome 
lear after we present the semanti
s.We 
an then extend the notion of sense to arbitrary intensional ground atomsindu
tively by de
laring that the sense of intensional ground atom �('1; : : : ; 'n)to be given by �(�('1; : : : ; 'n)) = f(�('1); : : : ; �('n))where the interpretation of � is a fun
tion f : (2X)n �! 2X .We now de�ne the 
lass of spatial logi
 programs of the spatial language L.De�nition 3. A spatial logi
 program has three 
omponents.1) The language L whi
h in
ludes the interpretation spa
e and the sense assign-ment.2) The IDB (Intentional Database): A �nite set of program 
lauses, ea
h ofthe form A  L1; : : : ; Ln, where ea
h Li is a literal, i.e. an intensional atom orthe negation of an intensional atom, and A is an intensional atom.3) The EDB (Extensional Database): A �nite set of intensional ground atoms.Given a spatial logi
 program P , the Herbrand base of P is the Herbrand baseof the smallest spatial language over whi
h P is a spatial logi
 program.For the rest of this se
tion, we shall assume that the 
lasses of spatial logi
programs that we 
onsider always are over a language for �rst-order logi
 L withno fun
tion symbols ex
epts 
onstants, a �xed set X and a set of intensional
onne
tives.Informally, we think of the Herbrand universe �L of the underlying languageL, i.e. the set of 
onstant symbols of L, as being a set of indi
es whi
h we mayemploy to suit whatever purpose is at hand. We let HBL denote the Herbrandbase of L, i.e. the set of ground intensional atoms of L. We omit the subs
riptL when the 
ontext is 
lear. Let X be a nonempty set, 2X the powerset ofX , and let � : HBL �! 2X . The subset of X , �(p), is 
alled the sense of theground atom p (with respe
t to X). An interpretation I of the spatial languageL = (L;X; �; I) is a subset of X . A ground intensional atom p is satis�ed by theinterpretation I , with respe
t to sense assignment � (denoted by I j=� p) if andonly if �(p) � I . After introdu
ing miops we will modify the j= relation.We note that sense assignments � 
an be used to partition the ground atomsinto multiple sorts. For example, let X be the disjoint union of X1 and X2. LetHBL be the disjoint union of A1 and A2, and 
hoose � su
h that �(p) � Xi forp 2 Ai, i = 1; 2:The pre
eding de�nition allows us to extend the satisfa
tion relation to allintensional formulas with respe
t to 2-valued logi
 in the usual way. We 
ould



similarly de�ne truth-valuations from subsets of X together with ground atomsinto larger sets of truth values.We now extend the the satisfa
tion relation to arbitrary formulas. Be
auseof the diversity of notions of negation available, we will employ a mapping �I
orresponding to ea
h I � X from the set of senten
es, i.e. the set of all formulaswithout free o

urren
es of variables, to three truth values t, f, and ?. We �rstde�ne �I on the ground intensional literals, i.e. ground intensional atoms andtheir negations. �I is more interesting when extended to all senten
es.We are assuming that the satisfa
tion relation I j=� A on ground intensionalliterals A has been given, i.e., for ea
h ground intensional atom A,�I(A) =8<: t if I j= Af if I j= :A? otherwise.Note that a ground atom p pi
ks out a set of subsets of X as its model 
lass,namely the set of all supersets in X of the sense of p. Thus the model 
lass of pis a member of the Boolean algebra determined by the power set of the powerset of X with respe
t to union, interse
tion, and 
omplement in 22X . In orderto 
omplete the set up of the semanti
s for a spatially augmented language, weadopt a three-valued logi
 with truth values ft; f;?g. (Every senten
e, i.e. the setof all formulas without free o

urren
es of variables, will turn out to have have atruth-value other than ? if every ground intensional atom has this property.) Weadopt a standard set of strong interpretations of the 3-valued 
onne
tives [Kl67℄,pp. 334, derived from the standard 2-valued 
onne
tives of 
lassi
al propositionallogi
 where ? plays the role of unknown. It suÆ
es to give the interpretationof j i.e. NAND, or not both: t j t = f, f j x = x j f = t. The remaining pairsof inputs yield ?. The interpretations of all other propositional 
ombinations oftruth values 
an be obtained by expressing the 
ombination in terms of NANDas in the two-valued 
ase. It is readily seen that the NAND expression one sele
tsto represent a parti
ular propositional 
onne
tive is immaterial.We indu
tively extend �I to all of the elements of Sent, the set of senten
es ina usual Tarskian manner. The existential quanti�er is evaluated by the fun
tion�I by: �I(9x'(x)) = 8<:t if �I('(e=x)) = t for some 
onstant ef if �I('(e=x)) = f for all 
onstants e? otherwise:The universal quanti�er is treated as an abbreviation of :9x:'(x)). Finally, wede
lare I j= ' if and only if �I (') = t.A model, not ne
essarily stable, of a spatial program is a model of the setof all formulas in the EDB and IDB. Thus, in parti
ular, a model of a programmust 
ontain the sense of every ground instan
e of ea
h intensional atom in theEDB.We note that if \ is the intensional 
onne
tive 
orresponding to the interse
-tion operator on 2X and A \ B is a ground atom, then for I � X , there is noBoolean 
ombination of the assertions I j= A and I j= B that holds if, and onlyif, I j= A \B for all 
hoi
es of the senses of A and B. Contrast this observationwith: I j= A [ B if and only if I j= A and I j= B.



3 The 
onsequen
e operator and stable modelsThe following operator generalizes the one-step 
onsequen
e-operator of ordinarylogi
 programs with respe
t to 2-valued logi
 to spatial logi
 programs.Given a spatial program P with IDB P , let P 0 be the set of ground instan
es ofa 
lauses in P and let TP (I) = I1 [ I2where I1 =[f�(A) j A L1; : : : ; Ln 2 P 0; I j= Li; i = 1; : : : ; ng andI2 =[f�(A) j A is a ground atom in the EDB of P :A supported model of P a model of P that is a �xpoint of TP .A spatial logi
 program is Horn if the IDB is Horn. Our de�nitions generalizethe familiar 
hara
terization of the least model of ordinary Horn programs. How-ever, if the Herbrand universe of a spatial program is in�nite (
ontains in�nitelymany 
onstants) then, unlike the situation with ordinary Horn programs, TPwill not in general be upward 
ontinuous.We iterate TP in the usual manner: TP "0 (I) = I ,TP "�+1 (I) = TP (TP " �(I)), andTP "� (I) = [�<�fTP " �(I)g; � limit 4.Example 1. To spe
ify a spatial program we must spe
ify the language, EDB andIDB. Let L = (L;X; �; I) where L has four unary predi
ate symbols: p, q, r ands, and 
ountably many 
onstants e0; e1; : : : ; . X is the set NSfNg where N isthe set of natural numbers, f0; 1; 2; : : :g. � is spe
i�ed by �(q(en)) = f0; : : : ; ng,�(p(en)) = f0; : : : ; n+ 1g, �(r(en)) =N, �(s(en)) = fNg.The EDB is empty and the IDB is: q(e0) ; p(X) q(X), and s(e0) r(e0).Now, after ! iterations upward from the empty interpretation, r(e0) be
omessatis�ed. One more iteration is required to rea
h an interpretation that satis�ess(e0), where the least �xpoint is attained.It is 
lear that TP is monotoni
 if P is a Horn program and thus that thefollowing result follows from the Tarski �xpoint theorem.Theorem 1. The least model of spatial Horn program P exists, is supported,and is given by TP "� (;) for the least ordinal � at whi
h a �xpoint is obtained.What is di�erent about the as
ending iteration of TP from the ordinary situ-ation in logi
 programming is that in the spatial 
ase the senses of ground body4 Batarakh and Subrahmanian, [BS89℄, studied appli
ations of logi
 programming inlatti
es di�erent from the latti
e of interpretations.



atoms 
an be satis�ed by the union of the senses of in�nitely many ground 
lauseheads without any �nite 
olle
tion of these 
lause heads uniting to satisfy thebody atom. But, if there are only �nitely many primitive atoms, i.e. the Her-brand universe of the program is �nite, then this sour
e of upward dis
ontinuityvanishes. The proof of upward 
ontinuity is essentially the same in that 
ase asthe 
ase for ordinary Horn programs.Theorem 2. The least model of spatial Horn program P exists, is supported,and is given by TP "! (;), if the set of primitive ground atoms in the Herbrandbase of P is �nite.In spatial logi
 programs, we allow 
lauses whose ground instan
es are of thefollowing form: A B1; : : : ; Bn;:C1; : : : ;:Cm: (1)We 
an the de�ne the stable model semanti
s for su
h programs as follows. Forany given set J � X , we de�ne Gelfond-Lifs
hitz transform [GL88℄ of a programP , GL(P ), in two steps. First we 
onsider all ground instan
es C of 
lauses in Pas in (1). If J j= Ci for some Ci in the body of C, then the we eliminate 
lauseC. If not, then we repla
e C by the Horn 
lauseA B1; : : : ; Bn: (2)The GL(P ) 
onsists of EDB(P ) plus the sets of all Horn 
lauses produ
ed bythis two step pro
ess. Thus GL(P ) is a Horn program so that TGL(P ) is de�ned.Then we say that J is stable model of P if and only if J equals the least modelof GL(P ).Theorem 3. For any spatial logi
 program P ,1. I � X is a model of P i� TP (I) � I and2. I is stable with respe
t to P implies that I is supported with respe
t to P.The next theorem shows the relationship between stable models of a a spatialprogram, and a natural topology indu
ed by a spatial language on its interpre-tation spa
e.Theorem 4. If L is a spatially augmented �rst-order language with the inten-sional operator for interse
tion of senses, then the set of senses of the groundintensional atoms form the basis of a topology in whi
h all supported models, afortiori all stable models, of all spatial programs over L are open subsets of theinterpretation spa
e.We will 
all the topology given by the previous theorem the Herbrand topol-ogy. This topology has a utility in �nding stable models. Ordinarily one expe
tsto re
over a guess for a stable model as the least �xpoint of the Gelfond-Lifs
hitztransform determined by the guess. The previous theorem allows one to re
overmerely the interior of the guess, or equivalently, 
on�ne ones guesses to imagesof open sets. In the next se
tion, where we in
orporate miops into the one-step
onsequen
e operator of a program, we 
an a
hieve even greater sele
tivity ofstable models.



4 Set Based Logi
 Programming with MiopsIn this se
tion, we shall introdu
e miops on the underlying spa
e X of logi
 pro-gramming and show how we 
an extend the spatial logi
 programming paradigmof the previous se
tion to in
orporate miops.Let X be the underlying spa
e of spatial logi
 program P . We say that anoperator op : 2X ! 2X is a miop if for all A;B � X ,1. A � B =) op(A) � op(B) and2. op(op(A)) = op(A).4.1 Operators and stable modelsSuppose that the underlying spa
e X is either Rn or Qn were R is the realsand Q is the rationals. Then X is a topologi
al ve
tors spa
e under the usualtopology so that we have a number of natural miop operators:1. opid(A) = A, i.e. the identity map is simplest miop operator,2. op
(A) = A where A is the smallest 
losed set 
ontaining A,3. opint(A) = int(A) where int(A) is the interior of A,4. op
onvex(A) = K(A) where K(A) is the 
onvex 
losure of A, i.e. the smallestset K � X su
h that A � K and whenever x1; : : : ; xn 2 K and �1; : : : ; �nare elements of the underlying �eld R or Q su
h that Pni=1 �i = 1, thenPni=1 �ixi is in K, and5. opsubsp(A) = (A)� where (A)� is the subspa
e of X generated by A.Now if we are given a miop operator op+ : 2X ! 2X and spatial logi
 programP over X , then we 
an further generalize the one-step 
onsequen
e-operator ofordinary logi
 programs with respe
t to 2-valued logi
 to spatial logi
 programsrelative to miop operator op+ as follows. Given a spatial program P with IDBP , let P 0 be the set of ground instan
es of a 
lauses in P and letTP;op+(I) = op+(I1 [ I2)whereI1 = Sf�(A) j A L1; : : : ; Ln 2 P 0; I j= Li; i = 1; : : : ; ng:I2 = Sf�(A) j A is a ground atom in the EDB of Pg.A supported model relative to op+ of P a model of P that is a �xpoint of TP;op+ .We iterate TP;op+ a

ording to the following.TP;op+ " 0(I) = ITP;op+ " �+ 1(I) = TP;op+(TP;op+ " �(I))TP;op+ " �(I) = op+([�<�fTP;op+ " �(I)g); � limitA spatial logi
 program is Horn if the IDB is Horn. Again it is easy to seethat if P is a Horn program and op+ is a miop, then TP;op+ is monotoni
. Thusjust like in the 
ase a spatial logi
 programs.



Theorem 5. Given a miop op+, the least model of spatial Horn program Pwhi
h is 
losed under op+ exists, is supported relative op+, and is given byTP;op+ "� (;) for the least ordinal � at whi
h a �xpoint is obtained.Next we 
onsider how we should deal with negation in the setting of miopoperators. Suppose that we have a miop operator op� on the underlying spa
eX . In the de�nition of se
tion 1, we say that J j= :Ci if and only if it is notthe 
ase that J j= Ci. That is, J j= :Ci if and only if Ci * J . As we mentionedin the introdu
tion, it seem equally plausible to say that J j= :Ci if and onlyif J \ Ci = ;. Thus we will de�ne two di�erent satisfa
tion relations for literalbased relative to miop operator op�5. This leads us to the following de�nition.De�nition 4. Suppose that P is spatial logi
 program over X and op� is amiop operator on X .(I) Given any atom C and set J � X , then we say J j=Iop� :C if and only ifop�(C) \ J = op�(;).(II) Given any atom C and set J � X , then we say J j=IIop� :C if and only ifop�(C) * J .We 
an the de�ne the two types of stable model semanti
s for a spatial logi
program P over X relative to two miop operators op+ and op� on X . Let P bea spatial logi
 program over X and op+ and op� on X be two miop operatorson X6.De�nition 5. (I) For any given set J � X , we de�ne Gelfond-Lifs
hitz trans-form of type I of a program P , GLIJ;op+;op�(P ), in two steps. First we 
onsider allground instan
es of 
lasses C in P as in (1). If it is not the 
ase that J j=Iop� :Cifor some i, then the we eliminate 
lause C. Otherwise we repla
e C by the Horn
lause A B1; : : : ; Bn: (3)The GLIJ;op+;op�(P ) 
onsists of EDB(P ) plus the sets of all Horn 
lauses pro-du
ed by this two step pro
ess. Thus GLIJ;op+;op�(P ) is always a Horn programand hen
e TGLIJ;op+;op� (P );op+ is de�ned. Then we say that J is type I stablemodel of P relative to (op+; op�) if and only if J equals the least model relativeto op+ of GLIJ;op+;op�(P ).(II) For any given set J � X , we de�ne Gelfond-Lifs
hitz transform of typeII of a program P , GLIIJ;op+;op�(P ), in two steps. First we 
onsider all groundinstan
es of 
lasses C in P as in (1). If it is not the 
ase that J j=IIop� :Ci forsome i, then the we eliminate 
lause C. Otherwise we repla
e C by the Horn
lause A B1; : : : ; Bn: (4)5 Lifs
hitz [Li94℄ observed that di�erent modalities, thus di�erent operators, 
an beused to evaluate positive and negative part of bodies of 
lauses of normal programs.6 It will often be the 
ase that we take op+ = op�, but it is not required.



The GLIIJ;op+;op�(P ) 
onsists of EDB(P ) plus the set of all Horn 
lauses pro-du
ed by this two step pro
ess. Thus GLIIJ;op+;op�(P ) is always a Horn programand hen
e TGLIIJ;op+;op� (P );op+ is de�ned. Then we say that J is type II stablemodel of P relative to (op+; op�) if and only if J equals the least model relativeto op+ of GLIIJ;op+;op�(P ).We then have the following result.Theorem 6. Suppose that P is spatial logi
 program over X and op+ and op�are miop operators on X. Assume I be 
losed relative to op+, i.e., op+(I) = I.Then1. I � X is a model of P i� TP;op+(I) � I.2. I is stable of type I or II with respe
t to P implies that I is supported withrespe
t to P relative to op+.In the following subse
tions, 4.2-4.5, we shall give four examples to show howthe stable models of a give spatial logi
 program 
an vary depending on how wede�ne op+ and op�. We note that in the 
ase where op� = opid and the sense ofany atom A su
h that :A appears in P is a singleton, then there is no di�eren
ebetween the type I and type II stable models. Our examples in the next threesubse
tions will all have this property so that we will not distinguish betweentype I and type II stable models.4.2 Separating setsSuppose that V = Qn. Let 0 denote the zero ve
tor of V . Suppose A and B aresubsets of V . Our idea is 
onstru
t a program whose stable models 
orrespond toseparating sets S su
h that S is 
losed relative to op+,A � S and S\B = op�(;).As we shall see that by pi
king the miop operators op+ and op� appropriatelywe 
an have a single spatial logi
 program P whose stable models have a varietyof properties.Formally, we shall assume that the underlying �rst order language has 
on-stant symbols a for ea
h a 2 V and it has three unary predi
ate symbols S, Sand A. Thus the ground atoms of the underlying Herbrand Base are all of theform S(a), S(a) and A(a) for some a 2 V . We shall think of the interpretationspa
e X as the setX = fS(a) : a 2 V g [ fS(a) : a 2 V g [ fA(a) : a 2 V g:The sense of any ground atom S(a), S(a) and A(a) will be just fS(a)g, fS(a)gand fA(a)g respe
tively. That is: �(S(a)) = fS(a)g; �(S(a)) = fS(a)g and�(A(a)) =fA(a)g:Now suppose that we are given a triple of miop operators opS ; opS ; opA onV . Then we 
an de�ne a miop operator op+ on X as by de�ning op+ so that



op+(T ) = fS(a) : a 2 opS(fy 2 V : S(y) 2 Tg)g[fS(a) : a 2 opS(fy 2 V : S(y) 2 Tg)g[fA(a) : a 2 opA(fy 2 V : A(y) 2 Tg)g: (5)The intuition here is that suppose we want in a stable model S and S to spe
ifysubspa
es of V . Then we take opS = opS = opsubsp so that in any stable modelthe sets fa 2 V : S(a) 2 Mg and fa 2 V : S(a) 2 Mg are subspa
es. Now
onsider the following program P .(1) S(a) for all a 2 A.(2) S(b) for all b 2 B.(3) A(0) S(x); S(x);:A(0)(4) S(x) :S(x)(5) S(x) :S(x)We note that when we ground P , the 
lauses of type (3), (4) and (5) willgenerate the following sets of ground 
lauses.(3)' A(0) S(v); S(v);:A(0) for all v 2 V(4)' S(v) :S(v) for all v 2 V(5)' S(v) :S(v) for all v 2 VBefore pro
eeding we should make an observation about the 
lauses of type(3)' under the assumption that opA = op� = opid. That is, if op� = opid,then op�(�(A(0))) = fA(0)g. Now if fA(0)g � M , then it is not the 
ase thatM j=Iop� :A(0) nor is it the 
ase that M j=IIop� :A(0). Note that every 
lauseof ground(P) whi
h has A(0) in the head has :A(0) in the body. We 
laim thatno matter how we de�ne opS , opS and op�, it will be that 
ase that any typeI or type II stable model M of P will have fa : A(a) 2 Mg = ;. That is, sin
ethe only 
lauses whi
h have an A(v) in the head 
ome from the 
lauses of type(3)', it automati
ally follows that it must be the 
ase that fa : A(a) 2 Mg iseither equal to opA(;) = ; or opA(fA(0)g) = fA(0)g. But it 
annot be thatA(0) 2 M sin
e otherwise all the 
lauses of type (3)' will be eliminated whenwe take GLIIop+;op�(P ) or GLIIop+;op�(P ) and hen
e there would be no way togenerate A(0) by iterating TGLIop+;op� ;op+ or TGLIIop+;op� ;op+(P ) starting at theempty set. Thus it must be the fa : A(a) 2 Mg = ;. But then the e�e
t ofthe 
lauses of type (3)' is to say that it is impossible that both S(v) and S(v)are elements of a stable model M of P of type I or type II. Thus the e�e
t ofthe 
lauses of type (3)' is to say that in any stable model M of type I or typeII, when opA = op� = opid, the sets fa : S(a) 2 Mg and fa : S(a) 2 Mg aredisjoint.Next it is easy to see that the 
lauses of type (4)' and (5)' ensure that thatfor any stable model of type I or type II of P , it is the 
ase that fa : S(a) 2Mg[ fa : S(a) 2Mg = V . Similarly the 
lauses of type (1) and type (2) ensure



that A � fa : S(a) 2 Mg and B � fa : S(a) 2 Mg. Thus it follows that nomatter how we de�ne opS and opS , the set fa : S(a) 2Mg and fa : S(a) 2Mg,where M is stable model of type I or type II of P , are a pair of separating setsfor A and B.Now 
onsider the various options for opS and opS . In ea
h 
ase stable modelsof P will 
hara
terize some desired 
lass of sets. Moreover, in ea
h 
ase the stablemodels will be of the form M = fS(v) : v 2 Cg [ fS(v) : v 2 X � Cg where Cis the set whi
h is 
hara
terized.Proposition 1. 1. When opS = opid and opS = opid, P has a stable model ifand only if A \ B = ; and stable models of P 
hara
terize sets C � V su
hthat A � C and B � V � C.2. When opS = op
 and opS = opint, P has a stable model if and only ifop
(A) \ B = ; and stable models of P 
hara
terize 
losed sets C � V andA � C and B � V � C.3. When opS = opint and opS = op
, P has a stable model if and only ifA \ op
(B) = ;. Stable models of P 
hara
terize open sets C � V su
h thatA � C and B � V � C.4. When opS = op
onv and opS = op
onv, P has a stable model if and only ifK(A) \ K(B) = ; and the stable models of P relative to op+ 
hara
terizesets C � V su
h that C and V � C are 
onvex, A � C and B � V � C7.5. When opS = opsubsp and opS = opid, P has a stable model if opsubsp(A) \B = ; and the stable models of P 
hara
terize subspa
es of C � V su
h thatA � C and B � V � C.4.3 Complementary subspa
esIn this se
tion we modify the previous 
onstru
tion to 
ompute 
omplementarysubspa
es. That is, suppose that we add 2 more predi
ates T; T and de�ne�(T (v)) = fT (v)g and �(T (v) = fT (v)g for all v 2 X . Next 
onsider the programQ whi
h is P from the previous 
onstru
tion plus the following set of 
lauses:(6) T (b) for all b 2 B,(7) T (a) for all a 2 A,(8) A(0) T (x); T (x);:A(0),(9) T (x) :T (x) and(10) T (x) :T (x).Then as before with shall take opA = op� = opid, opS = opT = opsubspand opS = opT = opid. Then we are essentially in the 
ase of part 5 of theProposition 1 so that all stable model of Q relative to op+ are of the formM = fS(v) : v 2 Cg [ fS(v) : v 2 X � Cg[ fT (v) : v 2 Dg [ fT (v) : v 2 X �Dg:7 Re
all the 
lassi
al Convex Separation Theorem of Stone: if A and B are disjoint
onvex subsets of V , then there is a set C su
h that C and V �C are 
onvex subsetsof V su
h that A � C and B � V � C.



where C and D are subspa
es of V su
h that A � C, B � V � C, A � X �D,and B � D. Finally we would like to add some 
lauses to ensure that C andD are 
omplementary subspa
es, i.e. C \ D = f0g and opsubsp(C [ D) = V .We add three more predi
ates U , U and equality where opU = opsubsp andop= = opU = opid. Consider the following 
lauses (11)-(18):(11) A(0) U(x); U(x);:A(0),(12) U(x) :U(x),(13) U(x) :U(x),(14) A(f0g) U(x);:A(f0g),(15) U(x) S(x),(16) U(x) T (x),(17) = (v; v) for all v 2 V and(18) A(0) S(x); T (x);:(x = 0);:A(0).By our previous analysis, 
lauses (11), (12) and (13) ensure that in a stablemodel M the set E = fv 2 V : U(v) 2 Mg is a subspa
e and V � E = fv 2V : U(v) 2 Mg. Clause (14) then ensures that in a stable model V � E = fv 2V : U(v) 2 Mg = ; and hen
e it must be the 
ase that E = fv 2 V : U(v) 2Mg = V . However the only way that we 
an generate in E is via appli
ationsthe 
lauses of the form (15) and (16) so that in a stable model, we must haveopsubsp(C [ D) = E = V . Finally the 
lauses of the form (17) and (18) ensurethat C \D = f0g. Thus we have the following result.Proposition 2. The stable models of program Q determine sets C and D to be
omplementary subspa
es of V .4.4 Continuous real fun
tionsIn this se
tion, we shall use set based programming to write a program whosestable models represent 
ontinuous fun
tions F : [0; 1℄! [0; 1℄.Let R be the real line, equipped with its usual topology. Let R+ be the setof all positive real numbers. Let ! be the set of all natural numbers. Let Z+ bethe set of all positive integers.It is easy to see that there R has a 
ountable base fUa j a 2 ! g su
h that1. U0 = R,2. for ea
h a > 0, Ua is an open interval (pa; qa) whose endpoints are dyadi
rational,3. the endpoint sequen
es hpaia2! and hqaiq2! are 
omputable,4. there is a monotone fun
tion e : Z+ �! Z+ su
h that, for ea
h positiveinteger m, for ea
h a > e(m), the diameter of Ua is less than 2�m and5. for all natural numbers a and b, if Ua � Ub, then a � b.For any positive integer n, the produ
t spa
e Rn also possesses su
h a base(with the obvious di�eren
e that the sets Un for n > 0 are produ
ts of open



intervals and that there are 2n 
omputable sequen
es of endpoints.) Obviously,su
h a 
onstru
tion 
an be relativized to the produ
t spa
es [0; 1℄nGiven su
h a base for the topology of Rn, we 
an represent a 
ontinuousfun
tion F : Rn �! Rn by the fun
tion f : ! �! ! de�ned byf(a) = the greatest b su
h that F (Ua) � Ub (6)We 
an re
over F from f , sin
e, for ea
h x 2 Rn, F (x) is the unique member ofTa2!;x2Ua Uf(a)Conversely, given su
h a base fUa j a 2 ! g and an arbitrary fun
tion f :! �! !, it is natural to ask when is it the 
ase that there is a 
ontinuousfun
tion F : Rn ! Rn su
h that F is de�ned from f via (6). One 
an show thatit is the 
ase that for any �xed x 2 Rn,\a2!;x2UaUf(a)is a singleton if and only if there is a fun
tion dx : Z+ �! R+ su
h that, for ea
hnatural number m and ea
h positive integer k, x 2 Um and Um has diameter lessthan dx implies Uf(m) has diameter less than 2�k. Thus, (6) de�nes a fun
tionfrom Rn to Rn if and only if su
h a dx exists for every x 2 Rn. In the 
ase of
ompa
t spa
e like [0; 1℄, it is the 
ase the (6) de�nes a fun
tion from [0; 1℄ to[0; 1℄ if and only if su
h a d, 
alled the modulus of 
ontinuity of the F fun
tion,su
h that for all k, Um has diameter less than d(k) implies Uf(m) has diameterless than 2�k.We shall 
onsider a simpli�ed version of this type of phenomenon. For exam-ple, let An = fAn;k : k = 0; : : : ; 2n � 1g [ fBn;k : k = 1; : : : ; 2n�1 � 2g: (7)where An;k =8><>:[0; 12n ) if k = 0;( 2n�12n ; 1℄ if k = 2n � 1 and( k2n ; k+12n ) if k = 1; : : : ; 2n�1 � 2and Bn;k = (2k + 12n+1 ; 2k + 32n+1 ) for k = 0; : : : ; 2n�1 � 1:The signi�
an
e of the family An is that every x 2 [0; 1℄ lies in an open intervalI of diameter 1=2n for some I 2 An. Now suppose that our representing fun
tionf of a 
ontinuous fun
tion F : [0; 1℄! [0; 1℄ has the property that if Ua 2 A2n,then f(a) = b where b 2 An. Thus the modulus of 
ontinuity fun
tion in this 
aseis given by d(k) = 122k+2 . That is, whenever Um has diameter < d(k), Um � Utwhere Ut 2 A2k and hen
e Uf(m) � Uf(t) 2 Ak and hen
e diam(Uf(m)) �diam(Uf(t)) = 2�k. In fa
t, it easy to see that 
an spe
ify F by merely de�ningf on the a su
h that Ua 2 Sn�1A2n.



This given, we 
onsider the following program. The 
onstants of the under-lying program will be An;k su
h that k = 0; : : : ; 2n� 1 and n � 1 and Bn;k su
hthat k = 0; : : : 2n�1 � 2 for n � 1. Our program will 
ontain one binary relationsymbol f(x; y) and one 0-ary predi
ate symbol C. The sense of a ground atomf(Em;k; Fn;l) where E;F 2 fA;Bg will simply be the open set Em;k � Fn;l 
on-tained in [0; 1℄� [0; 1℄. The sense of C is just fCg so that the underlying spa
eX 
onsists of all fCg [ fUa � Ub : a; b 2 !g. We will take the miop operatoropf = opC = op� = opid. Then 
onsider the following propositional set-basedprogram P .(1) C  f(X;Y );:C for all X 2 A2n and Y =2 An,(2) C  f(X;Y ); f(X;Z);:C for all X 2 A2n and Y; Z 2 An with n � 1 andX 6= Y ,(3) C  f(X;U); f(Y; V );:C for all X;Y 2 Sn�1A2n and U; V 2 Sn�1Ansu
h that X � Y but U * V .(4) f(X;Y ) :f(X;U1); : : : ;:f(X;U2n+2n�1�1) for ea
h n � 1, X 2 A2n andY 2 An where An � fY g = fU1; : : : ; U2n+2n�1�1g and(5) C  :f(X;U0); : : : ;:f(X;U2n+2n�1�1);:C for ea
h n � 1, X 2 A2n andY 2 An where An = fU0; : : : ; U2n+2n�1�1g.It is then easy to see by the same type analysis that we used in example 1,that C 
an never be an element of a stable model M for P . It follows that e�e
tof the 
lauses in (1), (2), (3) is to ensure that we 
an think of f as spe
ifyinga fun
tion de�ned on some subset of Sn�1A2n su
h that for ea
h n � 1, (i)X 2 A2n implies f(X) 2 An and (ii) if X � Y , then f(X) � f(Y ). Finally the
lauses of (4) and (5) say that f must be de�ned on all of Sn�1A2n. Thus wehave the followingProposition 3. The stable models of P 
orrespond to f : Sn�1An ! Sn�1Ansu
h that for all n, a 2 A2n implies f(a) 2 An and hen
e all su
h f de�ne a
ontinuous fun
tions F : [0; 1℄ �! [0; 1℄ via (6).We should note that we did not really need to used set-based programming inthis 
ase as we 
ould do the same thing in normal logi
 programming. The reasonfor presenting this 
onstru
tion is that by setting it in this framework, we 
anreason dire
tly about the approximating interval Ua � Uf(a) to the fun
tion Fin this 
ase. Moreover, the framework of representing fun
tions allows to reasonabout 
ontinuous transformations between di�erent agents. Of 
ourse, in a
tualpra
ti
e, we 
an only reason about approximations of 
ontinuous fun
tions sin
e
ontinuous fun
tions and/or their representing fun
tions are in�nite obje
ts. Inour setting, we 
an reason about approximations of representing fun
tions by�xing some n0 and restri
ting our program 
lauses so that all indi
es involvedmust be greater than or equal to n0.



4.5 Distinguishing type I and type II stable modelsWe end this se
tion with an example where there is a di�eren
e between typeI and type II stable models. Suppose that the underlying spa
e X = R2 is thereal plane. Our program will have two atoms fa; bg; f
; dg where a; b; 
 and d arereals. We let [a; b℄ and [
; d℄ denote the line segments 
onne
ting a to b and 
 tod respe
tively. We let sense of the these atoms be the 
orresponding subsets, i.e.we let �(fa; bg) = fa; bg and �(f
; dg) = f
; dg. We let op+ = op� = op
onvex.The 
onsider the following program P .(1) fa; bg  :f
; dg(2) f
; dg  :fa; bgThere are four possible 
andidate for stable models in this 
ase, namely (i) ;,(ii) [a; b℄, (iii) [
; d℄, and (iv) op
onvexfa; b; 
; dg.If we are 
onsidering type I stable models where J j=Iop� :C if and only ifop�(C) \ J = op�(;) = ;, then the only 
ase where there are stable models if[a; b℄ and [
; d℄ are disjoint in whi
h (ii) 
ase and (iii) are stable models.If we are 
onsidering type II stable models where J j=IIop� :C if and only ifop�(C) ( J , then there are no stable models if [a; b℄ = [
; d℄, (ii) is stable modelif [a; b℄ ( [
; d℄, (iii) is stable model if [
; d℄ ( [a; b℄ and (ii) and (iii) are stablemodels if neither [a; b℄ � [
; d℄ nor [
; d℄ � [a; b℄.5 An appli
ation: 
ooperating multi-agentsIn this se
tion we will illustrate the power of spatial programs and miops torepresent multi-agent systems by building upon an example given by Russelland Norvig [RN03℄ involving doubles tennis. Our point of departure is their 2-player doubles tennis team and how the team attempts to handle the return ofan in
oming ball. We �rst des
ribe their representation of this situation.Russell and Norvig set up two agents (the players on the team) that 
an ea
hbe in one of four dis
rete position values: [Left, Baseline℄, [Right, Baseline℄, [Left,Net℄, [Right, Net℄. Initially the ball is approa
hing the [Right, Baseline℄ positionand it is assumed that the ball 
an only be returned from the position it isapproa
hing. The goal is to return the ball and have both players positioned atthe net.8 Ea
h player has three distin
t a
tions available that 
an be invokedunder 
ertain pre
onditions. The e�e
t of an a
tion is to 
hange the environment.In this tennis example, an environment is an asso
iation of values to the ball'sapproa
hing position attribute, the ball's returned attribute, and ea
h agent'sposition attribute. The a
tions available to an agent are NoOp whi
h has noe�e
t, Go whi
h reassigns the agent's position attribute value, and Hit whi
hsets the ball's returned attribute to true. Sin
e we are about to 
hange thepre
onditions for moving a player anyway, we omit the des
ription of the rather
ommon sense pre
onditions for ea
h of the a
tions.8 Ea
h player 
an go to any position that she herself does not 
urrently o

upy, hen
ethe position goal for the players is a
tually super
uous.



We will now modify Russell and Norvig's example to allow for the 
ontinuousmotion of the players in 
ontinuous time and allow them a 
ontinuum of positionson their side of the 
ourt, as well as seek to prevent 
ollisions when hittingthe ball. We will represent the modi�ed situation with a spatial logi
 programand sele
ted miops. The representation will be a

omplished by �rst 
onsideringa representation of the tennis example in a simpli�ed variation of a fragmentof William Rounds's and Hosung Song's �-
al
ulus [RS03℄, and then we willdis
uss how to represent the �-
al
ulus des
ription as a spatial program withmiops. We emphasize that we are not attempting to give a general pro
edurefor representing �-
al
ulus models as spatial logi
 programs with miops. Rather,we are informally indi
ating that there is a relationship between �-
al
ulus (andsimilar 
al
uli su
h as CCS and �-
al
ulus) and spatial programs with miops.We give our �-
al
ulus variation grammati
ally and then des
ribe an opera-tional semanti
s.We have Con
urrent Expressions (CE), Copy Expressions (YE), Commit-ted Choi
e Expressions (CCE), A
tion Sequen
e Expressions (ASE), A
tion Ex-pressions (AE), Environmental A
tions (EA), and messages (M). The gram-mar relating these types of phrases is given by the following produ
tion rules:CE �! CCE, CE �! Y E, CE �! CCEjjCE, Y E �! !CCE, CCE �!ASE, CCE �! ASE + CCE, ASE �! AE, ASE �! AE :CCE (not quitehierar
hi
al with this rule), AE �! EA, AE �!M , and ea
h message is of theform id or id 9 where id is an identi�er. An empty CE is denoted by 0, a pro
esswhi
h is unable to 
arry on any more a
tions. An EA is either empty, or has theform ['! E ℄, where ' is a senten
e from a �xed given spatially augmented �rstorder language and E is an environment (to be dis
ussed momentarily). ASEexpressions are read, and pro
essed, from left to right. The pro
essing of CEexpressions is made by 
onsidering all the subexpressions simultaneously; andthe pro
essing of CCE expressions 
onsists on sele
ting only one of its subex-pressions for exe
ution. The stopping 
ondition of a CE is the disjun
tion of thestopping 
onditions of its 
omponents. Analogously, the stopping 
ondition of aCCE is the disjun
tion of the stopping 
onditions of the AE's in the CE. Thestopping 
ondition of an EA, [' ! E ℄, is ', and is 
alled the pre
ondition ofthe EA. The stopping 
ondition of a message is true. The stopping 
ondition of0 is true. Finally, the stopping 
ondition a Y E is the stopping 
ondition of itstop-level CCE.An environment is a quadruple (V; I; L; P ) where V is a a k-tuple (for somek) of variables, I is a set of k-tuples of values in the interpretation spa
e of thegiven spatially augmented language L for the variables in V , L is a 
ow law andP is an invariant 
ondition, whi
h must remain true while the state I evolvesin a

ordan
e with the 
ow laws. Formally, I is a relation (whi
h evolves as theenvironment evolves) on an interpretation spa
e, the 
ow law L is a fun
tionthat maps pairs 
onsisting of, for some k, a k-ary relation on an interpretationspa
e and a time (i.e. a real number) to k-ary relations on the interpretation9 In the literature, id is regarded as the a
tion of listening for the message id, and idas the a
tion of sending that message



spa
e, and P is a formula of the given spatially augmented language L whosefree variables are in V .Consider the Eu
lidean plane with a standard 
oordinate system and thesystem of ordinary di�erential equations _x = f(x; y), _y = g(x; y). Take for I asmall region su
h as the dis
 of radius 1 around the origin. The 
ow law is thesystem of ordinary di�erential equations. A suitable 
ow law 
an be thoughtof as 
ausing the points in I to move to new positions as a fun
tion of time,thus moving and distorting I as a fun
tion of time. (It is possible to give e.g.di�erential equations that move at least some of the points of I to in�nity aftera short time, thus rendering the image of I at all later times unde�ned. Wewill assume that the admissible 
ow laws de�ne an image of any subset of theplane at all times.) Think of the image of I evolving over time while the imagesatis�es or remains in the region spe
i�ed by P . For example, the unit dis
 maymove and distort for a while until the image no longer 
ontains the origin. Whenthat happens and is dete
ted, we 
ould stop the evolution of the image of I . Ingeneral, we 
an stop the evolution of the image of I at the greatest lower boundof all times t, at or after the starting time, at whi
h P is satis�ed by the imageof I . Call this time the stop time.Now, the essential 
onne
tion with spatial logi
 programs and miops is thatthe image of I at the stop time, as a fun
tion of I , for a given admissible 
ow lawand a given invariant 
ondition, is a miop provided we ensure that any invariant
onditions we use always eventually must be falsi�ed su
h as by arranging fordefault stop times to be spe
i�ed. If I in
reases in size, so do the images of I overtime (monotoni
ity) and if a stop time has been rea
hed, a restart with the sameinvariant 
ondition goes nowhere (idempoten
y). Any 
omputations of miops,su
h as those involving numeri
al solutions of ordinary di�erential equationsand dete
tions of invariant 
ondition satisfa
tion are ba
k-end 
omputations.Using invariant 
onditions that allow the ba
k-end 
omputation to not returnallows a form of deadlo
k. It is, therefore, reasonable to avoid su
h invariant
onditions.A senten
e of the given spatially augmented language. A miop � 
an bederived from L and an invariant 
ondition ' as follows: �L;'(I) = L(I; t1) wheret1 = infft j L(I; t) j= :'g.An operational semanti
s for our variant fragment of �-
al
ulus is based on asimple notion of 
on
urrent threads, ea
h of whi
h is a sequen
e of a
tions to be
arried out on an environment. Ea
h element of a 
on
urrent expression (CE) iseither a 
opy expression (Y E) or a 
ommitted 
hoi
e expression (CCE). We deferdes
ribing the pro
essing of 
opy expressions until the tennis example. Copyexpressions have the least priority in pro
essing. Think of a CE as a 
olle
tion of
on
urrent queues, ea
h of whi
h is 
ontained in a CCE. A CCE is an ex
lusive-or of these queues. A CCE is eligible to be sele
ted for pro
essing if its stopping
ondition is satis�ed by the 
urrent environment. An eligible CCE is sele
tednondeterministi
ally, but subje
t to the 
onstraint that CCE0s 
ontaining ana
tion sequen
e that 
an parti
ipate in a handshake (see below) have priority.An a
tion sequen
e expression whose stopping 
ondition is 
urrently satis�ed



is sele
ted from the CCE to repla
e the CCE, i.e. the CCE is redu
ed, againsubje
t to the 
onstraint that handshakes get priority. The operation is va
uousif the sele
ted CCE is already an ASE, and we must build into interpreters theavoidan
e of repeated va
uous sele
tions of redu
ed CCE0s. An ASE is thoughtof as a queue. When an ASE is sele
ted for pro
essing, the a
tion at the front ofit (whi
h may involve a handshake with the a
tion at the front of another ASE)is pro
essed in the manner of the �-
al
ulus. A
tions other than handshakesinvolve synta
ti
 
hanges to the environment and resetting of variables. If thereare no eligible CCE0s, the environment is allowed to evolve in a

ord with its
urrent 
ow law and invariant. If the environment's invariant 
ondition is notsatis�ed and there are no eligible CCE's, deadlo
k results.An operational semanti
s treats the phrase types in a

ordan
e with thefollowing: Let (E ; E) be a pair, where E is an environment and E is a CE.The stopping 
ondition ' of the pair is the disjun
tion of the negation of theinvariant 
ondition of E and the stopping 
ondition of E. A transition from (E ; E)to (E 0; E0) nondeterministi
ally o

urs, from the highest to the lowest priority,if:{ the expression E is a 
on
urrent expression of the form E1jj : : : jjEn, and atleast two subexpressions Ei and Ej are ready to syn
hronize by means of
omplementary messages. This a
tion requires the stru
ture of the subex-pressions to be Ei = a:Êi and Ej = a:Êj . E0 then results from E in themanner of �-
al
ulus transitions, and E 0 = E . This is known as a handshake.{ the stopping 
ondition of (E ; E) is satis�ed by the set in E , none of the
omponents of E are ready for a handshake , E 0 is the environment of anenvironmental a
tion whose pre
ondition is satis�ed by the set in (E ; E) andE0 is a repla
ement of E in the manner of the �-
al
ulus.{ the stopping 
ondition of (E ; E) is not satis�ed by the set in E , E0 = E, andthe set in E 0 is the result of applying the miop derived from the 
ow law in(E ; E) and the stopping 
ondition of (E ; E) to the set in (E ; E).Whenever the expression E 
an be pro
essed in the manner of the �-
al
ulus,no environmental evolution 
an take pla
e and E is pro
essed. Otherwise Esatis�es no a
tive stopping 
onditions and is permitted to evolve a

ording to its
onstituent 
ow law. The distin
tion between 
ommitted 
hoi
e and mere 
hoi
eis that any of the message 
omponents or a
tion 
omponents of a CE with asatis�ed pre
ondition 
an be sele
ted to be pro
essed (with mat
hing messageshaving priority) and then eliminated. With a CCE one of the a
tion 
omponentswith a satis�ed pre
ondition 
an be sele
ted for pro
essing after whi
h the entireCCE is eliminated. Copy expressions are treated by regarding a CE as a list of
omponents and list-pro
essing the CE by performing an in-pla
e repla
ementof a 
omponent !CCE by CCEk!CCE.The �rst two types of transitions between environment/expression pairs item-ized above are representable as 
lauses. We 
an 
onstru
t a set-based logi
 pro-gram to be an interpreter for our �-
al
ulus fragment variant in a

ordan
e withthe following. We want stable models to be plans whi
h we represent as lists



of pairs, ea
h pair of the form (E ; E), and 
onse
utive pairs (E ; E); (E 0; E0) o
-
urring in a plan only if (E ; E) 7! (E 0; E0) is a legitimate transition. Note thatwhenever E 6= E 0, it must be that the set 
omponent of E 0 results by applyinga miop representing a 
ow or an environmental a
tion to the set 
omponent ofE . The spe
i�
 miop to be applied is determined by the top few levels of subex-pressions in E together with the set 
omponent (whi
h may be a singleton) inE . We may regard the miop as a fun
tion of both E and E; in that 
ase thereis only a single miop � to represent environmental evolution that we need to be
on
erned with. We 
an identify the set 
omponents of E and, similarly, E 0, witha tuple of 
onstants in a manner similar to a our treatment of ve
tor spa
es inse
tion 4.2, whenever it is a singleton, as it is in the appli
ations under dis
us-sion here. The sense of an atom trans(E ; E; E 0; E0) is just the singleton of thepair ((E ; E); (E 0; E0)). We then de
lare a miop op to a
t on sets of these pairs byop(R) = f(s; t) 2 R j t 2 �(fsg)g, where R � S � T .The set-up of a spatial logi
 program-based interpreter involves the need for,given a nonempty relation q in a program P , arranging a relation p su
h thatin ea
h stable model p is true of exa
tly one tuple and q is true of that tuple.The arrangement should not 
hange the extension of q in any stable model.Spe
i�
ally, we 
an add 
lauses to P as follows:That in any stable model p will have at most one true instan
e is expressedby: A(X;Y ) p(X); p(Y );:A(X;Y )A(X;X)That in any stable model p and p are disjoint is expressed by:A p(X); p(X);:Ap and p are 
omplementary:p(X) :p(X)p(X) :p(X)That in any stable model that if p is true of X , then q is true of X is expressedin 
onjun
tion with the above 
lauses, while avoiding adding any new 
lauseswith q o

urring in their head, by:p(X) :q(X)In 
onjun
tion with the above 
lauses, 9Xp(X):A :B;:AB  :p(X)The eight 
lauses given above 
an regarded as a ma
ro, whi
h we write as:exa
tlyOne[q℄(X)



It is 
lear that we may generalize the single variable X to a tuple of variables.Moreover, by singling out a subtuple of variables among a tuple of variables, wemay obtain (Skolem) fun
tions. The following is the obvious abbreviation, whereY1; : : : ; Ym fun
tionally depends on X1; : : : ; Xn:exa
tlyOne[q℄(X1; : : : ; Xn;Y1; : : : ; Ym)Thus, given a1; : : : ; an, we obtain exa
tly one instan
e ofexa
tlyOne[q℄(a1; : : : ; an;Y1; : : : ; Ym)true in any stable model.In order to obtain one su

essful plan per stable model, we use the exa
tly-One ma
ro. Suppose we have set up, using standard te
hniques, a 1-ary predi
ateplanPart whi
h in any stable model is true of all and only the lists of pairs(Env;Exp) su
h that for two su

essive pairs (Env;Exp), (Env0; Exp0) in anylist of whi
h planPart is true, trans(Env;Exp;Env0; Exp0) is true. Further-more, suppose we have easily available list-pro
essing predi
ates, first(A;L)true of all and only lists L whose �rst member is A in all stable models, andlast(Z;L) true of all and only lists L whose last member is Z in all stable mod-els. (That lists are �nite is easy to arrange in what we take for the interpretationspa
e.) Then we may de�ne the 3-ary predi
ate plan byplan((Env;Exp); (Env0; Exp0); P lan) first((Env;Exp); P lan), last((Env0; Exp0); P lan), planPart(P lan)The ma
roexa
tlyOne[plan℄((Env;Exp); (Env0; Exp0);P lan)pi
ks out exa
tly one P lan starting from (Env;Exp) and ending with (Env0; Exp0)in any stable model of the interpreter for whi
h plan((Env;Exp); (Env0; Exp0); P lan)is true.We 
on
lude this se
tion with a dis
ussion tra
ing the pro
essing of theexpression representing the double tennis team's attempt to return an in
omingball.The representation of the tennis situation in our variant of the �-
al
ulus is:[P1 
an rea
h ball ! set P1 to inter
ept ball ℄.goP1.([P1 
an hit! stop P1, return ball℄.hitBallP1 + [P1 missed ! all stop℄. missedP1)jjgoP2.[P2 
loser than P1 ! no reset℄.([true ! stop P1℄ + [true ! move P1 to default position℄)℄jj[P2 
an rea
h ball ! set P2 to inter
ept ball ℄. goP2.([P2 
an hit ! stop P2, return ball ℄. hitBallP2 + [P2 missed ! all stop ℄.missedP2)jjgoP1.[P1 
loser than P2 ! no reset ℄.([true ! stop P2℄ + [true ! move P2 to default position℄)



In order to simplify the representation, we will use labels to refer to theenvironmental a
tions in this pro
ess; a
tions with labels ei belong to expressionsrelated to player 1, and labels of the form e0j refer to EAs of player 2.Let:e1= [P1 
an rea
h ball ! set P1 to inter
ept ball ℄e2=[P1 
an hit! stop P1, return ball℄e3=[P1 missed ! all stop℄e4=[P2 
loser than P1 ! no reset℄e5=[true ! stop P1℄e6=[true ! move P1 to default position℄)℄e01=[P2 
an rea
h ball ! set P2 to inter
ept ball℄e02=[P2 
an hit ! stop P2, return ball℄e03=[P2 missed ! all stop ℄e04=[P1 
loser than P2 ! no reset℄e05=[true ! stop P2℄e06=[true ! move P2 to default position℄The representation of the tennis game is now:e1:goP1:(e2:hitBallP1 + e3:missedP1) jjgoP2:e4:(e5 + e6) jje01:goP2:(e02:hitBallP2 + e03:missedP2) jjgoP1:e04:(e05 + e06)When the ball approa
hes the players, the �rst and third 
omponents of therepresentation 
an potentially have their pre
onditions satis�ed. It is presumedthat at most one of the players 
an rea
h the ball. If neither rea
h-pre
onditionis satis�ed as the environment evolves the ball's position, then no expressionpro
essing will result, and the environment will eventually stop evolving whenits default stopping 
ondition is rea
hed , for instan
e, when the ball goes outof the 
ourt.Alternatively, suppose the rea
h pre
ondition for P1 is satis�ed �rst. Thenthe environment evolution is halted, variable values are reset, and the 
ow lawis altered to 
ause player 1 to inter
ept the ball when a
tivated. The expressione1 = [P1 
an rea
h ball! set P1 to inter
ept ball℄ is popped and dis
arded. Theexpression now has the form:goP1:(e2:hitBallP1 + e3:missedP1) jj goP2:e4:(e5 + e6) jje01:goP2:(e02:hitBallP2 + e03:missedP2) jj goP1:e04:(e05 + e06)At this point in the expression pro
essing, the messages goP1 and goP1 mat
hand are eliminated by means of a handshake a
tion. As mentioned above, thiskind of a
tion takes pre
eden
e over any other possible pro
essing 
urrentlyavailable in the expression. The result of the handshake is the expression:(e2:hitBallP1 + e3:missedP1) jj goP2:e4:(e5 + e6) jje01:goP2:(e02:hitBallP2 + e03:missedP2) jj e04:(e05 + e06)



No other handshake is possible at the moment, so the environment resumesevolving until (possibly after 0 elapsed time) one of the pre
onditions [P1 
anhit℄ (from e2), [P2 
an rea
h ball℄ (from e01), or [P1 
loser than P2℄ (from e04) issatis�ed.Suppose for example that [P2 
an rea
h ball ℄, the pre
ondition of e01, issatis�ed �rst. The environment is updated by using the information providedin e01 setting player 2 to go also after the ball. e01 is then eliminated from theexpression, whi
h now presents this form:(e2:hitBallP1 + e3:missedP1) jj goP2:e4:(e5 + e6) jjgoP2:(e02:hitBallP2 + e03:missedP2) jj e04:(e05 + e06)Noti
e how the pro
essing of e01 has enabled a handshake, with messagesgoP2 and goP2, whi
h has to be pro
essed before the environment 
an resumeevolution. The expression is now:(e2:hitBallP1 + e3:missedP1) jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2) jj e04:(e05 + e06)Both players will be attempting to rea
h the ball. Assuming that the ballis not 
lose enough so neither player 
an determine whether they 
an rea
h it{pre
onditions for e2 and e02{ (mu
h less, hit the ball), nor the players are ableto de
ide whi
h one is 
loser to the ball {pre
onditions for e4, and e04 { theenvironment is allowed to evolve thus des
ribing the traje
tory of the ball andthat of the players moving towards it.Suppose that next [P1 
loser than P2℄, the pre
ondition of e04, is satis�ed.Then, environmental evolution stops and the pro
essing of e04 opens up a 
hoi
eregarding the future a
tions for P2 by exposing the CCE expression e05 + e06. e04does not 
arry any resetting information for updating the 
urrent environment.This a
tion is designed to dete
t the o

urren
e on an event for whi
h its responseis delegated to a subexpression. After removing e04 the expression has the form:(e2:hitBallP1 + e3:missedP1) jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2) jj e05 + e06The pro
essing of e04 paused the evolution of the environment. However, thiswill not start evolution again until a 
hoi
e is made between e05 or a06. Thissituation is due to the fa
t that the pre
onditions of both e05 and a06 are true.After a 
hoi
e is made, P2 will remain in its 
urrent position if e05 is pro
essed; orit will be dis
retely relo
ated a to a default position after pro
essing e06. In either
ase, sin
e no more a
tions follow e05 and e06, this subexpression is regarded as anull pro
ess 0 and it 
an safely be removed from this expression. After 
hoosingeither EA and properly updated the 
urrent environment, the expression is then:(e2:hitBallP1 + e3:missedP1) jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2)Evolution of the environment then resumes as P1 attempts to inter
ept andhit the ball. It is important to realize that even though the expression above



gives hope for P2 to hit the ball (by means of the expression e02:hitBallP2 +e03:missedP2), the 
urrent environment makes this possibility very unlikely: the
urrent 
ow law of P2 prevents it from moving after 
hoosing either e05 or e06 inthe previous step. It 
an be also veri�ed that the pre
onditon for e4 (P2 
loserthan P1) is not satis�ed as P1 is the only player going towards the ball and itwas already de
ided that P2 was not getting any 
loser to the ball.P1's attempt to inter
ept the ball may result in a su

essful return if e2 ispro
ess. The environment then will be updated to stop P1 and to 
hange thedire
tion of the ball, result of an e�e
tive return by P1. In this 
ase the expressionwill have the form: hitBallP1 jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2)On the other hand, P1 may not be able to rea
h the ball, in whi
h 
asethe pre
ondition of e3 is designed to dete
t su
h event and the result of thepro
essing of this EA will re
e
t P1's failure. The expression is then:missedP1 jj e4:(e5 + e6) jj(e02:hitBallP2 + e03:missedP2)In either 
ase, the resulting expressions re
e
t a state in whi
h no moreprogress 
an be made: a handshake involving hitBallP1 (or missedP1, in these
ond 
ase) is not possible; and, no pre
ondition of any of the EA availablesis satis�ed. In other words, the expression is fun
tionally equivalent to the 0pro
ess. It is 
lear that the representation of a 
omplete tennis game will requirethe ability of allowing the players to rea
t to more than one serv, game and set.For instan
e, we 
an embed ea
h of the 
omponents of the original 
on
urrentexpression CE inside 
opy expressions CY. This would allow the 
reations of
opies of those 
omponents as needed. The original expression would have hadthe following stru
ture:!(e1:goP1:(e2:hitBallP1 + e3:missedP1)) jj!(goP2:e4:(e5 + e6)) jj!(e01:goP2:(e02:hitBallP2 + e03:missedP2)) jj!(goP1:e04:(e05 + e06))The �rst step of the pro
essing of this expression 
onsists in obtaining a
opy of ea
h 
omponents based on the �-
al
ulus 
ongruen
e rule (whi
h it isimported from �-
al
ulus) !P � P jjP . The resulting expression is then:e1:goP1:(e2:hitBallP1 + e3:missedP1) jjgoP2:e4:(e5 + e6) jje01:goP2:(e02:hitBallP2 + e03:missedP2) jjgoP1:e04:(e05 + e06) jj!(e1:goP1:(e2:hitBallP1 + e3:missedP1)) jj!(goP2:e4:(e5 + e6)) jj!(e01:goP2:(e02:hitBallP2 + e03:missedP2)) jj!(goP1:e04:(e05 + e06))



The representation is now in a form that allows us to pro
eed as des
ribedbefore.6 Con
lusions and Further WorkIn this paper, we de�ned a variant of logi
 programming, 
alled spatial logi
programming, where the atoms have an asso
iated sense (whi
h is a subset ofa given spa
e) and have illustrated how su
h program 
an be used to naturallyexpress problems in the various 
ontinuous domains. We envision many otherappli
ations of our spatial logi
 programming formalism su
h areas as graphi
s,image 
ompression, and other domains where there are natural representation ofpro
esses that a

ept subsets of spa
es as inputs and 
ompute outputs, subsetsof those spa
es. Spatial programs with miops provide a logi
-based approa
h tohybrid dynami
al systems.This paper is the �rst of a series of papers that will explore the spatial logi
programming paradigm. For example there are a number of 
on
epts from logi
programming su
h as, well-founded model [VGRS91℄, strati�ed programs, et
.that 
an be lifted to the present 
ontext almost verbatim. Thus one 
an developa ri
h theory of spatial logi
 programs. Our spatial logi
 programs share 
ertainfeatures with Constraint Logi
 Programming [JM94℄ and the exa
t 
onne
tionsneed to be explored. Third, one 
an think about the senses of atoms as annota-tions of the kind dis
ussed in [KS92℄. While there are various di�eren
es betweenour approa
h and [JM94℄, for instan
e our use of negation as means to enfor
e
onstraints as in [Nie99℄, the relationship between these two approa
hes shouldbe explored. Fourth, spatial logi
 programming 
an be studied in the more gen-eral setting of nonmonotone indu
tive de�nitions [Den00℄ (e.g. iterated indu
tivede�nitions of Feferman [Fef70℄).A
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