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Abstract. In a previous paper, the authors showed that the mechanism
underlying Logic Programming can be extended to handle the situation
where the atoms are interpreted as subsets of a given space. In a such
situation, the atoms of the underlying language corresponding to a logic
program P are interpreted as sets, the one step consequence operator
applied to a set S is interpreted as the union of all sets corresponding
to atoms which are the heads of clauses whose body is satisfied by S,
and the models of the program are interpreted as subsets of the space.
It turns out that the operator approach to Logic Programming can be
transferred to such situations. The concepts of supported and stable
models of programs also naturally transfer. In this paper, we show that
this set based formalism for Logic Programming naturally supports a
variety of options. For example, if the underlying space has a topology,
one can insist that the basic one-step consequence operator always pro-
duces a closed set or always produce an open set. We develop a general
framework for set based programming involving monotone idempotent
operators and demonstrate the utility of this approach by giving a spa-
tial logic program representing two cooperating agents in a continuous
environment.

1 Introduction

In [BMRO1], the authors developed an extension of the logic programming paradigm
which can directly reason about regions in space and time as might be required,
for example, for applications in graphics, image compression, or job scheduling.
Thus instead having the intended underlying universe be the Herbrand base of
the program, one replaces the underlying Herbrand universe by some fixed space
X and has the atoms of the program specify subsets of X, i.e. elements of the
set 2%, the set of all subsets of X.

If we reflect for a moment on the basic aspects of logic programming with
an Herbrand model interpretation, a slight change in our point of view shows
that interpreting atoms as subsets of the Herbrand base is a natural thing to do.
In normal logic programming, we determine the truth value of an atom p in an
Herbrand interpretation I by declaring I |= p if and only if p € I. However, this
is equivalent to defining the sense, o(P), of a ground atom p to be the set {p}
and declaring that I |= p if and only if o(p) C I. By this simple move, we have



permitted ourselves to interpret the sense of an atom as a subset, rather than
the literal atom itself.

This given, we showed in [BMRO1] that it is a natural step to take the sense
a(p) of ground atom p to be a fixed assigned subset of some nonempty set X and
to define a I C X to be a model of p, written I |= P, if and only if o(p) C I. This
type of model theoretic semantics makes available, in a natural way, multiple
truth values, intensional constructs, and interpreted relationships among the
elements and subsets of X. Observe that the assignment o of a sense to ground
atoms is intrinsically intensional. Interpreted relationships among the elements
and subsets of X allow the programs that use this approach, which was called
spatial logic programing in [BMRO1], to serve as front-ends for existing systems
and still have a seamless model-theoretic semantics for the system as a whole.

It turns out that if the underlying space X has structure such as a topology
or an algebraic structure such as a group, ring, field or vector space, then a
number of natural options present themselves. For example, if we are dealing
with a topological space, one can compose the one step consequence operator T
with an operator that produces, e.g. topological closures of sets or interiors of
sets. In such a situation, one ensures that the T always produces closed sets, or
always produces open sets. Similarly, if the underling space is a vector space, one
might insist that T always produces a subspace, or perhaps a convex closure.
Notice that each of the operators: closure, interior, span and convez-closure
are monotone idempotent (i.e. op(op(I)) = op(I)) operators. We call such an
operator a miop (pronounced “my op”).

One also has a variety of options for how to interpret negation. In normal
logic programming, a model M satisfies —p if p ¢ M. From the set-based point of
view when p is interpreted as a singleton {p}, this would be equivalent to saying
that M satisfies —p if (i) {p} N M = 0, or (equivalently) (ii) {p} € M. When
the sense of p is a set with more than one element it is easy to see that saying
that M satisfies —p if o(p) N M = () (a strong negation) is different from saying
that M satisfies —p if o(p) € M (a weaker negation). There are thus two natural
interpretations of the negation symbol. Again, when the underlying space has
structure, one can get even more subsidiary types of negation by taking M to
satisfy —p if cl(o(p)) N M = cl(0), or by taking M to satisty —p if cl(o(p)) € M
where ¢l is some natural miop.

The main goal to this paper is extend spatial logic programming paradigm
logic programming of [BMRO1] to a full set based logic program paradigm with
associated miops. The outline of this paper is as follows. In sections 2 and 3, we
shall briefly review the spatial logic programming paradigm as given in [BMRO1].
In section 4, we shall formulate a general set based logic programming formalism
when the underlying space has natural miops. We shall give several examples
where the same program can give different results depending on which miop
and/or negation operator we use. Finally, in section 5, we shall give an appli-
cation of our formalism to show how one can represent and reason about the
coordination of agents in a continuous space.



2 Spatial Logic Programs: syntax and semantics

Before giving the general definitions of our formalism for set based logic pro-
gramming with miop operators, we shall first recall the definitions of spatial
logic programs as developed in [BMRO1].

The syntax of spatial logic programs is based on the syntax of the formulas
of what we define as spatially augmented first-order logic. Spatial augmentation
is an intensional notion. The syntax of spatial programs will essentially be the
syntax of DATALOG programs with negation, but augmented by certain in-
tensional connectives such as union and intersection that are designed to make
programming in a spatial logic programming setting easier.

The use of intensional connectives allows for operations on what we call the
senses of ground atoms described in the next section to materially contribute to
determining the models of programs. The expressive power of intensional con-
nectives allows us to capture functions and relations intrinsic to the domain of
a spatial logic program, but independent of the program. It is this feature that
permits spatial logic programs to seamlessly serve as front-ends to other sys-
tems. Intensional connectives correspond to back-end procedures and functions.
However, it turns out that intensional connectives can be eliminated from pro-
grams by using miops. The trade-off is a matter of expressive convenience and
naturalness.

Definition 1. A spatially augmented first-order language (spatial lan-
guage, for short) £ is a quadruple (L, X, 0,Z), where

1) L is a language for first-order predicate logic without function symbols other
than constants,

2) X is a nonempty (possibly infinite) set, called the interpretation space,
3) o is a mapping from the ground atoms of L to the power set of X, and

4) T is a possibly infinite alphabet of symbols called intensional connectives.
The collection is required to contain logical intensional connectives, correspond-
ing to the union, intersection, and complement operators on 2% as well as the
constant unary operator that returns X. Each intensional connective is equipped
with a fixed interpretation as an operator of some finite arity on 2X.

Although £ may have infinitely many intensional connectives, we will assume
that in any spatial logic program P contains only finitely many such intensional
connectives.

The mapping o, the interpretation space X, and the interpretations of the
intensional connectives might seem to properly belong in the semantics of spa-
tially augmented languages. However, these languages are to be thought of as
having a fixed partial interpretation, and hence the interpretation space, sense
assignment, and the interpretations of the intensional connectives should be fixed
by the language analogously to fixing the interpretation of the equality symbol
in ordinary first-order languages as the identity relation.

We now define the intensional atoms of £ in the usual inductive manner.



Definition 2. 1) An atomic formula A of L, the underlying first-order language
component of £, is an intensional atom, which we call a primitive atom. The
predicate symbol of A is the principal functor of A and

2) If 1, ..., @, are intensional atoms and 7 is an n-ary intensional connective,

The remaining intensional formulas of £ are built up from intensional atoms in
the usual way. It should be noted that intersection is not representable as familiar
Boolean connectives. This will become clear after we present the semantics.
We can then extend the notion of sense to arbitrary intensional ground atoms
inductively by declaring that the sense of intensional ground atom n(p1, ..., ¢¥n,)
to be given by

amer,-. . on)) = flolp1), ..., o(pn))

where the interpretation of 7 is a function f : (2%)" — 2%,
We now define the class of spatial logic programs of the spatial language L.

Definition 3. A spatial logic program has three components.

1) The language £ which includes the interpretation space and the sense assign-
ment.

2) The IDB (Intentional Database): A finite set of program clauses, each of
the form A < Lq,...,L,, where each L; is a literal, i.e. an intensional atom or
the negation of an intensional atom, and A is an intensional atom.

3) The EDB (Extensional Database): A finite set of intensional ground atoms.

Given a spatial logic program P, the Herbrand base of P is the Herbrand base
of the smallest spatial language over which P is a spatial logic program.

For the rest of this section, we shall assume that the classes of spatial logic
programs that we consider always are over a language for first-order logic L with
no function symbols excepts constants, a fixed set X and a set of intensional
connectives.

Informally, we think of the Herbrand universe A, of the underlying language
L, i.e. the set of constant symbols of L, as being a set of indices which we may
employ to suit whatever purpose is at hand. We let HBy, denote the Herbrand
base of L, i.e. the set of ground intensional atoms of L. We omit the subscript
L when the context is clear. Let X be a nonempty set, 2% the powerset of
X, and let o : HBy, — 2%. The subset of X, o(p), is called the sense of the
ground atom p (with respect to X). An interpretation I of the spatial language
L= (L,X,0,7) is a subset of X. A ground intensional atom p is satisfied by the
interpretation I, with respect to sense assignment o (denoted by I =, p) if and
only if o(p) C I. After introducing miops we will modify the |= relation.

We note that sense assignments ¢ can be used to partition the ground atoms
into multiple sorts. For example, let X be the disjoint union of X; and X,. Let
HBL be the disjoint union of A; and As, and choose ¢ such that o(p) C X; for
pe A i=1,2.

The preceding definition allows us to extend the satisfaction relation to all
intensional formulas with respect to 2-valued logic in the usual way. We could



similarly define truth-valuations from subsets of X together with ground atoms
into larger sets of truth values.

We now extend the the satisfaction relation to arbitrary formulas. Because
of the diversity of notions of negation available, we will employ a mapping ay
corresponding to each I C X from the set of sentences, i.e. the set of all formulas
without free occurrences of variables, to three truth values t, f, and 1. We first
define ay on the ground intensional literals, i.e. ground intensional atoms and
their negations. ay is more interesting when extended to all sentences.

We are assuming that the satisfaction relation I =, A on ground intensional
literals A has been given, i.e., for each ground intensional atom A,

tifI=A
ar(A)=<¢ f if I =-A
1 otherwise.

Note that a ground atom p picks out a set of subsets of X as its model class,
namely the set of all supersets in X of the sense of p. Thus the model class of p
is a member of the Boolean algebra determined by the power set of the power
set of X with respect to union, intersection, and complement in 22%  In order
to complete the set up of the semantics for a spatially augmented language, we
adopt a three-valued logic with truth values {t, f, L }. (Every sentence, i.e. the set
of all formulas without free occurrences of variables, will turn out to have have a
truth-value other than L if every ground intensional atom has this property.) We
adopt a standard set of strong interpretations of the 3-valued connectives [KI167],
pp. 334, derived from the standard 2-valued connectives of classical propositional
logic where L plays the role of unknown. It suffices to give the interpretation
of | i.e. NAND, or not both: t | t = f, f| 2z = = | f = t. The remaining pairs
of inputs yield L. The interpretations of all other propositional combinations of
truth values can be obtained by expressing the combination in terms of NAND
as in the two-valued case. It is readily seen that the NAND expression one selects
to represent a particular propositional connective is immaterial.

We inductively extend ay to all of the elements of Sent, the set of sentences in
a usual Tarskian manner. The existential quantifier is evaluated by the function

t if ar(p(e/z)) = t for some constant e
ar by: ar(Fze(x)) = ¢ £ if ar(e(e/z)) = £ for all constants e

1 otherwise.
The universal quantifier is treated as an abbreviation of —~3z—¢(x)). Finally, we
declare I = ¢ if and only if ay(p) =t.

A model, not necessarily stable, of a spatial program is a model of the set
of all formulas in the EDB and IDB. Thus, in particular, a model of a program
must contain the sense of every ground instance of each intensional atom in the
EDB.

We note that if N is the intensional connective corresponding to the intersec-
tion operator on 2% and AN B is a ground atom, then for I C X, there is no
Boolean combination of the assertions I = A and I |= B that holds if, and only
if, I = AN B for all choices of the senses of A and B. Contrast this observation
with: I EF AUB if and only if I E A and I = B.



3 The consequence operator and stable models

The following operator generalizes the one-step consequence-operator of ordinary
logic programs with respect to 2-valued logic to spatial logic programs.
Given a spatial program P with IDB P, let P’ be the set of ground instances of
a clauses in P and let

Tp(I) =1L U

where
L=|J{c(A)|A«Ly,...,L, €P,I=Lyi=1,...,n} and
I, = U{(T(A) | A is a ground atom in the EDB of P.

A supported model of P a model of P that is a fixpoint of T’p.

A spatial logic program is Horn if the IDB is Horn. Our definitions generalize
the familiar characterization of the least model of ordinary Horn programs. How-
ever, if the Herbrand universe of a spatial program is infinite (contains infinitely
many constants) then, unlike the situation with ordinary Horn programs, Tp
will not in general be upward continuous.

We iterate Tp in the usual manner: Tp 19 (1) =1,

TP Ta+1 (I) = TP(TP T Oé([))7 and
Tp (1) = [J{Tr t (D)}, Alimit *.

a<l

Ezample 1. To specify a spatial program we must specify the language, EDB and
IDB. Let £ = (L, X,0,Z) where L has four unary predicate symbols: p, ¢, r and
s, and countably many constants eg,e1, ...,. X is the set N J{N} where N is
the set of natural numbers, {0,1,2,...}. o is specified by o(gq(e,)) = {0,..., n},

o(plen)) ={0,...,n+ 1}, o(r(en)) = N, o(s(en)) = {N}.
The EDB is empty and the IDB is: g(eg) +, p(X) « ¢(X), and s(eg) <+ r(eg).

Now, after w iterations upward from the empty interpretation, r(eg) becomes
satisfied. One more iteration is required to reach an interpretation that satisfies
s(ep), where the least fixpoint is attained.

It is clear that Tp is monotonic if P is a Horn program and thus that the
following result follows from the Tarski fixpoint theorem.

Theorem 1. The least model of spatial Horn program P exists, is supported,
and is given by Tp 1 (0) for the least ordinal « at which a fixpoint is obtained.

What is different about the ascending iteration of Tp from the ordinary situ-
ation in logic programming is that in the spatial case the senses of ground body

* Batarakh and Subrahmanian, [BS89], studied applications of logic programming in
lattices different from the lattice of interpretations.



atoms can be satisfied by the union of the senses of infinitely many ground clause
heads without any finite collection of these clause heads uniting to satisfy the
body atom. But, if there are only finitely many primitive atoms, i.e. the Her-
brand universe of the program is finite, then this source of upward discontinuity
vanishes. The proof of upward continuity is essentially the same in that case as
the case for ordinary Horn programs.

Theorem 2. The least model of spatial Horn program P exists, is supported,
and is given by Tp 1 (0), if the set of primitive ground atoms in the Herbrand
base of P is finite.

In spatial logic programs, we allow clauses whose ground instances are of the
following form:
A%Bl,...,B,—“_!Cl,..w_!Cm. (1)

We can the define the stable model semantics for such programs as follows. For
any given set J C X, we define Gelfond-Lifschitz transform [GL88] of a program
P, GL(P), in two steps. First we consider all ground instances C of clauses in P
as in (1). If J = C; for some C; in the body of C, then the we eliminate clause
C. If not, then we replace C' by the Horn clause

A%Bl,...,Bn. (2)

The GL(P) consists of EDB(P) plus the sets of all Horn clauses produced by
this two step process. Thus GL(P) is a Horn program so that Tgr(p) is defined.
Then we say that J is stable model of P if and only if J equals the least model
of GL(P).

Theorem 3. For any spatial logic program P,

1. I C X is a model of P iff Tp(I) C I and
2. I is stable with respect to P implies that I is supported with respect to P.

The next theorem shows the relationship between stable models of a a spatial
program, and a natural topology induced by a spatial language on its interpre-
tation space.

Theorem 4. If L is a spatially augmented first-order language with the inten-
sional operator for intersection of senses, then the set of senses of the ground
intensional atoms form the basis of a topology in which all supported models, a
fortiori all stable models, of all spatial programs over L are open subsets of the
interpretation space.

We will call the topology given by the previous theorem the Herbrand topol-
ogy. This topology has a utility in finding stable models. Ordinarily one expects
to recover a guess for a stable model as the least fixpoint of the Gelfond-Lifschitz
transform determined by the guess. The previous theorem allows one to recover
merely the interior of the guess, or equivalently, confine ones guesses to images
of open sets. In the next section, where we incorporate miops into the one-step
consequence operator of a program, we can achieve even greater selectivity of
stable models.



4 Set Based Logic Programming with Miops

In this section, we shall introduce miops on the underlying space X of logic pro-
gramming and show how we can extend the spatial logic programming paradigm
of the previous section to incorporate miops.

Let X be the underlying space of spatial logic program P. We say that an
operator op : 2% — 2% is a miop if for all A, B C X,

1. ACB = op(A4) C op(B) and
2. op(op(A)) = op(A).

4.1 Operators and stable models

Suppose that the underlying space X is either R™ or Q™ were R is the reals
and Q is the rationals. Then X is a topological vectors space under the usual
topology so that we have a number of natural miop operators:

op;s(A) = A, i.e. the identity map is simplest miop operator,

op,(A) = A where A is the smallest closed set containing A,

0p;n: (A) = int(A) where int(A) is the interior of A,

0D convex(A) = K(A) where K (A) is the convex closure of A, i.e. the smallest
set K C X such that A C K and whenever z1,...,z, € K and ay,...,qa,
are elements of the underlying field R or @ such that Y. ; a; = 1, then
>o oz isin K, and

5. 0psupsp(A) = (A)* where (A)* is the subspace of X generated by A.

W=

Now if we are given a miop operator op® : 2% — 2% and spatial logic program
P over X, then we can further generalize the one-step consequence-operator of
ordinary logic programs with respect to 2-valued logic to spatial logic programs
relative to miop operator op™ as follows. Given a spatial program P with IDB
P, let P’ be the set of ground instances of a clauses in P and let

Tp, op+ (1) = op™ (I1 U Iy)

where

L =U{c(A)|A«Ly,....,L, €eP I=L;i=1,...,n}.

I, = J{o(A) | A is a ground atom in the EDB of P}.

A supported model relative to op™ of P a model of P that is a fixpoint of Tp o+ .
We iterate 1'p ,,+ according to the following.

Tp,op+ T 0(I) =1
TP:0P+ T o+ I(I) = TP,op“’ (TP7op+ T O((I))
Tpopr TAUI) = op (| J{Tp,op+ T (I)}), Alimit

a<

A spatial logic program is Horn if the IDB is Horn. Again it is easy to see
that if P is a Horn program and op™ is a miop, then Tp ,,+ is monotonic. Thus
just like in the case a spatial logic programs.



Theorem 5. Given a miop op™, the least model of spatial Horn program P
which is closed under op™ exists, is supported relative op™, and is given by
Tpopt+ T (0) for the least ordinal « at which a fixpoint is obtained.

Next we consider how we should deal with negation in the setting of miop
operators. Suppose that we have a miop operator op~ on the underlying space
X. In the definition of section 1, we say that J |= —C; if and only if it is not
the case that J = C;. That is, J = =C; if and only if C; € J. As we mentioned
in the introduction, it seem equally plausible to say that J |= —C; if and only
if JNC; = (. Thus we will define two different satisfaction relations for literal
based relative to miop operator op~3. This leads us to the following definition.

Definition 4. Suppose that P is spatial logic program over X and op~ is a
miop operator on X.

(I) Given any atom C and set J C X, then we say J |:£p, —C if and only if
op~ (C)NJ = op~ (D).
(IT) Given any atom C and set J C X, then we say J |:££, —C if and only if

op~ (C) ¢ J.

We can the define the two types of stable model semantics for a spatial logic
program P over X relative to two miop operators op™ and op~ on X. Let P be
a spatial logic program over X and op™ and op~ on X be two miop operators
on X6,

Definition 5. (I) For any given set J C X, we define Gelfond-Lifschitz trans-
form of type I of a program P, GLgy op+ op— (P), in two steps. First we consider all
ground instances of classes C in P as in (1). If it is not the case that J |:(I)p, =C;
for some i, then the we eliminate clause C. Otherwise we replace C' by the Horn
clause

A(—Bl,...,Bn. (3)

The GL', op+.op— (P) consists of EDB(P) plus the sets of all Horn clauses pro-

duced by this two step process. Thus GLY, . _(P) is always a Horn program
; J,opT,op .
and hence Ty 1 (P),op+ 18 defined. Then we say that J is type 1 stable

J,opt,0p—
model of P relative to (op™, op™) if and only if J equals the least model relative
to op* of GLY .~ (P).

(II) For any given set J C X, we define Gelfond-Lifschitz transform of type

IT of a program P, GLgIOer op— (P), in two steps. First we consider all ground
instances of classes C in P as in (1). If it is not the case that J =T —C; for
some %, then the we eliminate clause C. Otherwise we replace C by the Horn
clause

A« By,...,B,. (4)

5 Lifschitz [Li94] observed that different modalities, thus different operators, can be
used to evaluate positive and negative part of bodies of clauses of normal programs.
6 It will often be the case that we take op™ = op~, but it is not required.



The GLI

J,opTt,op

_(P) consists of EDB(P) plus the set of all Horn clauses pro-

duced by this two step process. Thus G L (P) is always a Horn program

J,op*,op~
and hence Tt L (P)op+ is defined. Then we say that J is type II stable
J,opt,0p— ’
model of P relative to (op™, op™) if and only if J equals the least model relative
to opt of GLgIOer op— (P)-

We then have the following result.

Theorem 6. Suppose that P is spatial logic program over X and op™ and op™
are miop operators on X . Assume I be closed relative to op™, i.e., op™(I) = 1.
Then

1. I C X is a model of P iff Tp ,,+(I) C 1.
2. I is stable of type I or II with respect to P implies that I is supported with
respect to P relative to op™.

In the following subsections, 4.2-4.5, we shall give four examples to show how
the stable models of a give spatial logic program can vary depending on how we
define op™ and op~. We note that in the case where op™ = op,,; and the sense of
any atom A such that —A appears in P is a singleton, then there is no difference
between the type I and type II stable models. Our examples in the next three
subsections will all have this property so that we will not distinguish between
type I and type II stable models.

4.2 Separating sets

Suppose that V = Q. Let 0 denote the zero vector of V. Suppose A and B are
subsets of V. Our idea is construct a program whose stable models correspond to
separating sets S such that S is closed relative to op™, A C S and SNB = op~ ().
As we shall see that by picking the miop operators op™ and op~ appropriately
we can have a single spatial logic program P whose stable models have a variety
of properties.

Formally, we shall assume that the underlying first order language has con-
stant symbols a for each a € V and it has three unary predicate symbols S, S
and A. Thus the ground atoms of the underlying Herbrand Base are all of the
form S(a), S(a) and A(a) for some a € V. We shall think of the interpretation
space X as the set

X =1{S(a):a€V}Iu{S(a):aeV}IU{A(a) :a €V}

The sense of any ground atom S(a), S(a) and A(a) will be just {S(a)}, {S(a)}
and {A(a)} respectively. That is: 0(S(a)) = {S(a)},0(S(a)) = {S(a)} ando(A(a)) =
{Aa)}.

Now suppose that we are given a triple of miop operators opg, 0pg, 0P ON
V. Then we can define a miop operator op™ on X as by defining op™ so that



op™(T) ={S(a) :a € ops({y €V : S(y) € T})}U
{S(a) ra € ops({y € V: S(y) € TH}U
{A(a) ;acops({y eV : A(y) €T} (5)

The intuition here is that suppose we want in a stable model S and S to specify
subspaces of V. Then we take opg = 0pg = 0p,, 0 that in any stable model
the sets {a € V : S(a) € M} and {a € V : S(a) € M} are subspaces. Now
consider the following program P.

(1) S(a) « for all a € A.

(2) S(b) « for all b € B.

(3) A(0) « S(z), S(=),~A(0)
(4) S(z) « ~S(2)

(5) S(z) = —S(x)

We note that when we ground P, the clauses of type (3), (4) and (5) will
generate the following sets of ground clauses.

(3)" A(0) « S(v),S(v),—~A(0) for all v € V
(4)" S(v) + =S(v) for allv € V
(5)" S(v) « ~S(v) forallv € V

Before proceeding we should make an observation about the clauses of type
(3)” under the assumption that op4 = op~ = op,;;. That is, if op™ = op,,,
then op~(c(A(0))) = {A(0)}. Now if {A(0)} C M, then it is not the case that
M \:{)p, —A(0) nor is it the case that M \:{);, —A(0). Note that every clause
of ground(P) which has A(0) in the head has =A(0) in the body. We claim that
no matter how we define opg, opg and op~, it will be that case that any type
I or type II stable model M of P will have {a : A(a) € M} = . That is, since
the only clauses which have an A(v) in the head come from the clauses of type
(3)’, it automatically follows that it must be the case that {a : A(a) € M} is
either equal to op4(0) = 0 or op 4({A(0)}) = {A(0)}. But it cannot be that
A(0) € M since otherwise all the clauses of type (3)’ will be eliminated when
we take GL(I)iJr op- (P) or GL(IJfJ+ op— (P) and hence there would be no way to
generate A(0) by iterating TGLI op+ OF TGLII op+ (P) starting at the
empty set. Thus it must be the {a : Aa) € M} = @ But then the effect of
the clauses of type (3) is to say that it is impossible that both S(v) and S(v)
are elements of a stable model M of P of type I or type II. Thus the effect of
the clauses of type (3)’ is to say that in any stable model M of type I or type
11, when op, = op~ = op,,, the sets {a : S(a) € M} and {a : S(a) € M} are
disjoint.

Next it is easy to see that the clauses of type (4)’ and (5)’ ensure that that
for any stable model of type I or type II of P, it is the case that {a : S(a) €
M}u{a:S(a) € M} = V. Similarly the clauses of type (1) and type (2) ensure



that A C {a : S(a) € M} and B C {a : S(a) € M}. Thus it follows that no
matter how we define opg and opz, the set {a : S(a) € M} and {a: S(a) € M},
where M is stable model of type I or type II of P, are a pair of separating sets
for A and B.

Now consider the various options for opg and opg. In each case stable models
of P will characterize some desired class of sets. Moreover, in each case the stable
models will be of the form M = {S(v) : v € C}U{S(v) : v € X — C} where C
is the set which is characterized.

Proposition 1. 1. When opg = op;4 and opg = op,4, P has a stable model if
and only if AN B =0 and stable models of P characterize sets C CV such
that ACC and BCV —C.

2. When opg = op,. and opg = 0p;,;, P has a stable model if and only if
0p.(A) N B =0 and stable models of P characterize closed sets C C'V and
ACC and BCV —C.

3. When opg = op;,, and opg = op., P has a stable model if and only if
Anop.(B)=0. Stable models of P characterize open sets C CV such that
ACC and BCV —C.

4. When opgs = 0p.,p, and 0opg = 0p.,,,, P has a stable model if and only if
K(A) N K(B) = 0 and the stable models of P relative to op™ characterize
sets C CV such that C and V — C are convex, ACC and BCV —C".

5. When opg = 0p s, and opg = op.y, P has a stable model if op, 4, (A) N
B = 0 and the stable models of P characterize subspaces of C CV such that
ACCand BCV —C.

4.3 Complementary subspaces

In this section we modify the previous construction to compute complementary
subspaces. That is, suppose that we add 2 more predicates T,T and define
(T (v)) = {T(v)} and o(T(v) = {T'(v)} for all v € X. Next consider the program
Q which is P from the previous construction plus the following set of clauses:

(6) T'(b) « for all b € B,

(7) T(a) « for all a € A,

(8) A(0) « T'(x), T(x), ~A(0),
(9) T(z) - —~T'(z) and

(10) T(z) « =T (x).

Then as before with shall take op, = op™ = 0p;g, 0ps = 0P = OPsupsp
and opg = opy = op;y. Then we are essentially in the case of part 5 of the
Proposition 1 so that all stable model of Q relative to op™ are of the form

M ={Sw):veCyuU{Sw):ve X -C}
U{T(v):v e DYU{T(w):ve X - D}.
" Recall the classical Convex Separation Theorem of Stone: if A and B are disjoint

convex subsets of V', then there is a set C' such that C and V — C are convex subsets
of V such that ACC and BCV —C.



where C' and D are subspaces of V suchthat ACC, BCV —-C,ACX — D,
and B C D. Finally we would like to add some clauses to ensure that C' and
D are complementary subspaces, i.e. C N D = {0} and op,,;,,(CUD) = V.
We add three more predicates U, U and equality where 0Py = O0Pgupsp and
op_ = opy = 0p;4. Consider the following clauses (11)-(18):

11) A(0) < U(z),U(z),—A(0),

12) U(z) « -U(z),

13) U(z) « -U(z),

14) A({0}) « T(2), ~A({0}),

15) U(x) < S(x)

16) U(z) « T'(z),

17) = (v,v) < for all v € V and

18) A(0) « S(z),T(z),—(z = 0),-A(0).

By our previous analysis, clauses (11), (12) and (13) ensure that in a stable
model M the set E = {v € V : U(v) € M} is a subspace and V — E = {v €
V : U(v) € M}. Clause (14) then ensures that in a stable model V — E = {v €
V :U(v) € M} = § and hence it must be the case that E = {v € V : U(v) €
M} = V. However the only way that we can generate in E is via applications
the clauses of the form (15) and (16) so that in a stable model, we must have
0P supsp(C U D) = E = V. Finally the clauses of the form (17) and (18) ensure

that C N D = {0}. Thus we have the following result.

Proposition 2. The stable models of program Q determine sets C and D to be
complementary subspaces of V.

4.4 Continuous real functions

In this section, we shall use set based programming to write a program whose
stable models represent continuous functions F : [0,1] — [0, 1].

Let R be the real line, equipped with its usual topology. Let R™ be the set
of all positive real numbers. Let w be the set of all natural numbers. Let ZT be
the set of all positive integers.

It is easy to see that there R has a countable base { U, |a € w } such that

1. Uy =R,

2. for each a > 0, U, is an open interval (p,,g.) whose endpoints are dyadic
rational,

3. the endpoint sequences (p,),.,, and <qa)q€w are computable,

4. there is a monotone function e : Z+ — Z7T such that, for each positive
integer m, for each a > e(m), the diameter of U, is less than 2-™ and

5. for all natural numbers a and b, if U, C Uy, then a > b.

For any positive integer n, the product space R™ also possesses such a base
(with the obvious difference that the sets U,, for n > 0 are products of open



intervals and that there are 2n computable sequences of endpoints.) Obviously,
such a construction can be relativized to the product spaces [0, 1]™

Given such a base for the topology of R™, we can represent a continuous
function F': R™ — R" by the function f : w — w defined by

f(a) = the greatest b such that F'(U,) C U, (6)

We can recover F' from f, since, for each z € R™, F(x) is the unique member of
ﬂaew,zeUa Uf(a)

Conversely, given such a base {U, |a € w} and an arbitrary function f :
w — w, it is natural to ask when is it the case that there is a continuous
function F': R™ — R"™ such that F is defined from f via (6). One can show that
it is the case that for any fixed z € R",

N Urw

acw,rclU,

is a singleton if and only if there is a function d, : Z+ — R* such that, for each
natural number m and each positive integer k, z € U,,, and U,, has diameter less
than d, implies Uy, has diameter less than 27%. Thus, (6) defines a function
from R™ to R™ if and only if such a d, exists for every x € R". In the case of
compact space like [0, 1], it is the case the (6) defines a function from [0, 1] to
[0,1] if and only if such a d, called the modulus of continuity of the F' function,
such that for all k, U,, has diameter less than d(k) implies Uy (,,) has diameter
less than 27F.

We shall consider a simplified version of this type of phenomenon. For exam-
ple, let

A, ={A,r : k=0,...,2" —1}U{B,r:k=1,...,2" ! —2}. (7)
where
[0, 5) if k=0,
Anp =< (52,1 ifk=2"—1and
(£, By ifk=1,...,27 1 -2
and
2k+1 2k+3

By = ) for k=0,...,2" 1 — 1.

(S 5
The significance of the family A4,, is that every z € [0, 1] lies in an open interval
I of diameter 1/2™ for some I € A,,. Now suppose that our representing function
f of a continuous function F': [0,1] — [0, 1] has the property that if U, € As,,,
then f(a) = b where b € A,,. Thus the modulus of continuity function in this case
is given by d(k) = 5zir=. That is, whenever U,, has diameter < d(k), Un C U;
where U; € Az and hence Ug(my C Uypy) € Ay and hence diam(Ug(m)) <
diam(Uy()) = 2%, In fact, it easy to see that can specify F' by merely defining
f on the a such that U, € {J, -, Aan.



This given, we consider the following program. The constants of the under-
lying program will be A,, » such that £ =0,...,2" —1 and n > 1 and B,, ; such
that k= 0,...2" ! — 2 for n > 1. Our program will contain one binary relation
symbol f(z,y) and one 0O-ary predicate symbol C. The sense of a ground atom
f(Em ke, Fny) where E, F' € {A, B} will simply be the open set E,,  x F,; con-
tained in [0,1] x [0,1]. The sense of C is just {C} so that the underlying space
X consists of all {C} U{U, x Uy : a,b € w}. We will take the miop operator
ops = opc = op~ = op,4. Then consider the following propositional set-based
program P.

(1) C  f(X,Y),~C for all X € As, and Y ¢ A,

(2) C « f(X,Y), f(X,Z),~C for all X € Ay, and Y, Z € A, with n > 1 and
X4£Y,

(3) C « f(X,U),f(Y,V),~C for all X,Y € (o, Asp and U,V € |, o, An
such that X CY but U ¢ V. - -

(4) f(X,Y) « —f(X,U1),...,7f(X,Usnygn-1 1) for each n > 1, X € Ay, and
Y € A, where A, —{Y} ={U1,...,Usnyon-1_1} and

(5) C + ~f(X,Up),...,7f(X,Ugnyon-1_1),~C for each n > 1, X € Ay, and
Y € A, where A, = {Up,...,Usnyon-1_1}.
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It is then easy to see by the same type analysis that we used in example 1,
that C can never be an element of a stable model M for P. It follows that effect
of the clauses in (1), (2), (3) is to ensure that we can think of f as specifying
a function defined on some subset of J,~; A2, such that for each n > 1, (i)
X € Ay, implies f(X) € A, and (ii) if X C Y, then f(X) C f(Y). Finally the
clauses of (4) and (5) say that f must be defined on all of |J, -, A2n. Thus we
have the following

Proposition 3. The stable models of P correspond to f : U, >, An = U,>1 4n
such that for all n, a € A, implies f(a) € A, and hence all such f define a
continuous functions F :[0,1] — [0, 1] via (6).

We should note that we did not really need to used set-based programming in
this case as we could do the same thing in normal logic programming. The reason
for presenting this construction is that by setting it in this framework, we can
reason directly about the approximating interval U, x Uy, to the function F
in this case. Moreover, the framework of representing functions allows to reason
about continuous transformations between different agents. Of course, in actual
practice, we can only reason about approximations of continuous functions since
continuous functions and/or their representing functions are infinite objects. In
our setting, we can reason about approximations of representing functions by
fixing some ngy and restricting our program clauses so that all indices involved
must be greater than or equal to ny.



4.5 Distinguishing type I and type II stable models

We end this section with an example where there is a difference between type
I and type II stable models. Suppose that the underlying space X = R? is the
real plane. Our program will have two atoms {a, b}, {c,d} where a,b, c and d are
reals. We let [a,b] and [¢, d] denote the line segments connecting a to b and ¢ to
d respectively. We let sense of the these atoms be the corresponding subsets, i.e.
we let 0({a,b}) = {a,b} and o({c,d}) = {c,d}. We let op™ = op™
The consider the following program P.

(1) {a,b} « ~{e,d)
(2) {c,d} « ~{a,b}

= OpCDTL’UCI'

There are four possible candidate for stable models in this case, namely (i) 0,
(ii) [a, b], (iii) [c,d], and (V) 0P ppyes1@sb,c, d}.

If we are considering type I stable models where J |:£p, —=C if and only if
op~ (C)NJ = op— () = B, then the only case where there are stable models if
[a,b] and [c,d] are disjoint in which (ii) case and (iii) are stable models.

If we are considering type II stable models where J \:gé, —=C if and only if
op~ (C) C J, then there are no stable models if [a, b] = [c, d], (ii) is stable model

3

if [a,b] C [e,d], (ii) is stable model if [c,d] C [a,b] and (ii) and (iii) are stable
models if neither [a, b] C [¢,d] nor [c,d] C [a, b].

5 An application: cooperating multi-agents

In this section we will illustrate the power of spatial programs and miops to
represent multi-agent systems by building upon an example given by Russell
and Norvig [RN03] involving doubles tennis. Our point of departure is their 2-
player doubles tennis team and how the team attempts to handle the return of
an incoming ball. We first describe their representation of this situation.

Russell and Norvig set up two agents (the players on the team) that can each
be in one of four discrete position values: [Left, Baseline], [Right, Baseline], [Left,
Net], [Right, Net]. Initially the ball is approaching the [Right, Baseline] position
and it is assumed that the ball can only be returned from the position it is
approaching. The goal is to return the ball and have both players positioned at
the net.® Each player has three distinct actions available that can be invoked
under certain preconditions. The effect of an action is to change the environment.
In this tennis example, an environment is an association of values to the ball’s
approaching position attribute, the ball’s returned attribute, and each agent’s
position attribute. The actions available to an agent are NoOp which has no
effect, Go which reassigns the agent’s position attribute value, and Hit which
sets the ball’s returned attribute to frue. Since we are about to change the
preconditions for moving a player anyway, we omit the description of the rather
common sense preconditions for each of the actions.

8 Each player can go to any position that she herself does not currently occupy, hence
the position goal for the players is actually superfluous.



We will now modify Russell and Norvig’s example to allow for the continuous
motion of the players in continuous time and allow them a continuum of positions
on their side of the court, as well as seek to prevent collisions when hitting
the ball. We will represent the modified situation with a spatial logic program
and selected miops. The representation will be accomplished by first considering
a representation of the tennis example in a simplified variation of a fragment
of William Rounds’s and Hosung Song’s ¢-calculus [RS03], and then we will
discuss how to represent the ¢-calculus description as a spatial program with
miops. We emphasize that we are not attempting to give a general procedure
for representing ¢-calculus models as spatial logic programs with miops. Rather,
we are informally indicating that there is a relationship between ¢-calculus (and
similar calculi such as CCS and 7-calculus) and spatial programs with miops.

We give our ¢-calculus variation grammatically and then describe an opera-
tional semantics.

We have Concurrent Expressions (CE), Copy Expressions (YE), Commit-
ted Choice Expressions (CCE), Action Sequence Expressions (ASE), Action Ezx-
pressions (AE), Environmental Actions (EA), and messages (M). The gram-
mar relating these types of phrases is given by the following production rules:
CE — CCE,CE — YE, CE — CCE|CE, YE — |CCE, CCE —
ASE, CCE — ASE + CCE, ASE — AE, ASE — AE .CCE (not quite
hierarchical with this rule), AEF — FA, AE — M, and each message is of the
form id or id ° where id is an identifier. An empty CE is denoted by 0, a process
which is unable to carry on any more actions. An E A is either empty, or has the
form [p — £], where @ is a sentence from a fixed given spatially augmented first
order language and € is an environment (to be discussed momentarily). ASE
expressions are read, and processed, from left to right. The processing of CE
expressions is made by considering all the subexpressions simultaneously; and
the processing of CCFE expressions consists on selecting only one of its subex-
pressions for execution. The stopping condition of a CE is the disjunction of the
stopping conditions of its components. Analogously, the stopping condition of a
CCE is the disjunction of the stopping conditions of the AE’s in the CE. The
stopping condition of an EA, [¢ — £], is ¢, and is called the precondition of
the EA. The stopping condition of a message is true. The stopping condition of
0 is true. Finally, the stopping condition a Y FE is the stopping condition of its
top-level CCE.

An environment is a quadruple (V, I, L, P) where V is a a k-tuple (for some
k) of variables, I is a set of k-tuples of values in the interpretation space of the
given spatially augmented language £ for the variables in V', L is a flow law and
P is an invariant condition, which must remain true while the state I evolves
in accordance with the flow laws. Formally, I is a relation (which evolves as the
environment evolves) on an interpretation space, the flow law L is a function
that maps pairs consisting of, for some k, a k-ary relation on an interpretation
space and a time (i.e. a real number) to k-ary relations on the interpretation

% In the literature, id is regarded as the action of listening for the message id, and id
as the action of sending that message



space, and P is a formula of the given spatially augmented language £ whose
free variables are in V.

Consider the Euclidean plane with a standard coordinate system and the
system of ordinary differential equations z = f(z,y), y = g(z,y). Take for I a
small region such as the disc of radius 1 around the origin. The flow law is the
system of ordinary differential equations. A suitable flow law can be thought
of as causing the points in I to move to new positions as a function of time,
thus moving and distorting I as a function of time. (It is possible to give e.g.
differential equations that move at least some of the points of I to infinity after
a short time, thus rendering the image of I at all later times undefined. We
will assume that the admissible flow laws define an image of any subset of the
plane at all times.) Think of the image of I evolving over time while the image
satisfies or remains in the region specified by P. For example, the unit disc may
move and distort for a while until the image no longer contains the origin. When
that happens and is detected, we could stop the evolution of the image of I. In
general, we can stop the evolution of the image of I at the greatest lower bound
of all times ¢, at or after the starting time, at which P is satisfied by the image
of I. Call this time the stop time.

Now, the essential connection with spatial logic programs and miops is that
the image of I at the stop time, as a function of I, for a given admissible flow law
and a given invariant condition, is a miop provided we ensure that any invariant
conditions we use always eventually must be falsified such as by arranging for
default stop times to be specified. If I increases in size, so do the images of I over
time (monotonicity) and if a stop time has been reached, a restart with the same
invariant condition goes nowhere (idempotency). Any computations of miops,
such as those involving numerical solutions of ordinary differential equations
and detections of invariant condition satisfaction are back-end computations.
Using invariant conditions that allow the back-end computation to not return
allows a form of deadlock. It is, therefore, reasonable to avoid such invariant
conditions.

A sentence of the given spatially augmented language. A miop p can be
derived from L and an invariant condition ¢ as follows: ur (I) = L(I,t;) where
t1 =inf{t | L(I,t) E —¢}.

An operational semantics for our variant fragment of ¢-calculus is based on a
simple notion of concurrent threads, each of which is a sequence of actions to be
carried out on an environment. Each element of a concurrent expression (CE) is
either a copy expression (Y E) or a committed choice expression (CCE). We defer
describing the processing of copy expressions until the tennis example. Copy
expressions have the least priority in processing. Think of a CE as a collection of
concurrent queues, each of which is contained in a CCE. A CCFE is an exclusive-
or of these queues. A CCFE is eligible to be selected for processing if its stopping
condition is satisfied by the current environment. An eligible CCE is selected
nondeterministically, but subject to the constraint that CCE's containing an
action sequence that can participate in a handshake (see below) have priority.
An action sequence expression whose stopping condition is currently satisfied



is selected from the CCE to replace the CCE, i.e. the CCFE is reduced, again
subject to the constraint that handshakes get priority. The operation is vacuous
if the selected CCF is already an ASFE, and we must build into interpreters the
avoidance of repeated vacuous selections of reduced CCE's. An ASFE is thought
of as a queue. When an ASFE is selected for processing, the action at the front of
it (which may involve a handshake with the action at the front of another ASE)
is processed in the manner of the w-calculus. Actions other than handshakes
involve syntactic changes to the environment and resetting of variables. If there
are no eligible CCE's, the environment is allowed to evolve in accord with its
current flow law and invariant. If the environment’s invariant condition is not
satisfied and there are no eligible CCE’s, deadlock results.

An operational semantics treats the phrase types in accordance with the
following: Let (£, FE) be a pair, where £ is an environment and E is a CE.
The stopping condition ¢ of the pair is the disjunction of the negation of the
invariant condition of £ and the stopping condition of E. A traunsition from (€, E)
to (€', E') nondeterministically occurs, from the highest to the lowest priority,
if:

— the expression E is a concurrent expression of the form E,|...|E,, and at
least two subexpressions F; and F; are ready to synchronize by means of
complementary messages. This action requires the structure of the subex-
pressions to be E; = a.E; and E; = a.E;. E' then results from E in the
manner of w-calculus transitions, and £’ = £. This is known as a handshake.

— the stopping condition of (&, F) is satisfied by the set in &, none of the
components of E are ready for a handshake , £ is the environment of an
environmental action whose precondition is satisfied by the set in (£, E) and
E' is a replacement of E in the manner of the w-calculus.

— the stopping condition of (£, F) is not satisfied by the set in £, E' = E, and
the set in £’ is the result of applying the miop derived from the flow law in
(€, E) and the stopping condition of (€, E) to the set in (€, E).

Whenever the expression E can be processed in the manner of the m-calculus,
no environmental evolution can take place and E is processed. Otherwise £
satisfies no active stopping conditions and is permitted to evolve according to its
constituent flow law. The distinction between committed choice and mere choice
is that any of the message components or action components of a CE with a
satisfied precondition can be selected to be processed (with matching messages
having priority) and then eliminated. With a CCE one of the action components
with a satisfied precondition can be selected for processing after which the entire
CCE is eliminated. Copy expressions are treated by regarding a CFE as a list of
components and list-processing the CE by performing an in-place replacement
of a component !CCE by CCE||!CCE.

The first two types of transitions between environment /expression pairs item-
ized above are representable as clauses. We can construct a set-based logic pro-
gram to be an interpreter for our ¢-calculus fragment variant in accordance with
the following. We want stable models to be plans which we represent as lists



of pairs, each pair of the form (€, E), and consecutive pairs (£, E), (€', E') oc-
curring in a plan only if (£, E) — (€', E') is a legitimate transition. Note that
whenever £ # £’ it must be that the set component of £ results by applying
a miop representing a flow or an environmental action to the set component of
E. The specific miop to be applied is determined by the top few levels of subex-
pressions in E together with the set component (which may be a singleton) in
€. We may regard the miop as a function of both £ and FE; in that case there
is only a single miop 7 to represent environmental evolution that we need to be
concerned with. We can identify the set components of € and, similarly, £, with
a tuple of constants in a manner similar to a our treatment of vector spaces in
section 4.2, whenever it is a singleton, as it is in the applications under discus-
sion here. The sense of an atom TRANS(E, E, &', E') is just the singleton of the
pair ((£, E), (€', E")). We then declare a miop op to act on sets of these pairs by
op(R) ={(s,t) e R |t € w({s})}, where RC S x T.

The set-up of a spatial logic program-based interpreter involves the need for,
given a nonempty relation ¢ in a program P, arranging a relation p such that
in each stable model p is true of exactly one tuple and g is true of that tuple.
The arrangement should not change the extension of ¢ in any stable model.
Specifically, we can add clauses to P as follows:

That in any stable model p will have at most one true instance is expressed
by:

AX,Y) < p(X),p(Y), ~A(X,Y)
A(X,X)

That in any stable model p and p are disjoint is expressed by:

A p(X),p(X),-A

p and p are complementary:

p(X) « —p(X)
p(X) « —p(X)

That in any stable model that if p is true of X, then ¢ is true of X is expressed
in conjunction with the above clauses, while avoiding adding any new clauses
with ¢ occurring in their head, by:

P(X) + —q(X)
In conjunction with the above clauses, 3X p(X):

A+ —-B,-A

The eight clauses given above can regarded as a macro, which we write as:

exactlyOne[q](X)



It is clear that we may generalize the single variable X to a tuple of variables.
Moreover, by singling out a subtuple of variables among a tuple of variables, we
may obtain (Skolem) functions. The following is the obvious abbreviation, where
Y1,...,Y,, functionally depends on X, ..., X,:

exactlyOne[q](X1,..., Xn; Y1,...,Yn)

Thus, given ay, ..., an, we obtain exactly one instance of

exactlyOne[q](a1,...,an;Y1,...,Yy)

true in any stable model.

In order to obtain one successful plan per stable model, we use the exactly-
One macro. Suppose we have set up, using standard techniques, a 1-ary predicate
PLANPART which in any stable model is true of all and only the lists of pairs
(Env, Exp) such that for two successive pairs (Env, Exp), (Env', Ezp') in any
list of which PLANPART is true, TRANS(Env, Exp, Env', Exp') is true. Further-
more, suppose we have easily available list-processing predicates, FIRST(A, L)
true of all and only lists L whose first member is A in all stable models, and
LAST(Z, L) true of all and only lists L whose last member is Z in all stable mod-
els. (That lists are finite is easy to arrange in what we take for the interpretation
space.) Then we may define the 3-ary predicate PLAN by

PLAN((Env, Ezp), (Env', Exp'), Plan) +

FIRST((Env, Exp), Plan), LAST((Env', Exp'), Plan), PLANPART(Plan)
The macro

exactlyOne[PLAN]((Env, Ezp), (Env', Exp'); Plan)

picks out exactly one Plan starting from (Env, Exzp) and ending with (Env', Exp')
in any stable model of the interpreter for which PLAN((Env, Ezp), (Env', Exp'), Plan)
is true.

We conclude this section with a discussion tracing the processing of the
expression representing the double tennis team’s attempt to return an incoming
ball.

The representation of the tennis situation in our variant of the ¢-calculus is:

[P; can reach ball — set P; to intercept ball ].goP;.
([Py can hit— stop Py, return ball].hitBallP; + [P; missed — all stop]. missedP;)
[
goPs [P, closer than P; — no reset].
([true — stop P1] + [true — move P; to default position])]
[
[P, can reach ball — set P to intercept ball ]. goPs.
([P> can hit — stop P, return ball ]. hitBallP, + [P missed — all stop ].missedP;)
[
goP; [Py closer than P> — no reset |.
([true — stop P»] + [true — move P» to default position])



In order to simplify the representation, we will use labels to refer to the
environmental actions in this process; actions with labels e; belong to expressions
related to player 1, and labels of the form e; refer to FAs of player 2.

Let:
e1= [Py can reach ball — set P; to intercept ball ]
o=[P; can hit— stop Pj, return ball]
3=[P; missed — all stop]
4=[P> closer than P; — no reset]
s=[true — stop P]
=[true — move P; to default position])]
=[P, can reach ball — set P, to intercept ball]
=[P can hit — stop P,, return ball]
=[P> missed — all stop ]
=[P, closer than P» — no reset]
=[true — stop Ps]
=[true — move P, to default position]

The representation of the tennis game is now:

e1.g0P; .(e2.hitBallP; + e3.missed P, ) |
gOP2.64 (65 + 66) ”
e} .goPs. (e} .hitBallPs + ef.missed P») |
goP.e}.(el + ef)

When the ball approaches the players, the first and third components of the
representation can potentially have their preconditions satisfied. It is presumed
that at most one of the players can reach the ball. If neither reach-precondition
is satisfied as the environment evolves the ball’s position, then no expression
processing will result, and the environment will eventually stop evolving when
its default stopping condition is reached , for instance, when the ball goes out
of the court.

Alternatively, suppose the reach precondition for P is satisfied first. Then
the environment evolution is halted, variable values are reset, and the flow law
is altered to cause player 1 to intercept the ball when activated. The expression
e1 = [P can reach ball — set P; to intercept ball] is popped and discarded. The
expression now has the form:

goP; .(es.hitBallP; + e3.missedP;) | goPs.es.(e5 + €g) |
e1.80Ps.(e5.hitBallP, + e5.missed P,) | goP;.ej.(ef + eg)

At this point in the expression processing, the messages goP; and goP; match
and are eliminated by means of a handshake action. As mentioned above, this
kind of action takes precedence over any other possible processing currently
available in the expression. The result of the handshake is the expression:

(62.hitBallP1 + eg.missedPl) ” gOP2.€4.(65 + 66) H
e}.goPs.(eh . hitBallPs + ef.missed P») || €}.(e5 + eg)




No other handshake is possible at the moment, so the environment resumes
evolving until (possibly after 0 elapsed time) one of the preconditions [P; can
hit] (from ez), [P> can reach ball] (from €}), or [Py closer than P] (from €}) is
satisfied.

Suppose for example that [P> can reach ball |, the precondition of e, is
satisfied first. The environment is updated by using the information provided
in e} setting player 2 to go also after the ball. €] is then eliminated from the
expression, which now presents this form:

(62.hitBallP1 + eg.missedPl) ” gOP2.64.(65 + 66) ”
goP,.(e4.hitBallP, + ef.missed Py) | e}.(ef + ef)

Notice how the processing of €] has enabled a handshake, with messages
goP, and goP», which has to be processed before the environment can resume
evolution. The expression is now:

(e2.hitBallP; + e3.missedP;) | es.(es5 + €5) |
(e5.hitBallP + ef.missed P,) | €).(ef + ef)

Both players will be attempting to reach the ball. Assuming that the ball
is not close enough so neither player can determine whether they can reach it
—preconditions for es and e,— (much less, hit the ball), nor the players are able
to decide which one is closer to the ball —preconditions for e4, and e} — the
environment is allowed to evolve thus describing the trajectory of the ball and
that of the players moving towards it.

Suppose that next [Py closer than Ps], the precondition of €}, is satisfied.
Then, environmental evolution stops and the processing of e, opens up a choice
regarding the future actions for P, by exposing the CCE expression ef + eg. €
does not carry any resetting information for updating the current environment.
This action is designed to detect the occurrence on an event for which its response
is delegated to a subexpression. After removing e/, the expression has the form:

(eg.hitBallPl + eg.missedPl) ” 64.(65 + 66) H
(e5.hitBallP; + ef.missedP) | ef + e

The processing of e} paused the evolution of the environment. However, this
will not start evolution again until a choice is made between el or af. This
situation is due to the fact that the preconditions of both e and af are true.
After a choice is made, P, will remain in its current position if ef is processed; or
it will be discretely relocated a to a default position after processing ef. In either
case, since no more actions follow ef and ef, this subexpression is regarded as a
null process 0 and it can safely be removed from this expression. After choosing
either FA and properly updated the current environment, the expression is then:

(Eg.hitBall.Pl + eg.missedPl) ” 64.(65 + 66) H
(e5.hitBallPy + ef.missed Py)

Evolution of the environment then resumes as P; attempts to intercept and
hit the ball. It is important to realize that even though the expression above




gives hope for P, to hit the ball (by means of the expression e).hitBallP, +
es.missed Py ), the current environment makes this possibility very unlikely: the
current flow law of P, prevents it from moving after choosing either ef or eg in
the previous step. It can be also verified that the preconditon for e4 (P closer
than P;) is not satisfied as P; is the only player going towards the ball and it
was already decided that P» was not getting any closer to the ball.

P;’s attempt to intercept the ball may result in a successful return if ey is
process. The environment then will be updated to stop P, and to change the
direction of the ball, result of an effective return by P;. In this case the expression
will have the form:

hltBa.llPl ” 64.(65 + 66) H
(e5.hitBallP, + ef.missed Py)
On the other hand, P; may not be able to reach the ball, in which case

the precondition of ez is designed to detect such event and the result of the
processing of this EA will reflect P;’s failure. The expression is then:

II]iSSGdPl ” 64.(65 + 66) ”
(e5.hitBallPs + ef.missed Py)

In either case, the resulting expressions reflect a state in which no more
progress can be made: a handshake involving hitBallP; (or missedP;, in the
second case) is not possible; and, no precondition of any of the EA availables
is satisfied. In other words, the expression is functionally equivalent to the 0
process. It is clear that the representation of a complete tennis game will require
the ability of allowing the players to react to more than one serv, game and set.
For instance, we can embed each of the components of the original concurrent
expression CF inside copy expressions CY. This would allow the creations of
copies of those components as needed. The original expression would have had
the following structure:

'(61 gOPl (ez.hitBallPl + 63.HliSSGdP1)) ”
!(gOP2.€4 (65 + 66)) ”
I (
I

I(e].goPs.(e5 . hitBallP, + ef.missed Py)) |
(goP.€}y.(ef + eg))
The first step of the processing of this expression consists in obtaining a
copy of each components based on the ¢-calculus congruence rule (which it is
imported from w-calculus) !P = P|P. The resulting expression is then:

e1.g0P; .(eq.hitBallP; + e3.missed P ) |
goPs.eq.(e5 + €6) |

e}.goPs. (e} .hitBallPs + ef.missed P») |
goPLel(e +ef) |
!(e1.goP;.(e2.hitBallP, + e3.missedP)) |
H(goPs.eq4.(e5 + €6)) |

(e} .goPs.(e5.hitBallP, + ef.missed P,)) |
(goPy.¢ (¢} + b))




The representation is now in a form that allows us to proceed as described
before.

6 Conclusions and Further Work

In this paper, we defined a variant of logic programming, called spatial logic
programming, where the atoms have an associated sense (which is a subset of
a given space) and have illustrated how such program can be used to naturally
express problems in the various continuous domains. We envision many other
applications of our spatial logic programming formalism such areas as graphics,
image compression, and other domains where there are natural representation of
processes that accept subsets of spaces as inputs and compute outputs, subsets
of those spaces. Spatial programs with miops provide a logic-based approach to
hybrid dynamical systems.

This paper is the first of a series of papers that will explore the spatial logic

programming paradigm. For example there are a number of concepts from logic
programming such as, well-founded model [VGRS91], stratified programs, etc.
that can be lifted to the present context almost verbatim. Thus one can develop
a rich theory of spatial logic programs. Our spatial logic programs share certain
features with Constraint Logic Programming [JM94] and the exact connections
need to be explored. Third, one can think about the senses of atoms as annota-
tions of the kind discussed in [KS92]. While there are various differences between
our approach and [JM94], for instance our use of negation as means to enforce
constraints as in [Nie99], the relationship between these two approaches should
be explored. Fourth, spatial logic programming can be studied in the more gen-
eral setting of nonmonotone inductive definitions [Den00] (e.g. iterated inductive
definitions of Feferman [Fef70]).
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